Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Generation of mAb NEO-201
3. Identification of Binding Targets by Flow Cytometry
4. Identification of Binding Targets by Immunohistochemistry (IHC)
5. NEO-201 Can Also Target Human Acute Myeloid Leukemia (AML) and Multiple Myeloma (MM) Cell Lines In Vitro
6. Mechanisms of Action of NEO-201
6.1. NEO-201-Mediated ADCC and CDC against Human Tumor Cells
6.2. ADCC Activity Medited by NEO-201 Can Be Enhanced by IL-15
6.3. NEO-201 Can Block the Interaction between CEACAM-5 on Tumor Cells and CEACAM-1 on NK Cells and Enhances NK Cell Cytotoxicity against Human Cancer Cells In Vitro
7. Preclinical In Vivo Studies
7.1. NEO-201 Can Reduce the Growth of Tumor Xenografts Alone and in Combination with Human PBMCs Effector Cells
7.2. Evaluation of the Pharmacokinetics and Toxicity of NEO-201 in Non-Human Primates
8. Clinical Trials
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New insights into cancer immunoediting and its three component phases—Elimination, equilibrium and escape. Curr. Opin. Immunol. 2014, 27, 16–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 2011, 29, 235–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004, 21, 137–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Zamarron, B.F.; Chen, W. Dual roles of immune cells and their factors in cancer development and progression. Int. J. Biol. Sci. 2011, 7, 651–658. [Google Scholar] [CrossRef]
- Lakshmi Narendra, B.; Eshvendar Reddy, K.; Shantikumar, S.; Ramakrishna, S. Immune system: A double-edged sword in cancer. Inflamm. Res. 2013, 62, 823–834. [Google Scholar] [CrossRef]
- Dougan, M.; Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 2009, 27, 83–117. [Google Scholar] [CrossRef]
- Topalian, S.L.; Weiner, G.J.; Pardoll, D.M. Cancer immunotherapy comes of age. J. Clin. Oncol. 2011, 29, 4828–4836. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Ghiringhelli, F. What is the role of cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma? Oncologist 2009, 14, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Campoli, M.; Ferris, R.; Ferrone, S.; Wang, X. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies. Clin. Cancer Res. 2010, 16, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teige, I.; Mårtensson, L.; Frendéus, B.L. Targeting the Antibody Checkpoints to Enhance Cancer Immunotherapy-Focus on FcγRIIB. Front. Immunol. 2019, 10, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Gao, Z.; Li, X.; Dong, L.; Han, W.; Nie, J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 2017, 8, 110693–110707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, U.J.; Schlegel, P.; Lang, P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front. Immunol. 2013, 4, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.Y.; Weiner, G. Complement and cellular cytotoxicity in antibody therapy of cancer. Expert. Opin. Biol. Ther. 2008, 8, 759–768. [Google Scholar] [CrossRef]
- Di Gaetano, N.; Cittera, E.; Nota, R.; Vecchi, A.; Grieco, V.; Scanziani, E.; Botto, M.; Introna, M.; Golay, J. Complement activation determines the therapeutic activity of Rituximab in vivo. J. Immunol. 2003, 171, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Mamidi, S.; Cinci, M.; Hasmann, M.; Fehring, V.; Kirchfink, M. Lipoplex mediated silencing of membrane regulars (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and petuzumab. Mol. Oncol. 2013, 7, 580–594. [Google Scholar] [CrossRef]
- Gul, N.; Babes, L.; Siegmund, K.; Korthouwer, R.; Bogels, M.; Braster, R.; Vidarsson, G.; Ten Hagen, T.L.M.; Kubes, P.; Van Egmond, M. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J. Clin. Investig. 2014, 124, 812–823. [Google Scholar] [CrossRef]
- Weiner, G.J. Monoclonal antibody mechanisms of actions in cancer. Immunol. Res. 2007, 39, 271–278. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoint in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Schmitz, K.R.; Jeffrey, P.D.; Wiltzius, J.J.W.; Kussie, P.; Ferguson, K.M. Structural basis for inhibition of the epidermal growth factor receptor by Cetuximab. Cancer Cell 2005, 7, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Bassi, R.; Hooper, A.; Prewett, M.; Hickin, D.J.; Kang, X. Anti-epidermal growth factor receptor monoclonal antibody Cetuximab inhibit EGFR/HER2 heterodimerization and activation. Int. J. Oncol. 2009, 34, 25–32. [Google Scholar] [PubMed]
- Walter, R.B. Biting back: BiTE antibodies as a promising therapy for acute myeloma leukemia. Expert. Rev. Hematol. 2014, 7, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Przepiorka, D.; Ko, C.W.; Deisseroth, A.; Yancey, C.L.; Candau-Chacon, R.; Chiu, H.J.; Gehrke, B.J.; Gomez-Broughton, C.; Kane, R.C.; Kirshner, S.; et al. FDA Approval: Blinatumomab. Clin. Cancer Res. 2015, 21, 4035–4039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Emmerton, K.K.; Jonas, M.; Zhang, X.; Miyamoto, J.B.; Setter, J.R.; Nicholas, N.D.; Okeley, N.M.; Lyon, R.P.; Benjamin, D.R.; et al. Intracellular Released Payload Influences Potency and Bystander-Killing Effects of Antibody-Drug Conjugates in Preclinical Models. Cancer Res. 2016, 76, 2710–2719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Pan, B.; Conner, O.A. Brentuximab Vedotin. Clin. Cancer Res. 2013, 19, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Baysal, H.; De Pauw, I.; Zaryouh, H.; Peeters, M.; Vermorken, J.B.; Lardon, F.; De Waele, J.; Wouters, A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination with Natural Killer Cell Chartering Immunotherapeutic Strategies. Front. Immunol. 2021, 12, 737311. [Google Scholar] [CrossRef]
- Fantini, M.; David, J.M.; Saric, O.; Dubeykovsky, A.; Cui, Y.; Marvroukakis, S.A.; Bristol, A.; Annunziata, C.M.; Tsang, K.Y.; Arlen, P.M. Preclinical characterization of a novel monoclonal antibody NEO-201 for the treatment of human carcinomas. Front. Immunol. 2018, 8, 1899. [Google Scholar] [CrossRef] [Green Version]
- Zeligs, K.P.; Morelli, M.P.; David, J.M.; Neuman, M.; Hernandez, L.; Hewitt, S.; Ozaki, M.; Osei-Tutu, A.; Anderson, D.; Andresson, T.; et al. Evaluation of the anti-tumor activity of the humanized monoclonal antibody NEO-201 in preclinical models of ovarian cancer. Front. Oncol. 2020, 10, 805. [Google Scholar] [CrossRef]
- Fantini, M.; David, J.M.; Wong, H.C.; Annunziata, C.M.; Arlen, M.A.; Tsang, K.Y. An IL-15 Superagonist, ALT-803, Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Elicited by the Monoclonal Antibody NEO-201 Against Human Carcinoma Cells. Cancer Biother. Radiopharm. 2019, 34, 147–159. [Google Scholar] [CrossRef]
- Fantini, M.; David, J.M.; Annunziata, C.M.; Morelli, M.P.; Arlen, P.M.; Tsang, K.Y. The Monoclonal Antibody NEO-201 Enhances Natural Killer Cell Cytotoxicity Against Tumor Cells Through Blockade of the Inhibitory CEACAM5/CEACAM1 Immune Checkpoint Pathway. Cancer Biother. Radiopharm. 2020, 35, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.Y.; Fantini, M.; Cole, C.; Annunziata, C.M.; Arlen, P.M. A therapeutic humanized anti-carcinoma monoclonal antibody (mAb) can also identify immunosuppressive regulatory T (Tregs) cells and down regulate Treg-mediated immunosuppression. J. Immunother. Cancer 2021, 9, A881. [Google Scholar] [CrossRef]
- Hollinshead, A.; Glew, D.; Bunnag, B.; Gold, P.; Herberman, R. Skin-reactive soluble antigen from intestinal cancer-cell-membranes and relationship to carcinoembryonic antigens. Lancet 1970, 1, 1191–1195. [Google Scholar] [CrossRef]
- Hollinshead, A.C.; McWright, C.G.; Alford, T.C.; GLEW, D.H.; Gold, P.; Herbeman, R.B. Separation of skin reactive intestinal cancer antigen from the carcinoembryonic antigen of Gold. Science 1972, 177, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Hollinshead, A.; Elias, E.G.; Arlen, M.; Buda, B.; Mosley, M.; Scherrer, J. Specific active immunotherapy in patients with adenocarcinoma of the colon utilizing tumor-associated antigens (TAA). A phase I clinical trial. Cancer 1985, 56, 480–489. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isidori, A.; Cerchione, C.; Daver, N.; DiNardo, C.; Garcia-Manero, G.; Konopleva, M.; Jabbour, E.; Ravandi, F.; Kadia, T.; Burguera, A.F.; et al. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front. Oncol. 2021, 11, 656218. [Google Scholar] [CrossRef]
- Abaza, Y.; Fathi, A.T. Monoclonal Antibodies in Acute Myeloid Leukemia-Are We There Yet? Cancer J. 2022, 28, 37–42. [Google Scholar] [CrossRef]
- Tai, W.; Wahab, A.; Franco, D.; Shah, Z.; Ashraf, A.; Abid, Q.U.; Mohammed, Y.N.; Lal, D.; Anwer, F. Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies 2022, 11, 22. [Google Scholar] [CrossRef]
- Romano, A.; Parrinello, N.; Marino, S.; La Spina, E.; Fantini, M.; Arlen, P.M.; Tsang, K.Y.; Di Raimondo, F. An anti-carcinoma monoclonal antibody (mAb) NEO-201 can also target human acute myeloid leukemia (AML) cell lines in vitro. J. Immunother. Cancer 2021, 9, A883. [Google Scholar] [CrossRef]
- Meyer, S.; Leusen, J.H.; Boross, P. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs 2014, 6, 1133–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donin, N.; Jurianz, K.; Ziporen, L.; Schultz, S.; Kirschfink, M.; Fishelson, Z. Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid. Clin. Exp. Immunol. 2003, 131, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Fehniger, T.A.; Caligiuri, M.A. Interleukin 15: Biology and relevance to human disease. Blood 2001, 97, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.K.; Nandagopal, N.; Lee, S.H. IL-15-P13K-AKT-mTOR: A critical pathway in the life journey of natural killer cells. Front. Immunol. 2015, 6, 355. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.O.; Schluns, K.S. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol. Lett. 2017, 190, 159–168. [Google Scholar] [CrossRef]
- Conlon, K.C.; Lugli, E.; Welles, H.C.; Rosenberg, S.A.; Fojo, A.T.; Morris, J.C.; Fleisher, T.A.; Dubois, S.P.; Perera, L.P.; Stewart, D.M.; et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 2015, 33, 74–82. [Google Scholar] [CrossRef]
- Liu, B.; Kong, L.; Han, K.; Hong, H.; Marcus, W.D.; Chen, X.; Jeng, E.K.; Alter, S.; Zhu, X.; Rubinstein, M.P.; et al. A Novel Fusion of ALT-803 (Interleukin (IL)-15 Superagonist) with an Antibody Demonstrates Antigen-specific Antitumor Responses. J. Biol. Chem. 2016, 291, 23869–23881. [Google Scholar] [CrossRef] [Green Version]
- Rosario, M.; Liu, B.; Kong, L.; Collins, L.I.; Schneider, S.E.; Chen, X.; Han, K.; Jeng, E.K.; Rhode, P.R.; Leong, J.W.; et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin. Cancer Res. 2016, 22, 596–608. [Google Scholar] [CrossRef] [Green Version]
- Margolin, K.; Morishima, C.; Velcheti, V.; Miller, J.S.; Lee, S.M.; Silk, A.W.; Holtan, S.G.; Lacroix, A.M.; Fling, S.P.; Kaiser, J.C.; et al. Phase I Trial of N-803, A Novel Recombinant IL15 Complex, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2018, 24, 5552–5561. [Google Scholar] [CrossRef] [Green Version]
- Wrangle, J.M.; Velcheti, V.; Patel, M.R.; Garrett-Mayer, E.; Hill, E.G.; Ravenel, J.G.; Miller, J.S.; Farhad, M.; Anderton, K.; Lindsey, K.; et al. N-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: A non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018, 19, 694–704. [Google Scholar] [CrossRef]
- Foltz, J.A.; Hess, B.T.; Bachanova, V.; Bartlett, N.L.; Berrien-Elliott, M.M.; McClain, E.; Becker-Hapak, M.; Foster, M.; Schappe, T.; Kahl, B.; et al. Phase I Trial of N-803, an IL15 Receptor Agonist, with Rituximab in Patients with Indolent Non-Hodgkin Lymphoma. Clin. Cancer Res. 2021, 27, 3339–3350. [Google Scholar] [CrossRef] [PubMed]
- Kuespert, K.; Pils, S.; Hauck, C.R. CEACAMs: Their role in physiology and pathophysiology. Curr. Opin. Cell Biol. 2006, 18, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.A.; Grunert, F.; Zimmermann, W. Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives. J. Clin. Lab. Anal. 1991, 5, 344–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turriziani, M.; Fantini, M.; Benvenuto, M.; Izzi, V.; Masuelli, L.; Sacchetti, P.; Modesti, A.; Bei, R. Carcinoembryonic antigen (CEA)-based cancer vaccines: Recent patents and antitumor effects from experimental models to clinical trials. Recent Pat. Anticancer Drug Discov. 2012, 7, 265–296. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.; Auge, J.M.; Farrus, B.; Zanón, G.; Pahisa, J.; Muñoz, M.; Torne, A.; Filella, X.; Escudero, J.M.; Fernandez, P.; et al. Prospective evaluation of carcinoembryonic antigen (CEA) and carbohydrate antigen 15.3 (CA 15.3) in patients with primary locoregional breast cancer. Clin. Chem. 2010, 56, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
- Bramswig, K.H.; Poettler, M.; Unseld, M.; Wrba, F.; Uhrin, P.; Zimmermann, W.; Zielinski, C.C.; Prager, G.W. Soluble carcinoembryonic antigen activates endothelial cells and tumor angiogenesis. Cancer Res. 2013, 73, 6584–6596. [Google Scholar] [CrossRef] [Green Version]
- Samara, R.N.; Laguinge, L.M.; Jessup, J.M. Carcinoembryonic antigen inhibits anoikis in colorectal carcinoma cells by interfering with TRAIL-R2 (DR5) signaling. Cancer Res. 2007, 67, 4774–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho-Leal, P.; Stanners, C.P. The human carcinoembryonic antigen (CEA) GPI anchor mediates anoikis inhibition by inactivation of the intrinsic death pathway. Oncogene 2008, 27, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Poola, I.; Shokrani, B.; Bhatnagar, R.; DeWitty, R.L.; Yue, Q.; Bonney, G. Expression of carcinoembryonic antigen cell adhesion molecule 6 oncoprotein in atypical ductal hyperplastic tissues is associated with the development of invasive breast cancer. Clin. Cancer Res. 2006, 12, 4773–4783. [Google Scholar] [CrossRef] [Green Version]
- Kuijpers, T.W.; Hoogerwerf, M.; van der Laan, L.J.; Nagel, G.; van der Schoot, C.E.; Grunert, F.; Roos, D. CD66 nonspecific cross-reacting antigens are involved in neutrophil adherence to cytokine-activated endothelial cells. J. Cell Biol. 1992, 118, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Shibata, S.; Raubitschek, A.; Leong, L.; Koczywas, M.; Williams, L.; Zhan, J.; Wong, J.Y. A phase I study of a combination of yttrium-90-labeled anti-carcinoembryonic antigen (CEA) antibody and gemcitabine in patients with CEA-producing advanced malignancies. Clin. Cancer Res. 2009, 15, 2935–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cai, P.; Li, L.; Shi, L.; Chang, P.; Liang, T.; Yang, Q.; Liu, Y.; Wang, L.; Hu, L. Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients. Int. Immunopharmacol. 2017, 43, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Dankner, M.; Gray-Owen, S.D.; Huang, Y.H.; Blumberg, R.S.; Beauchemin, N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017, 6, e1328336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfrich, I.; Singer, B.B. Size Matters: The Functional Role of the CEACAM1 Isoform Signature and Its Impact for NK Cell-Mediated Killing in Melanoma. Cancers 2019, 11, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosomi, S.; Chen, Z.; Baker, K.; Chen, L.; Huang, Y.H.; Olszak, T.; Zeissig, S.; Wang, J.H.; Mandelboim, O.; Beauchemin, N.; et al. CEACAM1 on activated NK cells inhibits NKG2D-mediated cytolytic function and signaling. Eur. J. Immunol. 2013, 43, 2473–2483. [Google Scholar] [CrossRef]
- Zheng, C.; Feng, J.; Lu, D.; Wang, P.; Xing, S.; Coll, J.L.; Yang, D.; Yan, X. A novel anti-CEACAM5 monoclonal antibody, CC4, suppresses colorectal tumor growth and enhances NK cells-mediated tumor immunity. PLoS ONE 2011, 6, e21146. [Google Scholar] [CrossRef]
- Morelli, M.P.; Houston, N.D.; Lipkowitz, S.; Lee, J.-M.; Zimmer, A.D.S.; Zia, F.Z.; Ekwede, I.; Trewhitt, K.; Nichols, E.; Pavelova, M.; et al. Phase I with expansion cohorts in a study of NEO-201 in adults with chemo-resistant solid tumors. J. Clin. Oncol. 2020, 38, 129. [Google Scholar] [CrossRef]
- Constantinidou, A.; Alifieris, C.; Trafalis, D.T. Targeting Programmed Cell Death -1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy. Pharmacol. Ther. 2019, 194, 84–106. [Google Scholar] [CrossRef]
- Woods, D.M.; Ramakrishnan, R.; Laino, A.S.; Berglund, A.; Walton, K.; Betts, B.C.; Weber, J.S. Decreased Suppression and Increased Phosphorylated STAT3 in Regulatory T Cells are Associated with Benefit from Adjuvant PD-1 Blockade in Resected Metastatic Melanoma. Clin. Cancer Res. 2018, 24, 6236–6247. [Google Scholar] [CrossRef] [Green Version]
- Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wang, W.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017, 18, 1332–1341. [Google Scholar] [CrossRef]
- Kamada, T.; Togashi, Y.; Tay, C.; Ha, D.; Sasaki, A.; Nakamura, Y.; Sato, E.; Fukuoka, S.; Tada, Y.; Tanaka, A.; et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 9999–10008. [Google Scholar] [CrossRef] [Green Version]
Cancer Tissue Type | Positive/Spot | Cancer Tissue Type | Positive/Tpot |
---|---|---|---|
Brain:astrocytoma | 0/2 | Lung papillary carcinoma | 0/2 |
Brain:choroid plexus papilloma | 0/2 | Lung metastatic papillary carcinoma | 2/2 |
Esophagus squamous cell carcinoma (SCC) | 4/4 | Liver cholangiocarcinoma | 0/2 |
Larynx SCC | 0/2 | Liver metastatic lung large cell carcinoma | 0/2 |
Thymus atypical carcinoma | 0/2 | Hepatocellular carcinoma (HCC) | 0/4 |
Thyroid papillary carcinoma | 0/4 | Renal cell carcinoma (RCC) | 0/4 |
Thyroid invasive follicular carcinoma | 0/2 | Ovary germ cell carcinoma | 1/1 |
Thyroid follicular carcinoma | 0/2 | Ovary serous carcinoma | 2/2 |
Breast infiltrating ductal carcinoma | 0/4 | Ovary clear cell carcinoma | 0/2 |
Stomach adenocarcinoma | 3/4 | Ovary mucinous carcinoma | 0/2 |
Pancreas papillary mucinous carcinoma | 2/2 | Cervical SCC metaplasia | 0/2 |
Pancreas adenocarcinoma | 0/1 | Cervical invasive SCC | 2/2 |
Tongue SCC | 2/4 | Testis seminoma | 0/4 |
Non-small cell lung cancer (NSCLC) | 0/2 | Colon adenocarcinoma | 4/4 |
Lung adenocarcinoma | 2/2 | Rectum adenocarcinoma | 3/4 |
Lung SCC | 1/2 | Skin SCC | 0/4 |
Lung large cell carcinoma | 2/2 |
Lung Cancer Type | Positive#/Total Case (% Reactivity) |
---|---|
Lung adenocarcinoma | 27/34 (79.4%) |
Lung Squamous Cell Cancer | 18/34 (52.9%) |
NOS non-small cell lung cancer | 0/4 (0%) |
Bronchi alveolar Cancer | 1/2 (50%) |
Large cell neuroendocrine Cancer | 0/1 (0%) |
Lung Cancer (Total) | 46/75 (61.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsang, K.y.; Fantini, M.; Mavroukakis, S.A.; Zaki, A.; Annunziata, C.M.; Arlen, P.M. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers 2022, 14, 3037. https://doi.org/10.3390/cancers14133037
Tsang Ky, Fantini M, Mavroukakis SA, Zaki A, Annunziata CM, Arlen PM. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers. 2022; 14(13):3037. https://doi.org/10.3390/cancers14133037
Chicago/Turabian StyleTsang, Kwong yok, Massimo Fantini, Sharon A. Mavroukakis, Anjum Zaki, Christina M. Annunziata, and Philip M. Arlen. 2022. "Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas" Cancers 14, no. 13: 3037. https://doi.org/10.3390/cancers14133037
APA StyleTsang, K. y., Fantini, M., Mavroukakis, S. A., Zaki, A., Annunziata, C. M., & Arlen, P. M. (2022). Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers, 14(13), 3037. https://doi.org/10.3390/cancers14133037