Concurrent Androgen Deprivation Therapy for Prostate Cancer Improves Survival for Synchronous or Metachronous Non-Small Cell Lung Cancer: A SEER–Medicare Database Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population
3.2. Lung Cancer Outcome
3.3. Impact of Concurrent Prostate Cancer Diagnosis on Lung Cancer Diagnosis and Outcome (P-L)
3.4. Androgen Deprivation Therapy and Lung Cancer Outcome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Key Statistics for Lung Cancer. 2019. Available online: https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html (accessed on 10 July 2020).
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. International Variation in Lung Cancer Mortality Rates and Trends among Women. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1025–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torre, L.A.; Siegel, R.L.; Jemal, A. Lung cancer statistics. In Lung Cancer and Personalized Medicine; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–19. [Google Scholar]
- Jemal, A.; Miller, K.D.; Ma, J.; Siegel, R.L.; Fedewa, S.A.; Islami, F.; Devesa, S.S.; Thun, M.J. Higher Lung Cancer Incidence in Young Women Than Young Men in the United States. N. Engl. J. Med. 2018, 378, 1999–2009. [Google Scholar] [CrossRef]
- North, C.M.; Christiani, D.C. Women and lung cancer: What is new? Semin. Thorac. Cardiovasc. Surg. 2013, 25, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asavasupreechar, T.; Chan, M.S.; Saito, R.; Miki, Y.; Boonyaratanakornkit, V.; Sasano, H. Sex steroid metabolism and actions in non-small cell lung carcinoma. J. Steroid Biochem. Mol. Biol. 2019, 193, 105440. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.P.; Dacic, S.; Land, S.R.; Lenzner, D.E.; Dhir, R.; Acquafondata, M. Combined analysis of estrogen receptor beta-1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannini, M.; Belli, C.; Villa, E.; Gregorc, V. Estrogen receptor (ER) and epidermal growth factor receptor (EGFR) as targets for dual lung cancer therapy: Not just a case? J. Thorac. Oncol. 2008, 3, 684–685. [Google Scholar] [CrossRef] [Green Version]
- De Castro Junior, G.; Puglisi, F.; de Azambuja, E.; El Saghir, N.S.; Awada, A. Angiogenesis and cancer: A cross-talk between basic science and clinical trials (the “do ut des” paradigm). Crit. Rev. Oncol. Hematol. 2006, 59, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.; Solimando, A.G.; Kalogirou, C.; Marquardt, A.; Frank, T.; Sokolakis, I.; Hatzichristodoulou, G.; Kneitz, S.; Bargou, R.; Kübler, H.; et al. miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro. J. Clin. Med. 2020, 9, 670. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.G.; Wenzlaff, A.S.; Prysak, G.M.; Murphy, V.; Cote, M.L.; Brooks, S.C.; Lonardo, F. Reproductive factors, hormone use, estrogen receptor expression and risk of non-small-cell lung cancer in women. J. Clin. Oncol. 2007, 25, 5785–5792. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.G.; Ray, R.M.; Cote, M.L.; Abrams, J.; Sokol, R.J.; Hendrix, S.L.; Simon, M.S. Hormone use, reproductive history, and risk of lung cancer: The women’s health initiative studies. J. Thorac. Oncol. 2015, 10, 1004–1013. [Google Scholar] [CrossRef] [Green Version]
- Stabile, L.P.; Lyker, J.S.; Gubish, C.T.; Zhang, W.; Grandis, J.R.; Siegfried, J.M. Combined Targeting of the Estrogen Receptor and the Epidermal Growth Factor Receptor in Non–Small Cell Lung Cancer Shows Enhanced Antiproliferative Effects. Cancer Res. 2005, 65, 1459–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traynor, A.M.; Schiller, J.H.; Stabile, L.P.; Kolesar, J.M.; Eickhoff, J.C.; Dacic, S.; Hoang, T.; Dubey, S.; Marcotte, S.M.; Siegfried, J.M. Pilot study of gefitinib and fulvestrant in the treatment of post-menopausal women with advanced non-small cell lung cancer. Lung Cancer 2009, 64, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garon, E.B.; Siegfried, J.M.; Stabile, L.P.; Young, P.A.; Marquez-Garban, D.C.; Park, D.J.; Patel, R.; Hu, E.H.; Sadeghi, S.; Parikh, R.J.; et al. Randomized phase II study of fulvestrant and erlotinib compared with erlotinib alone in patients with advanced or metastatic non-small cell lung cancer. Lung Cancer 2018, 123, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, L.; Pihlajamaa, P.; Sahu, B.; Zhang, F.-P.; Jänne, O.A. Androgen receptor and androgen-dependent gene expression in lung. Mol. Cell. Endocrinol. 2010, 317, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Harlos, C.; Musto, G.; Lambert, P.; Ahmed, R.; Pitz, M.W. Androgen Pathway Manipulation and Survival in Patients with Lung Cancer. Horm. Cancer 2015, 6, 120–127. [Google Scholar] [CrossRef]
- Davis, E.J.; Beebe-Dimmer, J.L.; Ms, C.L.Y.; Cooney, K.A. Risk of second primary tumors in men diagnosed with prostate cancer: A population-based cohort study. Cancer 2014, 120, 2735–2741. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.L.; Klabunde, C.N.; Schrag, D.; Bach, P.B.; Riley, G.F. Overview of the SEER-Medicare data: Content, research applications, and generalizability to the United States elderly population. Med. Care 2002, 40, IV3–IV18. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Ragin, C.; Chen, Z.; Kim, S.; Behera, M.; Brandes, J.C.; Saba, N.F.; Pentz, R.; Ramalingam, S.S.; Khuri, F.R. Real-World Effectiveness of Systemic Agents Approved for Advanced Non-Small Cell Lung Cancer: A SEER–Medicare Analysis. Oncologist 2013, 18, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Owonikoko, T.; Belani, C.; Cai, C.; Oton, A.; Potter, D.; Ramalingam, S. Lung cancer in patients ≥ 80 years of age: Analysis of the national surveillance, epidemiology and end results (SEER) database. J. Clin. Oncol. 2006, 24, 7156. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Ambs, A.; Warren, J.L.; Bellizzi, K.M.; Topor, M.; Haffer, S.C.; Clauser, S.B. Overview of the SEER—Medicare Health Outcomes Survey Linked Dataset. Health Care Financ. Rev. 2008, 29, 5–21. [Google Scholar] [PubMed]
- Fuentes, N.; Silva Rodriguez, M.; Silveyra, P. Role of sex hormones in lung cancer. Exp. Biol. Med. 2021, 246, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, U.; Hofmann, J.; Schilli, M.; Wegmann, B.; Klotz, U.; Wedel, S.; Virmani, A.K.; Wollmer, E.; Branscheid, D.; Gazdar, A.F.; et al. Steroid-hormone receptors in cell lines and tumor biopsies of human lung cancer. Int. J. Cancer 1996, 67, 357–364. [Google Scholar] [CrossRef]
- Berardi, R.; Morgese, F.; Santinelli, A.; Onofri, A.; Biscotti, T.; Brunelli, A.; Caramanti, M.; Savini, A.; De Lisa, M.; Ballatore, Z.; et al. Hormonal receptors in lung adenocarcinoma: Expression and difference in outcome by sex. Oncotarget 2016, 7, 82648–82657. [Google Scholar] [CrossRef] [Green Version]
- Grant, L.; Banerji, S.; Murphy, L.; Dawe, D.E.; Harlos, C.; Myal, Y.; Nugent, Z.; Blanchard, A.; Penner, C.R.; Qing, G.; et al. Androgen Receptor and Ki67 Expression and Survival Outcomes in Non-small Cell Lung Cancer. Horm. Cancer 2018, 9, 288–294. [Google Scholar] [CrossRef]
- Gockel, L.M.; Pfeifer, V.; Baltes, F.; Bachmaier, R.D.; Wagner, K.G.; Bendas, G.; Gütschow, M.; Sosič, I.; Steinebach, C. Design, synthesis, and characterization of PROTACs targeting the androgen receptor in prostate and lung cancer models. Arch. der Pharm. 2022, 355, e202100467. [Google Scholar] [CrossRef]
- Borno, H.T.; Lichtensztajn, D.Y.; Gomez, S.L.; Palmer, N.R.; Ryan, C.J. Differential use of medical versus surgical androgen deprivation therapy for patients with metastatic prostate cancer. Cancer 2018, 125, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, A.P.; Howard, D.L.; Carpenter, W.R.; Taylor, Y.J.; Peacock, S.; Schenck, A.P.; Godley, P.A. Trends and Racial Differences in the Use of Androgen Deprivation Therapy for Metastatic Prostate Cancer. J. Pain Symptom Manag. 2010, 39, 872–881. [Google Scholar] [CrossRef]
- Kovtun, K.A.; Chen, M.-H.; Mph, M.H.B.; Moran, B.J.; D’Amico, A.V. Race and mortality risk after radiation therapy in men treated with or without androgen-suppression therapy for favorable-risk prostate cancer. Cancer 2016, 122, 3608–3614. [Google Scholar] [CrossRef]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; De Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [Green Version]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Scher, H.I. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Chowdhury, S. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N. Engl. J. Med. 2018, 378, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
Variable | Level | N = 367,750 | % |
---|---|---|---|
Age at Diagnosis of Lung Cancer | <65 years | 56,847 | 15.5 |
≥65 years | 310,903 | 84.5 | |
Gender | Male | 210,256 | 57.2 |
Female | 157,494 | 42.8 | |
Race | Asian | 8245 | 2.3 |
Black | 33,882 | 9.3 | |
Hispanic | 3540 | 1.0 | |
White | 307,343 | 84.2 | |
Other | 12,032 | 3.3 | |
Missing | 2708 | - | |
Lung Cancer Stage | I | 44,481 | 19.4 |
II | 7339 | 3.2 | |
III | 77,533 | 33.8 | |
IV | 100,298 | 43.7 | |
Missing | 138,099 | - | |
Prostate Cancer Stage | I | 175 | 5.6 |
II | 1267 | 40.5 | |
III | 838 | 26.8 | |
IV | 852 | 27.2 | |
Missing | 10,946 | - | |
Subgroup of Lung Cancer Patients | Prostate Cancer followed by Lung Cancer (P-L) | 11,061 | 3.0 |
Lung Cancer followed by Prostate Cancer (L-P) | 3017 | 0.8 | |
Lung Cancer without Prostate Cancer (L) | 353,672 | 96.2 | |
Medicare Status Qualifying Event | Not Enrolled | 94 | - |
Age | 333,101 | 90.6 | |
Age with ESRD | 1292 | 0.4 | |
Disabled | 32,715 | 8.9 | |
Disabled with ESRD | 229 | 0.1 | |
ESRD only | 319 | 0.1 |
Covariate | Level | P-L N = 11,061 | L-P N = 3017 | L N = 353,672 | Parametric p-Value * |
---|---|---|---|---|---|
Age at Diagnosis of Lung Cancer | <65 years | 571 (5.16) | 817 (27.08) | 55,459 (15.68) | <0.001 |
≥65 years | 10,490 (94.84) | 2200 (72.92) | 298,213 (84.32) | ||
Age at Diagnosis of Prostate Cancer | <65 years | 1971 (17.82) | 437 (14.48) | <0.001 | |
≥65 years | 9090 (82.18) | 2580 (85.52) | |||
Race | White | 8879 (80.78) | 2380 (79.31) | 296,084 (84.34) | <0.001 |
Black | 1502 (13.67) | 461 (15.36) | 31,919 (9.09) | ||
Other | 241 (2.19) | 76 (2.53) | 11,715 (3.34) | ||
Asian | 242 (2.2) | 60 (2) | 7943 (2.26) | ||
Hispanic | 127 (1.16) | 24 (0.8) | 3389 (0.97) | ||
Histologic Subtypes of Lung Cancer | NSCLC | 8582 (77.6) | 2656 (88.0) | 263,758 (74.6) | |
SCLC | 250 (2.3) | 36 (1.2) | 11,821 (3.3) | ||
Carcinoma In Situ and Other Histologies | 2229 (20.2) | 325 (10.8) | 78,093 (22.1) | ||
Distribution by Stage of Lung Cancer at Diagnosis | I | 1382 (19.8) | 824 (54.1) | ||
II | 199 (2.9) | 99 (6.5) | |||
III | 2386 (34.2) | 323 (21.2) | |||
IV | 3009 (43.1) | 277 (18.2) |
Latency from Prostate Cancer to Lung Cancer Diagnosis in the P-L Subgroup | |||||||
---|---|---|---|---|---|---|---|
Variable | N | Mean | Median | ANOVA | Kruskal-Wallis | ||
p-Value | p-Value | ||||||
Stage at Diagnosis of Lung Cancer | I | 1382 | 55.19 | 42.00 | <0.001 | <0.001 | |
II | 199 | 52.59 | 40.00 | ||||
III | 2386 | 62.44 | 48.00 | ||||
IV | 3009 | 59.57 | 46.00 | ||||
Stage of Prostate Cancer | I | 133 | 61.29 | 47.00 | <0.001 | ||
II | 822 | 45.82 | 32.00 | ||||
III | 690 | 69.39 | 63.00 | ||||
IV | 537 | 41.90 | 30.00 | ||||
Androgen Deprivation Therapy | No | 7887 | 60.95 | 47.00 | <0.001 | ||
Yes | 2358 | 53.75 | 40.00 | ||||
Androgen Deprivation Therapy (Caucasian patients) | No | 6775 | 62.17 | 48.00 | <0.001 | ||
Yes | 1992 | 54.52 | 41.00 | ||||
Androgen Deprivation Therapy (Black patients) | No | 1112 | 53.54 | 41.00 | 0.166 | ||
Yes | 366 | 49.54 | 33.00 | ||||
Latency from lung cancer to prostate cancer diagnosis in the L-P subgroup | |||||||
Variable | N | Mean | Median | p-value | |||
Stage at Diagnosis of Lung Cancer | I | 824 | 46.96 | 34.00 | <0.001 | ||
II | 99 | 34.99 | 26.00 | ||||
III | 323 | 27.90 | 15.00 | ||||
IV | 277 | 13.27 | 1.00 | ||||
Stage of Prostate Cancer | I | 28 | 54.93 | 38.00 | 0.004 | ||
II | 348 | 59.64 | 38.00 | ||||
III | 89 | 55.73 | 42.00 | ||||
IV | 228 | 51.13 | 22.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazha, B.; Zhang, C.; Chen, Z.; Ragin, C.; Owonikoko, T.K. Concurrent Androgen Deprivation Therapy for Prostate Cancer Improves Survival for Synchronous or Metachronous Non-Small Cell Lung Cancer: A SEER–Medicare Database Analysis. Cancers 2022, 14, 3206. https://doi.org/10.3390/cancers14133206
Nazha B, Zhang C, Chen Z, Ragin C, Owonikoko TK. Concurrent Androgen Deprivation Therapy for Prostate Cancer Improves Survival for Synchronous or Metachronous Non-Small Cell Lung Cancer: A SEER–Medicare Database Analysis. Cancers. 2022; 14(13):3206. https://doi.org/10.3390/cancers14133206
Chicago/Turabian StyleNazha, Bassel, Chao Zhang, Zhengjia Chen, Camille Ragin, and Taofeek K. Owonikoko. 2022. "Concurrent Androgen Deprivation Therapy for Prostate Cancer Improves Survival for Synchronous or Metachronous Non-Small Cell Lung Cancer: A SEER–Medicare Database Analysis" Cancers 14, no. 13: 3206. https://doi.org/10.3390/cancers14133206
APA StyleNazha, B., Zhang, C., Chen, Z., Ragin, C., & Owonikoko, T. K. (2022). Concurrent Androgen Deprivation Therapy for Prostate Cancer Improves Survival for Synchronous or Metachronous Non-Small Cell Lung Cancer: A SEER–Medicare Database Analysis. Cancers, 14(13), 3206. https://doi.org/10.3390/cancers14133206