Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection and Eligibility Criteria
2.2. PROBAST Rating
2.3. Description of Domains and Decision Rules
2.3.1. Domain 1: Participants
2.3.2. Domain 2: Predictors
2.3.3. Domain 3: Outcome
2.3.4. Domain 4: Analysis
2.3.5. General Decision Rules
2.4. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Results of Risk of Bias Rating
3.2.1. Domain 1: Participants
3.2.2. Domain 2: Predictors
3.2.3. Domain 3: Outcome
3.2.4. Domain 4: Analysis
3.2.5. Overall ROB
3.3. Temporal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Author | Study Type | Publication Year | Study Design | ROB Rating | ||||
---|---|---|---|---|---|---|---|---|
Participants | Predictors | Outcome | Analysis | Overall | ||||
English and Armstrong [31] | D | 1988 | Case-control | + | ? | + | ? | ? |
Garbe et al. [37] | D | 1989 | Case-control | - | ? | + | - | - |
MacKie et al. [45] | D | 1989 | Case-control | - | ? | + | - | - |
Augustsson et al. [22] | D | 1991 | Case-control | + | + | + | - | - |
Marett et al. [47] | D | 1992 | Case-control | + | ? | + | - | - |
Garbe et al. [36] | D | 1994 | Case-control | - | ? | + | - | - |
Barbini et al. [24] | D | 1998 | Case-control | - | + | + | ? | - |
Landi et al. [44] | D | 2001 | Case-control | - | ? | + | - | - |
Harbauer et al. [41] | D | 2003 | Case-control | - | ? | + | - | - |
Dwyer et al. [30] | D | 2004 | Case-control | + | + | + | - | - |
Fargnoli et al. [33] | D | 2004 | Case-control | - | ? | + | - | - |
Cho et al. [25] | D | 2005 | Cohort | - | - | + | + | - |
Whiteman and Green [60] | D | 2005 | Published case-control studies | ? | ? | + | - | - |
Fears et al. [34] | D | 2006 | Case-control | - | ? | + | - | - |
Goldberg et al. [38] | D | 2007 | Cohort | - | + | - | - | - |
Mar et al. [46] | D | 2011 | Published meta-analysis and registry data | - | ? | + | - | - |
Nielsen et al. [48] | D | 2011 | Cohort | + | + | + | - | - |
Quéreux et al. [52] | D | 2011 | Case-control | - | ? | + | + | - |
Williams et al. [61] | D | 2011 | Case-control | + | ? | + | ? | ? |
Guther et al. [40] | D | 2012 | Cohort | - | + | - | ? | - |
Smith et al. [54] | D | 2012 | Case-control | ? | ? | ? | - | - |
Bakos et al. [23] | D | 2013 | Case-control | - | ? | + | - | - |
Stefanaki et al. [56] | D | 2013 | Case-control | - | ? | + | - | - |
Nikolic et al. [49] | D | 2014 | Case-control | - | ? | + | ? | - |
Penn et al. [51] | D | 2014 | Case-control | + | ? | + | ? | ? |
Sneyd et al. [55] | D | 2014 | Case-control | + | ? | + | + | - |
Kypreou et al. [43] | D | 2016 | Case-control | - | + | + | + | - |
Cho et al. [26] | D | 2018 | Cohort | + | + | - | + | - |
Gu et al. [39] | D | 2018 | Case-control | - | - | + | ? | - |
Hübner et al. [42] | D | 2018 | Cohort study based on data form SCREEN project | - | + | + | - | - |
Olsen et al. [50] | D | 2018 | Cohort study | + | + | + | + | + |
Richter and Koshgoftaar [53] | D | 2018 | Cohort study based on EHR data | - | ? | + | ? | - |
Tagliabue et al. [57] | D | 2018 | Case-control | - | - | + | - | - |
Bakshi et al. [62] | D | 2021 | Cohort | + | + | + | - | - |
Fontanillas et al. [63] | D | 2021 | Cohort | ? | ? | - | + | - |
Fortes et al. [35] | D + V | 2010 | Case-control | - | ? | + | + | - |
Cust et al. [28] | D + V | 2013 | Case-control | + | ? | + | + | ? |
Fang et al. [32] | D + V | 2013 | Multiple case-control studies | - | ? | + | + | - |
Davies et al. [29] | D + V | 2015 | Multiple case-control studies | - | + | + | + | - |
Vuong et al. [59] | D + V | 2016 | Case-control | + | ? | + | + | ? |
Cust et al. [27] | D + V | 2018 | Case-control | + | ? | + | + | ? |
Vuong et al. [58] | D + V | 2019 | Case-control | + | ? | + | + | ? |
References
- Matthews, N.H.; Li, W.Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017. [Google Scholar]
- Garbe, C.; Keim, U.; Gandini, S.; Amaral, T.; Katalinic, A.; Hollezcek, B.; Martus, P.; Flatz, L.; Leiter, U.; Whiteman, D. Epidemiology of cutaneous melanoma and keratinocyte cancer in white populations 1943–2036. Eur. J. Cancer 2021, 152, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Keim, U.; Garbe, C. Epidemiology of Skin Cancer: Update 2019. Adv. Exp. Med. Biol. 2020, 1268, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Green, A.C.; Olsen, C.M. The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. J. Investig. Dermatol. 2016, 136, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=population&mode_population=regions&population=900&populations=900&key=asr&sex=0&cancer=16&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=0&include_nmsc_other=1 (accessed on 3 March 2022).
- Iannacone, M.R.; Green, A.C. Towards skin cancer prevention and early detection: Evolution of skin cancer awareness campaigns in Australia. Melanoma Manag. 2014, 1, 75–84. [Google Scholar] [CrossRef]
- Kaiser, I.; Pfahlberg, A.B.; Uter, W.; Heppt, M.V.; Veierod, M.B.; Gefeller, O. Risk Prediction Models for Melanoma: A Systematic Review on the Heterogeneity in Model Development and Validation. Int. J. Environ. Res. Public Health 2020, 17, 7919. [Google Scholar] [CrossRef]
- Usher-Smith, J.A.; Emery, J.; Kassianos, A.P.; Walter, F.M. Risk prediction models for melanoma: A systematic review. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1450–1463. [Google Scholar] [CrossRef] [Green Version]
- Vuong, K.; McGeechan, K.; Armstrong, B.K.; Cust, A.E. Risk prediction models for incident primary cutaneous melanoma: A systematic review. JAMA Dermatol. 2014, 150, 434–444. [Google Scholar] [CrossRef]
- Siontis, G.C.; Tzoulaki, I.; Castaldi, P.J.; Ioannidis, J.P. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 2015, 68, 25–34. [Google Scholar] [CrossRef]
- Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mannan, H.R.; McNeil, J.J. Computer programs to estimate overoptimism in measures of discrimination for predicting the risk of cardiovascular diseases. J. Eval. Clin. Pract. 2013, 19, 358–362. [Google Scholar] [CrossRef]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; Groupdagger, P. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, I.; Diehl, K.; Heppt, M.V.; Mathes, S.; Pfahlberg, A.B.; Steeb, T.; Uter, W.; Gefeller, O. Reporting Quality of Studies Developing and Validating Melanoma Prediction Models: An Assessment Based on the TRIPOD Statement. Healthcare 2022, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering; London, UK, 13–14 May 2014, pp. 1–10.
- Leiner, D.J. SoSci Survey, Version 3.2.21; Computer Software; SoSci Survey GmbH: Munich, Germany, 2019; Available online: https://www.soscisurvey.de (accessed on 21 February 2022).
- Mantel, N. Chi-Square Tests with One Degree of Freedom: Extensions of Mantel-Haenszel Procedure. J. Am. Stat. Assoc. 1963, 58, 690–700. [Google Scholar] [CrossRef]
- Mehta, C.R.; Patel, N.R. A Network Algorithm for Performing Fisher’s Exact Test in r x c Contingency Tables. J. Am. Stat. Assoc. 1983, 78, 427–434. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Augustsson, A. Melanocytic naevi, melanoma and sun exposure. Acta Derm. Venereol. Suppl. 1991, 166, 1–34. [Google Scholar]
- Bakos, L.; Mastroeni, S.; Bonamigo, R.R.; Melchi, F.; Pasquini, P.; Fortes, C. A melanoma risk score in a Brazilian population. An. Bras. Dermatol. 2013, 88, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Barbini, P.; Cevenini, G.; Rubegni, P.; Massai, M.R.; Flori, M.L.; Carli, P.; Andreassi, L. Instrumental measurement of skin colour and skin type as risk factors for melanoma: A statistical classification procedure. Melanoma Res. 1998, 8, 439–447. [Google Scholar] [CrossRef]
- Cho, E.; Rosner, B.A.; Feskanich, D.; Colditz, G.A. Risk factors and individual probabilities of melanoma for whites. J. Clin. Oncol. 2005, 23, 2669–2675. [Google Scholar] [CrossRef]
- Cho, H.G.; Ransohoff, K.J.; Yang, L.; Hedlin, H.; Assimes, T.; Han, J.; Stefanick, M.; Tang, J.Y.; Sarin, K.Y. Melanoma risk prediction using a multilocus genetic risk score in the Women’s Health Initiative cohort. J. Am. Acad. Dermatol. 2018, 79, 36–41.e10. [Google Scholar] [CrossRef]
- Cust, A.E.; Drummond, M.; Kanetsky, P.A.; Australian Melanoma Family Study Investigators; Leeds Case-Control Study Investigators; Goldstein, A.M.; Barrett, J.H.; MacGregor, S.; Law, M.H.; Iles, M.M.; et al. Assessing the Incremental Contribution of Common Genomic Variants to Melanoma Risk Prediction in Two Population-Based Studies. J. Investig. Dermatol. 2018, 138, 2617–2624. [Google Scholar] [CrossRef] [Green Version]
- Cust, A.E.; Goumas, C.; Vuong, K.; Davies, J.R.; Barrett, J.H.; Holland, E.A.; Schmid, H.; Agha-Hamilton, C.; Armstrong, B.K.; Kefford, R.F.; et al. MC1R genotype as a predictor of early-onset melanoma, compared with self-reported and physician-measured traditional risk factors: An Australian case-control-family study. BMC Cancer 2013, 13, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.R.; Chang, Y.M.; Bishop, D.T.; Armstrong, B.K.; Bataille, V.; Bergman, W.; Berwick, M.; Bracci, P.M.; Elwood, J.M.; Ernstoff, M.S.; et al. Development and validation of a melanoma risk score based on pooled data from 16 case-control studies. Cancer Epidemiol. Biomark. Prev. 2015, 24, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwyer, T.; Stankovich, J.M.; Blizzard, L.; FitzGerald, L.M.; Dickinson, J.L.; Reilly, A.; Williamson, J.; Ashbolt, R.; Berwick, M.; Sale, M.M. Does the addition of information on genotype improve prediction of the risk of melanoma and nonmelanoma skin cancer beyond that obtained from skin phenotype? Am. J. Epidemiol. 2004, 159, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- English, D.R.; Armstrong, B.K. Identifying people at high risk of cutaneous malignant melanoma: Results from a case-control study in Western Australia. Br. Med. J. (Clin. Res. Ed.) 1988, 296, 1285–1288. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Han, J.; Zhang, M.; Wang, L.E.; Wei, Q.; Amos, C.I.; Lee, J.E. Joint effect of multiple common SNPs predicts melanoma susceptibility. PLoS ONE 2013, 8, e85642. [Google Scholar] [CrossRef]
- Fargnoli, M.C.; Piccolo, D.; Altobelli, E.; Formicone, F.; Chimenti, S.; Peris, K. Constitutional and environmental risk factors for cutaneous melanoma in an Italian population. A case-control study. Melanoma Res. 2004, 14, 151–157. [Google Scholar] [CrossRef]
- Fears, T.R.; Guerry, D.t.; Pfeiffer, R.M.; Sagebiel, R.W.; Elder, D.E.; Halpern, A.; Holly, E.A.; Hartge, P.; Tucker, M.A. Identifying individuals at high risk of melanoma: A practical predictor of absolute risk. J. Clin. Oncol. 2006, 24, 3590–3596. [Google Scholar] [CrossRef]
- Fortes, C.; Mastroeni, S.; Bakos, L.; Antonelli, G.; Alessandroni, L.; Pilla, M.A.; Alotto, M.; Zappala, A.; Manoorannparampill, T.; Bonamigo, R.; et al. Identifying individuals at high risk of melanoma: A simple tool. Eur. J. Cancer Prev. 2010, 19, 393–400. [Google Scholar] [CrossRef]
- Garbe, C.; Buttner, P.; Weiss, J.; Soyer, H.P.; Stocker, U.; Kruger, S.; Roser, M.; Weckbecker, J.; Panizzon, R.; Bahmer, F.; et al. Risk factors for developing cutaneous melanoma and criteria for identifying persons at risk: Multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J. Investig. Dermatol. 1994, 102, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Garbe, C.; Kruger, S.; Stadler, R.; Guggenmoos-Holzmann, I.; Orfanos, C.E. Markers and relative risk in a German population for developing malignant melanoma. Int. J. Dermatol. 1989, 28, 517–523. [Google Scholar] [CrossRef]
- Goldberg, M.S.; Doucette, J.T.; Lim, H.W.; Spencer, J.; Carucci, J.A.; Rigel, D.S. Risk factors for presumptive melanoma in skin cancer screening: American Academy of Dermatology National Melanoma/Skin Cancer Screening Program experience 2001–2005. J. Am. Acad. Dermatol. 2007, 57, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Chen, T.H.; Pfeiffer, R.M.; Fargnoli, M.C.; Calista, D.; Ghiorzo, P.; Peris, K.; Puig, S.; Menin, C.; De Nicolo, A.; et al. Combining common genetic variants and non-genetic risk factors to predict risk of cutaneous melanoma. Hum. Mol. Genet. 2018, 27, 4145–4156. [Google Scholar] [CrossRef] [PubMed]
- Guther, S.; Ramrath, K.; Dyall-Smith, D.; Landthaler, M.; Stolz, W. Development of a targeted risk-group model for skin cancer screening based on more than 100,000 total skin examinations. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Harbauer, A.; Binder, M.; Pehamberger, H.; Wolff, K.; Kittler, H. Validity of an unsupervised self-administered questionnaire for self-assessment of melanoma risk. Melanoma Res. 2003, 13, 537–542. [Google Scholar] [CrossRef]
- Hubner, J.; Waldmann, A.; Eisemann, N.; Noftz, M.; Geller, A.C.; Weinstock, M.A.; Volkmer, B.; Greinert, R.; Breitbart, E.W.; Katalinic, A. Association between risk factors and detection of cutaneous melanoma in the setting of a population-based skin cancer screening. Eur. J. Cancer Prev. 2018, 27, 563–569. [Google Scholar] [CrossRef]
- Kypreou, K.P.; Stefanaki, I.; Antonopoulou, K.; Karagianni, F.; Ntritsos, G.; Zaras, A.; Nikolaou, V.; Kalfa, I.; Chasapi, V.; Polydorou, D.; et al. Prediction of Melanoma Risk in a Southern European Population Based on a Weighted Genetic Risk Score. J. Investig. Dermatol. 2016, 136, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Landi, M.T.; Baccarelli, A.; Calista, D.; Pesatori, A.; Fears, T.; Tucker, M.A.; Landi, G. Combined risk factors for melanoma in a Mediterranean population. Br. J. Cancer 2001, 85, 1304–1310. [Google Scholar] [CrossRef]
- MacKie, R.M.; Freudenberger, T.; Aitchison, T.C. Personal risk-factor chart for cutaneous melanoma. Lancet 1989, 2, 487–490. [Google Scholar] [CrossRef]
- Mar, V.; Wolfe, R.; Kelly, J.W. Predicting melanoma risk for the Australian population. Australas J. Dermatol. 2011, 52, 109–116. [Google Scholar] [CrossRef]
- Marrett, L.D.; King, W.D.; Walter, S.D.; From, L. Use of Host Factors to Identify People at High-Risk for Cutaneous Malignant-Melanoma. Can. Med. Assoc. J. 1992, 147, 445–452. [Google Scholar]
- Nielsen, K.; Masback, A.; Olsson, H.; Ingvar, C. A prospective, population-based study of 40,000 women regarding host factors, UV exposure and sunbed use in relation to risk and anatomic site of cutaneous melanoma. Int. J. Cancer 2012, 131, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, J.; Loncar-Turukalo, T.; Sladojevic, S.; Marinkovic, M.; Janjic, Z. Melanoma risk prediction models. Vojnosanit. Pregl. 2014, 71, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Pandeya, N.; Thompson, B.S.; Dusingize, J.C.; Webb, P.M.; Green, A.C.; Neale, R.E.; Whiteman, D.C.; Study, Q.S. Risk Stratification for Melanoma: Models Derived and Validated in a Purpose-Designed Prospective Cohort. J. Natl. Cancer Inst. 2018, 110, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Penn, L.A.; Qian, M.; Zhang, E.; Ng, E.; Shao, Y.; Berwick, M.; Lazovich, D.; Polsky, D. Development of a melanoma risk prediction model incorporating MC1R genotype and indoor tanning exposure: Impact of mole phenotype on model performance. PLoS ONE 2014, 9, e101507. [Google Scholar] [CrossRef]
- Quereux, G.; Moyse, D.; Lequeux, Y.; Jumbou, O.; Brocard, A.; Antonioli, D.; Dreno, B.; Nguyen, J.M. Development of an individual score for melanoma risk. Eur. J. Cancer Prev. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Richter, A.; Khoshgoftaar, T. Melanoma Risk Prediction with Structured Electronic Health Records. In Proceedings of the ACM-BCB’18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Washington, DC, USA, 29 August–1 September 2018. [Google Scholar]
- Smith, L.A.; Qian, M.; Ng, E.; Shao, Y.Z.; Berwick, M.; Lazovich, D.; Polsky, D. Development of a melanoma risk prediction model incorporating MC1R genotype and indoor tanning exposure. J. Clin. Oncol. 2012, 30, 8574. [Google Scholar] [CrossRef]
- Sneyd, M.J.; Cameron, C.; Cox, B. Individual risk of cutaneous melanoma in New Zealand: Developing a clinical prediction aid. BMC Cancer 2014, 14, 359. [Google Scholar] [CrossRef] [Green Version]
- Stefanaki, I.; Panagiotou, O.A.; Kodela, E.; Gogas, H.; Kypreou, K.P.; Chatzinasiou, F.; Nikolaou, V.; Plaka, M.; Kalfa, I.; Antoniou, C.; et al. Replication and predictive value of SNPs associated with melanoma and pigmentation traits in a Southern European case-control study. PLoS ONE 2013, 8, e55712. [Google Scholar] [CrossRef]
- Tagliabue, E.; Gandini, S.; Bellocco, R.; Maisonneuve, P.; Newton-Bishop, J.; Polsky, D.; Lazovich, D.; Kanetsky, P.A.; Ghiorzo, P.; Gruis, N.A.; et al. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: A pooled analysis from the M-SKIP project. Cancer Manag. Res. 2018, 10, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Vuong, K.; Armstrong, B.K.; Drummond, M.; Hopper, J.L.; Barrett, J.H.; Davies, J.R.; Bishop, D.T.; Newton-Bishop, J.; Aitken, J.F.; Giles, G.G.; et al. Development and external validation study of a melanoma risk prediction model incorporating clinically assessed naevi and solar lentigines. Br. J. Dermatol. 2020, 182, 1262–1268. [Google Scholar] [CrossRef]
- Vuong, K.; Armstrong, B.K.; Weiderpass, E.; Lund, E.; Adami, H.O.; Veierod, M.B.; Barrett, J.H.; Davies, J.R.; Bishop, D.T.; Whiteman, D.C.; et al. Development and External Validation of a Melanoma Risk Prediction Model Based on Self-assessed Risk Factors. JAMA Dermatol. 2016, 152, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Green, A.C. A risk prediction tool for melanoma? Cancer Epidemiol. Biomark. Prev. 2005, 14, 761–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.H.; Shors, A.R.; Barlow, W.E.; Solomon, C.; White, E. Identifying Persons at Highest Risk of Melanoma Using Self-Assessed Risk Factors. J. Clin. Exp. Dermatol. Res. 2011, 2, 1000129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakshi, A.; Yan, M.; Riaz, M.; Polekhina, G.; Orchard, S.G.; Tiller, J.; Wolfe, R.; Joshi, A.; Cao, Y.; McInerney-Leo, A.M.; et al. Genomic Risk Score for Melanoma in a Prospective Study of Older Individuals. J. Natl. Cancer Inst. 2021, 113, 1379–1385. [Google Scholar] [CrossRef]
- Fontanillas, P.; Alipanahi, B.; Furlotte, N.A.; Johnson, M.; Wilson, C.H.; 23andMe Research Team; Pitts, S.J.; Gentleman, R.; Auton, A. Disease risk scores for skin cancers. Nat. Commun. 2021, 12, 160. [Google Scholar] [CrossRef]
- Olsen, C.M.; Green, A.C.; Neale, R.E.; Webb, P.M.; Cicero, R.A.; Jackman, L.M.; O’Brien, S.M.; Perry, S.L.; Ranieri, B.A.; Whiteman, D.C.; et al. Cohort profile: The QSkin Sun and Health Study. Int. J. Epidemiol. 2012, 41, 929–929i. [Google Scholar] [CrossRef] [Green Version]
- Cust, A.E.; Schmid, H.; Maskiell, J.A.; Jetann, J.; Ferguson, M.; Holland, E.A.; Agha-Hamilton, C.; Jenkins, M.A.; Kelly, J.; Kefford, R.F.; et al. Population-based, Case-Control-Family Design to Investigate Genetic and Environmental Influences on Melanoma Risk Australian Melanoma Family Study. Am. J. Epidemiol. 2009, 170, 1541–1554. [Google Scholar] [CrossRef] [Green Version]
- Newton-Bishop, J.A.; Chang, Y.M.; Iles, M.M.; Taylor, J.C.; Bakker, B.; Chan, M.; Leake, S.; Karpavicius, B.; Haynes, S.; Fitzgibbon, E.; et al. Melanocytic Nevi, Nevus Genes, and Melanoma Risk in a Large Case-Control Study in the United Kingdom. Cancer Epidemiol. Biomar. 2010, 19, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, M.; Hamilton, A.; Mack, T. Recall bias in self-reported melanoma risk factors. Am. J. Epidemiol. 2001, 153, 1021–1026. [Google Scholar] [CrossRef] [Green Version]
- de Vries, E.; Boniol, M.; Severi, G.; Eggermont, A.M.; Autier, P.; Bataille, V.; Dore, J.F.; Coebergh, J.W. Public awareness about risk factors could pose problems for case-control studies: The example of sunbed use and cutaneous melanoma. Eur. J. Cancer 2005, 41, 2150–2154. [Google Scholar] [CrossRef]
- Han, J.; Colditz, G.A.; Hunter, D.J. Risk factors for skin cancers: A nested case-control study within the Nurses’ Health Study. Int. J. Epidemiol. 2006, 35, 1514–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parr, C.L.; Hjartaker, A.; Laake, P.; Lund, E.; Veierod, M.B. Recall bias in melanoma risk factors and measurement error effects: A nested case-control study within the Norwegian Women and Cancer Study. Am. J. Epidemiol. 2009, 169, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veierod, M.B.; Parr, C.L.; Lund, E.; Hjartaker, A. Reproducibility of self-reported melanoma risk factors in a large cohort study of Norwegian women. Melanoma Res. 2008, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.D.; Marrett, L.D.; Shannon, H.S.; From, L.; Hertzman, C. The association of cutaneous malignant melanoma and fluorescent light exposure. Am. J. Epidemiol. 1992, 135, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Weinstock, M.A.; Colditz, G.A.; Willett, W.C.; Stampfer, M.J.; Rosner, B.; Speizer, F.E. Recall (report) bias and reliability in the retrospective assessment of melanoma risk. Am. J. Epidemiol. 1991, 133, 240–245. [Google Scholar] [CrossRef]
- Gefeller, O. Invited commentary: Recall bias in melanoma – much ado about almost nothing? Am. J. Epidemiol. 2009, 169, 267–270; discussion 271–272. [Google Scholar] [CrossRef] [Green Version]
- Pfahlberg, A.B.; Gefeller, O. Errors in assessing risk factors for melanoma: Lack of reproducibility is the minor problem. Melanoma Res. 2008, 18, 300–301. [Google Scholar] [CrossRef]
- Schulz, K.F.; Grimes, D.A. Case-control studies: Research in reverse. Lancet 2002, 359, 431–434. [Google Scholar] [CrossRef]
- Heinemann, L.A.J.; Lewis, M.A.; Assmann, A.; Thiel, C. Case-control studies on venous thromboembolism: Bias due to design? A methodological study on venous thromboembolism and steroid hormone use. Contraception 2002, 65, 207–214. [Google Scholar] [CrossRef]
- Patten, S.B. Selection bias in studies of major depression using clinical subjects. J. Clin. Epidemiol. 2000, 53, 351–357. [Google Scholar] [CrossRef]
- Stavraky, K.M.; Clarke, E.A. Hospital or Population-Controls—An Unanswered Question. J. Chron. Dis. 1983, 36, 301–307. [Google Scholar] [CrossRef]
- Dantas, O.M.S.; Ximenes, R.A.A.; de Albuquerque, M.D.P.M.; Montarroyos, U.R.; de Souza, W.V.; Varejao, P.; Rodrigues, L.C. Selection bias: Neighbourhood controls and controls selected from those presenting to a Health Unit in a case control study of efficacy of BCG revaccination. BMC Med. Res. Methodol. 2007, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Yu, G.; Sun, X. The effects of the PRISMA statement to improve the conduct and reporting of systematic reviews and meta-analyses of nursing interventions for patients with heart failure. Int. J. Nurs. Pract. 2019, 25, e12729. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassano, M.; Mariani, M.; Quaranta, G.; Pastorino, R.; Boccia, S. Polygenic risk prediction models for colorectal cancer: A systematic review. BMC Cancer 2022, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Lagerweij, M.D.; van der Heijden, G. Assessment of predictive performance of caries risk assessment models based on a systematic review and meta-analysis. J. Dent. 2021, 110, 103664. [Google Scholar] [CrossRef]
- de Jong, Y.; Ramspek, C.L.; Zoccali, C.; Jager, K.J.; Dekker, F.W.; van Diepen, M. Appraising prediction research: A guide and meta-review on bias and applicability assessment using the Prediction model Risk of Bias ASsessment Tool (PROBAST). Nephrology 2021, 26, 939–947. [Google Scholar] [CrossRef]
- Austin, H.; Hill, H.A.; Flanders, W.D.; Greenberg, R.S. Limitations in the application of case-control methodology. Epidemiol. Rev. 1994, 16, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Neale, R.E.; Green, A.C.; Webb, P.M.; The, Q.S.; The Epigene, S.; Whiteman, D.C. Independent validation of six melanoma risk prediction models. J. Investig. Dermatol. 2015, 135, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Quereux, G.; N’Guyen J, M.; Cary, M.; Jumbou, O.; Lequeux, Y.; Dreno, B. Validation of the Self-Assessment of Melanoma Risk Score for a melanoma-targeted screening. Eur. J. Cancer Prev. 2012, 21, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Vuong, K.; Armstrong, B.K.; Espinoza, D.; Hopper, J.L.; Aitken, J.F.; Giles, G.G.; Schmid, H.; Mann, G.J.; Cust, A.E.; McGeechan, K. An independent external validation of melanoma risk prediction models using the Australian Melanoma Family Study. Br. J. Dermatol. 2021, 184, 957–960. [Google Scholar] [CrossRef] [PubMed]
Unclear ROB | High ROB | ||
---|---|---|---|
Reason | n (%) | Reason | n (%) |
Limited information | 2 (67%) | Hospital controls (case-control studies) | 14 (58%) |
Data from a customer data-base offering genetic analyses without information regarding population coverage | 1 (33%) | Meta-analysis including studies with high ROB | 4 (17%) |
Self-selected screening population/no population sample (cohorts) | 4 (17%) | ||
Highly selected sample | 1 (4%) | ||
Mixed bag of controls (including hospital controls) | 1 (4%) |
Unclear ROB | High ROB | ||
---|---|---|---|
Reason | n (%) | Reason | n (%) |
Potential recall bias | 21 (78%) | Pooled study or meta-analysis with heterogenous predictor assessment | 3 (100%) |
Limited information | 3 (11%) | ||
Replacement of predictors in validation | 1 (4%) | ||
Unclear harmonization of predictor variables in development and validation datasets | 1 (4%) | ||
Missing predictors in validation dataset | 1 (4%) |
Unclear ROB | High ROB | ||
---|---|---|---|
Reason | n (%) | Reason | n (%) |
Limited information | 1 (100%) | Self-reported outcome | 2 (50%) |
Composite outcome (melanoma and severely dysplastic naevus) | 1 (25%) | ||
Suspected melanoma as outcome | 1 (25%) |
Unclear ROB | High ROB | ||
---|---|---|---|
Reason | n (%) | Reason | n (%) |
Limited information | 4 (50%) | No validation | 19 (95%) |
Non-standard handling of predictors during the analysis | 2 (25%) | Limited sample size | 1 (5%) |
Rounding of model coefficients to define the risk score | 1 (12.5%) | ||
Several aspects of analysis unclear | 1 (12.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, I.; Mathes, S.; Pfahlberg, A.B.; Uter, W.; Berking, C.; Heppt, M.V.; Steeb, T.; Diehl, K.; Gefeller, O. Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies. Cancers 2022, 14, 3033. https://doi.org/10.3390/cancers14123033
Kaiser I, Mathes S, Pfahlberg AB, Uter W, Berking C, Heppt MV, Steeb T, Diehl K, Gefeller O. Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies. Cancers. 2022; 14(12):3033. https://doi.org/10.3390/cancers14123033
Chicago/Turabian StyleKaiser, Isabelle, Sonja Mathes, Annette B. Pfahlberg, Wolfgang Uter, Carola Berking, Markus V. Heppt, Theresa Steeb, Katharina Diehl, and Olaf Gefeller. 2022. "Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies" Cancers 14, no. 12: 3033. https://doi.org/10.3390/cancers14123033
APA StyleKaiser, I., Mathes, S., Pfahlberg, A. B., Uter, W., Berking, C., Heppt, M. V., Steeb, T., Diehl, K., & Gefeller, O. (2022). Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies. Cancers, 14(12), 3033. https://doi.org/10.3390/cancers14123033