A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Data
2.2. Microarray Analysis
2.3. Clinical Endpoints and General Statistical Analysis
2.4. Matched-Pair Analysis
2.5. Statistical Framework to Identify Gene Signature and Perform Model Predictions
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crews, Q.E.; Fletcher, G.H. Comparative evaluation of the sequential use of radiation and surgery in primary tumors of the oral cavity, oropharynx, larynx, and hypopharynx. Am. J. Roentgenol. 1971, 111, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Vikram, B.; Farr, H.W. Adjuvant Radiation Therapy in Locally Advanced Head and Neck Cancer. Cancer J. Clin. 1983, 33, 134–138. [Google Scholar] [CrossRef]
- Adelstein, D.J.; Li, Y.; Adams, G.L.; Wagner, H.; Kish, J.A.; Ensley, J.F.; Schuller, D.E.; Forastiere, A.A. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J. Clin. Oncol. 2003, 21, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Adelstein, D.J.; Kalish, L.A.; Adams, G.L.; Wagner, H.; Oken, M.M.; Remick, S.C.; Mansour, E.G.; Hoselow, R.E. Concurrent radiation therapy and chemotherapy for locally unresectable squamous cell head and neck cancer: An Eastern Cooperative Oncology Group pilot study. J. Clin. Oncol. 1993, 11, 2136–2142. [Google Scholar] [CrossRef]
- Lavertu, P.; Saxton, J.P.; Secic, M.; Wood, B.G.; Wanamaker, J.R.; Eliachar, I.; Strome, M.; Larto, M.A. Mature Results of a Phase III Randomized Trial Comparing Concurrent Chemoradiotherapy with Radiation Therapy Alone in Patients with Stage III and IV Squamous Cell Carcinoma of the Head and Neck. Cancer 2000, 88, 876–883. [Google Scholar] [CrossRef]
- Brizel, D.M.; Albers, M.E.; Fisher, S.R.; Scher, R.L.; Richtsmeier, W.J.; Hars, V.; George, S.L.; Huang, A.T.; Prosnitz, L.R. Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 1998, 338, 1798–1804. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; et al. Postoperative Concurrent Radiotherapy and Chemotherapy for High-Risk Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2004, 350, 1937–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huguenin, P.; Beer, K.T.; Allal, A.; Rufibach, K.; Friedli, C.; Davis, J.B.; Pestalozzi, B.; Schmid, S.; Thöni, A.; Ozsahin, M.; et al. Concomitant cisplatin significantly improves locoregional control in advanced head and neck cancers treated with hyperfractionated radiotherapy. J. Clin. Oncol. 2004, 22, 4613–4621. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.S.; Guo, M.D.; Herskovic, A.; Macdonald, J.S.; Martenson, J.A.; Byhardt, R.; Russell, A.H.; Beitler, J.J.; Spencer, S.; Graham, M.V.; et al. Chemoradiotherapy of Locally Advanced. J. Am. Med. Assoc. 1999, 281, 1623–1627. [Google Scholar]
- Bernier, J.; Domenge, C.; Ozsahin, M.; Matuszewska, K.; Lefebvre, J.L.; Greiner, R.H.; Giralt, J.; Maingon, P.; Rolland, F.; Bolla, M.; et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. Cancer/Radiotherapie 2005, 9, 203–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grégoire, V.; Lefebvre, J.L.; Licitra, L.; Felip, E. Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010, 21, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Machiels, J.P.; René Leemans, C.; Golusinski, W.; Grau, C.; Licitra, L.; Gregoire, V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1462–1475. [Google Scholar] [CrossRef]
- Guideline Program Oncology: Laryngeal Carcinoma. Available online: https://www.leitlinienprogramm-onkologie.de/leitlinien/larynxkarzinom/ (accessed on 28 February 2022).
- Leitlinienprogramm Onkologie: Mundhoehlenkarzinom. Available online: https://www.leitlinienprogramm-onkologie.de/leitlinien/mundhoehlenkarzinom/ (accessed on 28 February 2022).
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.H.; Xu, W.; Waldron, J.; Siu, L.; Shen, X.; Tong, L.; Ringash, J.; Bayley, A.; Kim, J.; Hope, A.; et al. Refining American joint committee on cancer/union for international cancer control TNM stage and prognostic groups for human papillomavirus-related oropharyngeal carcinomas. J. Clin. Oncol. 2015, 33, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.; Cooper, J.S.; Pajak, T.F.; Van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.; et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck J. Sci. Spec. Head Neck 2005, 27, 843–850. [Google Scholar] [CrossRef]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.; Jacobs, J.; Fu, K.K.; Ang, K.K.; Laramore, G.E.; Al-sarraf, M. Precisely defining high-risk operable head and neck tumors based on RTOG #85-03 and #88-24: Targets for postoperative radiochemotherapy? Head Neck J. Sci. Spec. Head Neck 1998, 20, 588–594. [Google Scholar]
- Linge, A.; Lohaus, F.; Löck, S.; Nowak, A.; Gudziol, V.; Valentini, C.; von Neubeck, C.; Jütz, M.; Tinhofer, I.; Budach, V.; et al. HPV status, cancer stem cell marker expression, hypoxia gene signatures and tumour volume identify good prognosis subgroups in patients with HNSCC after primary radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation. Radiother. Oncol. 2016, 121, 364–373. [Google Scholar] [CrossRef]
- Toustrup, K.; Sørensen, B.S.; Nordsmark, M.; Busk, M.; Wiuf, C.; Alsner, J.; Overgaard, J. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 2011, 71, 5923–5931. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, S.C.; Kim, S.J.; Park, C.H.; Jeung, H.C.; Kim, Y.B.; Ahn, J.B.; Chung, H.C.; Rha, S.Y. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics 2012, 13, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.; Bai, J.; Wei, Y.; Wang, G.; Li, Q.; Zhang, R.; Duan, W.; Yang, S.; Du, M.; Zhao, Y.; et al. A seven-gene prognostic signature for rapid determination of head and neck squamous cell carcinoma survival. Oncol. Rep. 2017, 38, 3403–3411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.; Zhang, P.; Zhang, J.C.; Shen, J.; Xiang, X.; Yan, Y.B.; Xu, Z.Q.; Zhang, J.; Long, L.; Wang, C.; et al. A gene signature associated with prognosis and immune processes in head and neck squamous cell carcinoma. Head Neck 2019, 41, 2581–2590. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Linge, A.; Zwanenburg, A.; Leger, S.; Lohaus, F.; Krenn, C.; Appold, S.; Gudziol, V.; Nowak, A.; Von Neubeck, C.C.; et al. Development and Validation of a Gene Signature for Patients with Head and Neck Carcinomas Treated by Postoperative Radio(chemo)therapy. Clin. Cancer Res. 2018, 24, 1364–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.H.; Parker, J.S.; Ely, K.; Carter, J.; Yi, Y.; Murphy, B.A.; Ang, K.K.; El-Naggar, A.K.; Zanation, A.M.; Cmelak, A.J.; et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB Signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res. 2006, 66, 8210–8218. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, B.S.; Toustrup, K.; Horsman, M.R.; Overgaard, J.; Alsner, J. Identifying pH independent hypoxia induced genes in human squamous cell carcinomas in vitro. Acta Oncol. (Madr.) 2010, 49, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, G.; Chen, Y.; Zhu, G.; Wang, Z. Gene-expression signature predicts survival benefit from postoperative chemoradiotherapy in head and neck squamous cell carcinoma. Oncol. Lett. 2018, 16, 2565–2578. [Google Scholar] [CrossRef] [Green Version]
- Lohaus, F.; Linge, A.; Tinhofer, I.; Budach, V.; Gkika, E.; Stuschke, M.; Balermpas, P.; Rödel, C.; Avlar, M.; Grosu, A.L.; et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: Results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group. Radiother. Oncol. 2014, 113, 317–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linge, A.; Löck, S.; Krenn, C.; Appold, S.; Lohaus, F.; Nowak, A.; Gudziol, V.; Baretton, G.B.; Buchholz, F.; Baumann, M.; et al. Independent validation of the prognostic value of cancer stem cell marker expression and hypoxia-induced gene expression for patients with locally advanced HNSCC after postoperative radiotherapy. Clin. Transl. Radiat. Oncol. 2016, 1, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Linge, A.; Grosser, M.; Lohaus, F.; Gudziol, V.; Nowak, A.; Tinhofer, I.; Budach, V.; Sak, A.; Stuschke, M.; et al. Comparison of GeneChip, nCounter, and Real-Time PCR–Based Gene Expressions Predicting Locoregional Tumor Control after Primary and Postoperative Radiochemotherapy in Head and Neck Squamous Cell Carcinoma. J. Mol. Diagn. 2020, 22, 801–810. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2017. Available online: https://www.R-project.org/ (accessed on 22 January 2022).
- Ho, D.E.; King, G.; Stuart, E.A.; Imai, K. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Lausen, B. maxstat: Maximally Selected Rank Statistics. R News 2002, 2, 3–5. [Google Scholar]
- Chen, C.; Shan, H. Keratin 6A gene silencing suppresses cell invasion and metastasis of nasopharyngeal carcinoma via the β-catenin cascade. Mol. Med. Rep. 2019, 49, 3477–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Zhang, W.; Zhang, M.; Wang, X.; Peng, S.; Zhang, R. KRT6A Promotes EMT and Cancer Stem Cell Transformation in Lung Adenocarcinoma. Technol. Cancer Res. Treat. 2020, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huo, M.; Jia, Y.; Xu, A. KRT6B, a key mediator of notch signaling in honokiol-induced human hepatoma cell apoptosis. Int. J. Clin. Exp. Med. 2015, 8, 16880–16889. [Google Scholar]
- Chang, H.; Dreyfuss, J.M.; Ramoni, M.F. A Transcriptional Network Signature Characterizes Lung Cancer Subtypes. Cancer 2011, 117, 353–360. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, J.; Zhao, Z.; Li, M.; Liu, C. Clinical implications of SPRR1A expression in diffuse large B-cell lymphomas: A prospective, observational study. BMC Cancer 2014, 14, 333. [Google Scholar] [CrossRef] [Green Version]
- Pavón, M.A.; Arroyo-Solera, I.; León, X.; Téllez-Gabriel, M.; Virós, D.; Gallardo, A.; Céspedes, M.V.; Casanova, I.; Lopez-Pousa, A.; Barnadas, A.; et al. The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelial-like head and neck carcinoma subtypes. Head Neck 2019, 41, 1830–1845. [Google Scholar] [CrossRef]
- Chen, G.; Li, G.; Luo, M.; Wei, X.; Wang, D.; Zhang, H.; Zhao, X.; Chen, B.; Liu, C. Clinical significance of SPRR1A expression in progesterone receptor-positive breast cancer. Tumor Biol. 2015, 36, 2601–2605. [Google Scholar] [CrossRef]
- Tesfaigzi, Y.; Wright, P.S.; Belinsky, S.A. SPRR1B overexpression enhances entry of cells into the G0 phase of the cell cycle. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2003, 285, 889–898. [Google Scholar] [CrossRef]
- Michifuri, Y.; Hirohashi, Y.; Torigoe, T.; Miyazaki, A.; Fujino, J.; Tamura, Y.; Tsukahara, T.; Kanaseki, T.; Kobayashi, J.; Sasaki, T.; et al. Small proline-rich protein-1B is overexpressed in human oral squamous cell cancer stem-like cells and is related to their growth through activation of MAP kinase signal. Biochem. Biophys. Res. Commun. 2013, 439, 96–102. [Google Scholar] [CrossRef]
- Nisa, L.; Barras, D.; Medova, M.; Aebersold, D.M.; Medo, M.; Poliakova, M.; Koch, J.; Bojaxhiu, B.; Eliçin, O.; Dettmer, M.S.; et al. Comprehensive genomic profiling of patient-matched head and neck cancer cells: A preclinical pipeline for metastatic and recurrent disease. Mol. Cancer Res. 2018, 16, 1912–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, R.L.; Geiger, J.L.; Trivedi, S.; Schmitt, N.C.; Heron, D.E.; Johnson, J.T.; Kim, S.; Duvvuri, U.; Clump, D.A.; Bauman, J.E.; et al. Phase II trial of post-operative radiotherapy with concurrent cisplatin plus panitumumab in patients. Ann. Oncol. 2016, 27, 2257–2262. [Google Scholar] [CrossRef]
- Patil, S.; Linge, A.; Grosser, M.; Lohaus, F.; Gudziol, V.; Kemper, M.; Nowak, A.; Haim, D.; Tinhofer, I.; Budach, V.; et al. Development and validation of a 6-gene signature for the prognosis of loco-regional control in patients with HPV-negative locally advanced HNSCC treated by postoperative radio(chemo)therapy. Radiother. Oncol. 2022, 171, 91–100. [Google Scholar] [CrossRef] [PubMed]
Characteristics | PORT Cohort (1999–2016) | PORT-C Cohort (2004–2011) | p-Value | ||
---|---|---|---|---|---|
Median (Range) | Median (Range) | ||||
Age (years) | 57.3 (39.0–84.3) | 57 (24–74) | 0.26 | ||
Dose (Gy) | 60.0 (60–66) | 64.0 (56–68.4) | <0.001 | ||
Number of pts | % | Number of pts | % | ||
Age 0(<57)/1(≥57 years) | 51/57 | 47.2/52.8 | 53/55 | 49.1/50.9 | 0.79 |
Gender Male/female | 90/18 | 88.3/11.7 | 88/20 | 81.5/18.5 | 0.72 |
Tumour localization Oral cavity/Oropharynx/Hypopharynx/Larynx | 31/55/6/16 | 28.7/50.9/5.5/14.9 | 31/59/18/0 | 28.7/54.6/16.7/0 | 1.00 |
Grading 1,2/3 | 51/57 | 47.2/52.8 | 45/63 | 41.7/58.3 | 0.10 |
R status 0/1/missing | 100/8 | 92.6/7.4 | 59/49 | 54.6/45.4 | <0.001 |
ECE status 0/1/missing | 85/23 | 78.7/21.3 | 85/23 | 78.7/21.3 | 1.00 |
p16 overexpression 0/1 | 71/37 | 65.7/34.3 | 67/41 | 62.0/38.0 | 0.57 |
T stage 1,2/3,4 | 74/34 | 68.5/31.5 | 69/39 | 63.9/36.1 | 0.47 |
N stage 0,1/2,3 | 68/40 | 63.0/37.0 | 37/71 | 38.0/62.0 | <0.001 |
Locoregional control | 25 | 23.1 | 14 | 13.0 | 0.037a |
Distant metastases | 19 | 17.6 | 15 | 13.9 | 0.42 a |
Overall survival | 46 | 42.6 | 31 | 28.7 | 0.12 a |
Parameter | Coefficient (ß) | Loco–Regional Control HR (95 % CI) | p-Value |
---|---|---|---|
2-Gene signature | |||
Gene classifier (high vs. low risk [b]) | 1.22 | 3.42 (1.47–7.97) | 0.004 |
Treatment status (PORT-C vs. PORT [b]) | −0.30 | 0.74 (0.35–1.58) | 0.44 |
Gene classifier × Treatment status | −1.73 | 0.18 (0.04–0.82) | 0.027 |
2-Gene signature and clinical parameters | |||
Gene classifier (high vs. low risk [b]) | 1.19 | 3.29 (1.37–7.91) | 0.007 |
Treatment status (PORT-C vs. PORT [b]) | −0.57 | 0.56 (0.24–1.33) | 0.19 |
Gene classifier × Treatment status | −1.81 | 0.16 (0.03–0.78) | 0.023 |
T stage (3, 4 vs. 1, 2 [b]) | 0.99 | 2.68 (1.33–5.40) | 0.005 |
Tumour localization (oral cavity vs. others [b]) | 0.58 | 1.79 (0.88–3.64) | 0.11 |
N stage (2, 3 vs. 0, 1 [b]) | 0.38 | 1.46 (0.65–3.27) | 0.36 |
R status (1 vs. 0 [b]) | 0.40 | 1.49 (0.69–3.30) | 0.33 |
ECE status (1 vs. 0 [b]) | 0.48 | 1.61 (0.66–3.92) | 0.29 |
p16 overexpression (1 vs. 0 [b]) | −0.97 | 0.38 (0.15–0.94) | 0.037 |
Parameter | PORT Cohort | PORT-C Cohort | ||||
---|---|---|---|---|---|---|
Coefficient (ß) | Loco–Regional Control HR (95 % CI) | p-Value | Coefficient (ß) | Loco–Regional Control HR (95 % CI) | p-Value | |
Age (≥57 vs. <57 years [b]) | −0.75 | 0.47 (0.21–1.07) | 0.074 | −1.54 | 0.21 (0.06–0.78) | 0.019 |
Gender (female vs. male [b]) | 0.11 | 1.12 (0.41–3.04) | 0.83 | 0.67 | 1.96 (0.61–6.26) | 0.26 |
Tumour localization (oral cavity vs. others [b]) | 1.09 | 2.97 (1.34–6.60) | 0.007 | 0.55 | 1.73 (0.58–5.21) | 0.33 |
T stage (3, 4 vs. 1, 2 [b]) | 1.13 | 3.10 (1.41–6.81) | 0.004 | 0.55 | 1.73 (0.60–5.03) | 0.31 |
N stage (2, 3 vs. 0, 1 [b]) | 0.42 | 1.55 (0.69–3.38) | 0.30 | −0.01 | 0.99 (0.33–2.97) | 0.98 |
Tumour grade (3 vs. 1, 2 [b]) | −0.33 | 0.72 (0.33–1.58) | 0.41 | −0.96 | 0.38 (0.11–1.37) | 0.14 |
R status (1 vs. 0 [b]) | 0.95 | 2.58 (0.88–7.60) | 0.085 | 0.09 | 1.10 (0.38–31.8) | 0.87 |
ECE status (1 vs. 0 [b]) | 0.83 | 2.29 (0.98–5.32) | 0.055 | 0.24 | 1.27 (0.35–4.62) | 0.72 |
Dose (Gy) | 0.07 | 1.08 (0.93–1.25) | 0.32 | 0.07 | 1.08 (0.87–1.33) | 0.51 |
p16 overexpression (1 vs. 0 [b]) | −1.20 | 0.30 (0.10–0.88) | 0.029 | −1.38 | 0.25 (0.06–1.13) | 0.071 |
Metagene KRT6 | 0.59 | 1.80 (1.17–2.79) | 0.008 | 0.49 | 1.62 (0.87–3.02) | 0.13 |
Metagene SPRR1 | 0.49 | 0.57 (0.34–0.98) | 0.004 | 0.21 | 1.23 (0.82–1.86) | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.; Linge, A.; Hiepe, H.; Grosser, M.; Lohaus, F.; Gudziol, V.; Kemper, M.; Nowak, A.; Haim, D.; Tinhofer, I.; et al. A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT. Cancers 2022, 14, 3031. https://doi.org/10.3390/cancers14123031
Patil S, Linge A, Hiepe H, Grosser M, Lohaus F, Gudziol V, Kemper M, Nowak A, Haim D, Tinhofer I, et al. A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT. Cancers. 2022; 14(12):3031. https://doi.org/10.3390/cancers14123031
Chicago/Turabian StylePatil, Shivaprasad, Annett Linge, Hannah Hiepe, Marianne Grosser, Fabian Lohaus, Volker Gudziol, Max Kemper, Alexander Nowak, Dominik Haim, Inge Tinhofer, and et al. 2022. "A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT" Cancers 14, no. 12: 3031. https://doi.org/10.3390/cancers14123031
APA StylePatil, S., Linge, A., Hiepe, H., Grosser, M., Lohaus, F., Gudziol, V., Kemper, M., Nowak, A., Haim, D., Tinhofer, I., Budach, V., Guberina, M., Stuschke, M., Balermpas, P., Grün, J. v. d., Schäfer, H., Grosu, A. -L., Abdollahi, A., Debus, J., ... on behalf of the DKTK-ROG. (2022). A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT. Cancers, 14(12), 3031. https://doi.org/10.3390/cancers14123031