Tumor Microenvironment and Immunotherapy-Based Approaches in Mantle Cell Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Biology of Mantle Cell Lymphoma’s Tumor Microenvironment
2.1. BCR Activation in the Lymph Nodes versus Peripheral Blood MCL Cells
2.2. CD40-CD40 Ligand Axis
2.3. Monocytes/Macrophages and Dynamic Interaction between MCL Cells and Myeloid TME
2.4. Stromal Cells
2.5. SOX11 and MCL TME Composition and Modulation
2.6. Immune Checkpoint Expression in MCL
3. TME as a Therapeutic Option in MCL?
3.1. The BTKi and BCL2i Combination to Overcome TME-Related Resistance
3.2. Immunomodulatory Agents, Lenalidomide
3.2.1. Rationale of IMIDs in MCL and Potential Mechanism of Action
3.2.2. Clinical Data of Lenalidomide in R/R MCL
3.2.3. Lenalidomide in the First-Line Setting
Agents | Indication | Phase | N of Patients | ORR (%) CR (%) | mPFS (Months) | mOS (Months) | Grade ≥ 3 Toxicities (%) |
---|---|---|---|---|---|---|---|
Lenalidomide monotherapy (EMERGE study) [75] | R/R MCL after bortezomib | II | 134 | 28 7.5 | 4.0 | 19.0 | Neutropenia (43) Thrombocytopenia (28) Anemia (11) Pneumonia (8) |
Lenalidomide monotherapy (NHL-003) [82] | R/R MCL | II | 57 | 35 12 | 8.8 | NR | Neutropenia (46) Thrombocytopenia (30) Anemia (13) |
Lenalidomide vs. IC (MCL-002; SPRINT) [15] | R/R MCL | II randomized | 254 (170 vs. 84) | 40 vs. 11 5 vs. 0 | 8.7 vs. 5.2 | 27.9 vs. 21.2 | Neutropenia (44) Thrombocytopenia (18) Anemia (8) |
Lenalidomide + rituximab [83] | R/R MCL | II | 44 | 57 36 | 11.1 | 24.3 | Neutropenia (36) Lymphopenia (36) Leucopenia (30) Thrombocytopenia (23) Anemia (2) |
Lenalidomide + ibrutinib + rituximab (PHILEMON) [76] | R/R MCL | II | 50 | 76 56 | 16 | 22 | Neutropenia (38) Infections (26) Cutaneous (14) Gastrointestinal (12) Thrombocytopenia (12) |
Lenalidomide + rituximab + bendamustine (MCL4; LENA-BERIT) [78] | Front-line MCL in unfit patients | I/II | 51 | 88 64 | 42 | 3-year OS 73% | Neutropenia (75) Infections (42) Thrombocytopenia(20) Rash (18) |
Lenalidomide + rituximab [77,84] | Front-line | II | 38 | 92 64 | NR 7-year PFS rate: 60.3% | NR 7-year OS rate: 73.2% | Neutropenia (50) Rash (29) Thrombocytopenia (13) Anemia (11) Tumor flare (11) |
Lenalidomide + rituximab + venetoclax [79] | Front-line | Ib | 28 | 96 89 | NA | NA | Neutropenia (68) Thrombocytopenia (50) |
Lenalidomide + rituximab [80] | Maintenance after first-line treatment | III | 495 | NA | 2-year PFS: 76.6% vs. 60.8% | 2-year OS: 87.3% vs. 85.8% | Neutropenia (50 vs. 18.8%) Respiratory tract infection (5.5 vs. 0.8%) Skin cancer (5.5 vs. 2.0%) |
Lenalidomide + venetoclax + ibrutinib + prednisone + obinutuzumab [85] | R/R or untreated MCL | Ib/II | 11 | 100 80 | NR | NR | Hypokalemia (33) Neutropenia (13) Anemia (11) Thrombocytopenia (9) |
Lenalidomide + obinutuzumab (NCT01582776) | R/R MCL | II | 13 | 46.2 15.4 | NA | NA | Infections (12.5) |
3.2.4. Translational Studies of Lenalidomide in MCL: A Biomarker of Response?
3.3. Checkpoint Inhibitors
3.4. CAR-T Cells
3.4.1. Initial Clinical Trials and Real-Life Results in MCL Third-Line Setting
Clinical Trials | Real Life Experience | |||
---|---|---|---|---|
ZUMA-2 [19,96] | TRANSCEND-001 [99] | Descar-T [97] | US Lymphoma CAR-T Consortium [98] | |
CAR-T product | brexucabtagene autoleucel (KTE-X19) | lisocabtagene maraleucel (JCAR017) | brexucabtagene autoleucel (KTE-X19) | brexucabtagene autoleucel (KTE-X19) |
N patients | 68 | 32 | 47 | 93 |
N previous lines of TTT | 3 | 3 | 3 | 3 |
Bridging, % | 37% | 53% | 87% | 65% |
Blastoid or pleomorphic morphologic characteristics | 31% | 37.5% | NR | 45% |
Previous BTKi | 100% | 87.5% | 100% | 82% |
ORR | 93% | 84% | 88% | 86% |
CRR | 67% | 59% | 61.9% | 64% |
ORR in blastoid | 93% | 75% | NR | 94% 70% |
PFS/DOR | 15-month PFS: 59.2% 15-month DOR: 58.6% | NR NR | Median PFS: 6.3 months | 3-month PFS: 80.6% |
CRS | Any grade: 91% Grade ≥ 3: 15% | Any grade: 50% Grade ≥ 3: 3% | Any grade: 78.7% Grade ≥ 3: 8.5% | Any grade: 88% Grade ≥ 3: 8% |
ICANS | Any grade: 63% Grade ≥ 3: 31% | Any grade: 28% Grade ≥ 3: 9% | Any grade: 48.9% Grade ≥ 3: 8.5% | Any grade: 58% Grade ≥ 3: 33% |
Tocilizumab usage | 59% | 31% | 69.2% | 76% |
3.4.2. Combination Strategies with or after CAR-T
3.5. T-Cell-Engaging Bispecific Antibody
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dreyling, M.; Campo, E.; Hermine, O.; Jerkeman, M.; Le Gouill, S.; Rule, S.; Shpilberg, O.; Walewski, J.; Ladetto, M.; ESMO Guidelines Committee. Newly Diagnosed and Relapsed Mantle Cell Lymphoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, iv62–iv71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, H.; Fang, W.; Romaguer, J.E.; Zhang, Y.; Delasalle, K.B.; Kwak, L.; Yi, Q.; Du, X.L.; Wang, M. Incidence Trends of Mantle Cell Lymphoma in the United States between 1992 and 2004. Cancer 2008, 113, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Howell, D.; Patmore, R.; Jack, A.; Roman, E. Incidence of Haematological Malignancy by Sub-Type: A Report from the Haematological Malignancy Research Network. Br. J. Cancer 2011, 105, 1684–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, A.; Hoster, E.; Zwingers, T.; Brittinger, G.; Engelhard, M.; Meusers, P.; Reiser, M.; Forstpointner, R.; Metzner, B.; Peter, N.; et al. Improvement of Overall Survival in Advanced Stage Mantle Cell Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Yan, Y.; Jin, M.; Bhattacharya, S.; Wang, Y.; Wu, Y.; Yang, L.; Gine, E.; Clot, G.; Chen, L.; et al. Genomic and Transcriptomic Profiling Reveals Distinct Molecular Subsets Associated with Outcomes in Mantle Cell Lymphoma. J. Clin. Investig. 2022, 132, e153283. [Google Scholar] [CrossRef]
- Silkenstedt, E.; Linton, K.; Dreyling, M. Mantle Cell Lymphoma—Advances in Molecular Biology, Prognostication and Treatment Approaches. Br. J. Haematol. 2021, 195, 162–173. [Google Scholar] [CrossRef]
- Wang, M.L.; Rule, S.; Martin, P.; Goy, A.; Auer, R.; Kahl, B.S.; Jurczak, W.; Advani, R.H.; Romaguera, J.E.; Williams, M.E.; et al. Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2013, 369, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Dreyling, M.; Jurczak, W.; Jerkeman, M.; Silva, R.S.; Rusconi, C.; Trneny, M.; Offner, F.; Caballero, D.; Joao, C.; Witzens-Harig, M.; et al. Ibrutinib versus Temsirolimus in Patients with Relapsed or Refractory Mantle-Cell Lymphoma: An International, Randomised, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2016, 387, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Rule, S.; Zinzani, P.L.; Goy, A.; Casasnovas, O.; Smith, S.D.; Damaj, G.; Doorduijn, J.; Lamy, T.; Morschhauser, F.; et al. Acalabrutinib in Relapsed or Refractory Mantle Cell Lymphoma (ACE-LY-004): A Single-Arm, Multicentre, Phase 2 Trial. Lancet Lond. Engl. 2018, 391, 659–667. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, K.; Zou, D.; Zhou, J.; Hu, J.; Yang, H.; Zhang, H.; Ji, J.; Xu, W.; Jin, J.; et al. Treatment of Patients with Relapsed or Refractory Mantle-Cell Lymphoma with Zanubrutinib, a Selective Inhibitor of Bruton’s Tyrosine Kinase. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4216–4224. [Google Scholar] [CrossRef]
- Fisher, R.I.; Bernstein, S.H.; Kahl, B.S.; Djulbegovic, B.; Robertson, M.J.; de Vos, S.; Epner, E.; Krishnan, A.; Leonard, J.P.; Lonial, S.; et al. Multicenter Phase II Study of Bortezomib in Patients with Relapsed or Refractory Mantle Cell Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4867–4874. [Google Scholar] [CrossRef] [Green Version]
- Witzig, T.E.; Geyer, S.M.; Ghobrial, I.; Inwards, D.J.; Fonseca, R.; Kurtin, P.; Ansell, S.M.; Luyun, R.; Flynn, P.J.; Morton, R.F.; et al. Phase II Trial of Single-Agent Temsirolimus (CCI-779) for Relapsed Mantle Cell Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 5347–5356. [Google Scholar] [CrossRef]
- Hess, G.; Herbrecht, R.; Romaguera, J.; Verhoef, G.; Crump, M.; Gisselbrecht, C.; Laurell, A.; Offner, F.; Strahs, A.; Berkenblit, A.; et al. Phase III Study to Evaluate Temsirolimus Compared with Investigator’s Choice Therapy for the Treatment of Relapsed or Refractory Mantle Cell Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 3822–3829. [Google Scholar] [CrossRef]
- Trněný, M.; Lamy, T.; Walewski, J.; Belada, D.; Mayer, J.; Radford, J.; Jurczak, W.; Morschhauser, F.; Alexeeva, J.; Rule, S.; et al. Lenalidomide versus Investigator’s Choice in Relapsed or Refractory Mantle Cell Lymphoma (MCL-002; SPRINT): A Phase 2, Randomised, Multicentre Trial. Lancet Oncol. 2016, 17, 319–331. [Google Scholar] [CrossRef]
- Chen, L.S.; Bose, P.; Cruz, N.D.; Jiang, Y.; Wu, Q.; Thompson, P.A.; Feng, S.; Kroll, M.H.; Qiao, W.; Huang, X.; et al. A Pilot Study of Lower Doses of Ibrutinib in Patients with Chronic Lymphocytic Leukemia. Blood 2018, 132, 2249–2259. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.Y.; Francesco, M.; De Rooij, M.F.M.; Magadala, P.; Steggerda, S.M.; Huang, M.M.; Kuil, A.; Herman, S.E.M.; Chang, S.; Pals, S.T.; et al. Egress of CD19(+)CD5(+) Cells into Peripheral Blood Following Treatment with the Bruton Tyrosine Kinase Inhibitor Ibrutinib in Mantle Cell Lymphoma Patients. Blood 2013, 122, 2412–2424. [Google Scholar] [CrossRef]
- Ping, L.; Ding, N.; Shi, Y.; Feng, L.; Li, J.; Liu, Y.; Lin, Y.; Shi, C.; Wang, X.; Pan, Z.; et al. The Bruton’s Tyrosine Kinase Inhibitor Ibrutinib Exerts Immunomodulatory Effects through Regulation of Tumor-Infiltrating Macrophages. Oncotarget 2017, 8, 39218–39229. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Dickinson, M.; Carlo-Stella, C.; Morschhauser, F.; Patel, K.; Khan, C.; Bartlett, N.L.; Hutchings, M. Glofitamab Monotherapy Provides Durable Responses after Fixed-Length Dosing in Relapsed/Refractory (R/R) Non-Hodgkin Lymphoma (NHL) Patients (Pts). Blood 2021, 138, 2478. [Google Scholar] [CrossRef]
- Sadeghi, L.; Wright, A.P. Migration and Adhesion of B-Lymphocytes to Specific Microenvironments in Mantle Cell Lymphoma: Interplay between Signaling Pathways and the Epigenetic Landscape. Int. J. Mol. Sci. 2021, 22, 6247. [Google Scholar] [CrossRef]
- Jares, P.; Colomer, D.; Campo, E. Molecular Pathogenesis of Mantle Cell Lymphoma. J. Clin. Investig. 2012, 122, 3416–3423. [Google Scholar] [CrossRef] [Green Version]
- Nadeu, F.; Martin-Garcia, D.; Clot, G.; Díaz-Navarro, A.; Duran-Ferrer, M.; Navarro, A.; Vilarrasa-Blasi, R.; Kulis, M.; Royo, R.; Gutiérrez-Abril, J.; et al. Genomic and Epigenomic Insights into the Origin, Pathogenesis, and Clinical Behavior of Mantle Cell Lymphoma Subtypes. Blood 2020, 136, 1419–1432. [Google Scholar] [CrossRef]
- Greiner, T.C.; Dasgupta, C.; Ho, V.V.; Weisenburger, D.D.; Smith, L.M.; Lynch, J.C.; Vose, J.M.; Fu, K.; Armitage, J.O.; Braziel, R.M.; et al. Mutation and Genomic Deletion Status of Ataxia Telangiectasia Mutated (ATM) and P53 Confer Specific Gene Expression Profiles in Mantle Cell Lymphoma. Proc. Natl. Acad. Sci. USA 2006, 103, 2352–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kridel, R.; Meissner, B.; Rogic, S.; Boyle, M.; Telenius, A.; Woolcock, B.; Gunawardana, J.; Jenkins, C.; Cochrane, C.; Ben-Neriah, S.; et al. Whole Transcriptome Sequencing Reveals Recurrent NOTCH1 Mutations in Mantle Cell Lymphoma. Blood 2012, 119, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Beà, S.; Valdés-Mas, R.; Navarro, A.; Salaverria, I.; Martín-Garcia, D.; Jares, P.; Giné, E.; Pinyol, M.; Royo, C.; Nadeu, F.; et al. Landscape of Somatic Mutations and Clonal Evolution in Mantle Cell Lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 18250–18255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queirós, A.C.; Beekman, R.; Vilarrasa-Blasi, R.; Duran-Ferrer, M.; Clot, G.; Merkel, A.; Raineri, E.; Russiñol, N.; Castellano, G.; Beà, S.; et al. Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell 2016, 30, 806–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiron, D.; Bellanger, C.; Papin, A.; Tessoulin, B.; Dousset, C.; Maiga, S.; Moreau, A.; Esbelin, J.; Trichet, V.; Chen-Kiang, S.; et al. Rational Targeted Therapies to Overcome Microenvironment-Dependent Expansion of Mantle Cell Lymphoma. Blood 2016, 128, 2808–2818. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.S.; Liu, D.; Herman, S.E.M.; Underbayev, C.; Tian, X.; Behrend, D.; Weniger, M.A.; Skarzynski, M.; Gyamfi, J.; Fontan, L.; et al. Pathogenic Role of B-Cell Receptor Signaling and Canonical NF-ΚB Activation in Mantle Cell Lymphoma. Blood 2016, 128, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Tessoulin, B.; Papin, A.; Gomez-Bougie, P.; Bellanger, C.; Amiot, M.; Pellat-Deceunynck, C.; Chiron, D. BCL2-Family Dysregulation in B-Cell Malignancies: From Gene Expression Regulation to a Targeted Therapy Biomarker. Front. Oncol. 2018, 8, 645. [Google Scholar] [CrossRef]
- Bernard, S.; Danglade, D.; Gardano, L.; Laguillier, C.; Lazarian, G.; Roger, C.; Thieblemont, C.; Marzec, J.; Gribben, J.; Cymbalista, F.; et al. Inhibitors of BCR Signalling Interrupt the Survival Signal Mediated by the Micro-Environment in Mantle Cell Lymphoma. Int. J. Cancer 2015, 136, 2761–2774. [Google Scholar] [CrossRef]
- Rudelius, M.; Rosenfeldt, M.T.; Leich, E.; Rauert-Wunderlich, H.; Solimando, A.G.; Beilhack, A.; Ott, G.; Rosenwald, A. Inhibition of Focal Adhesion Kinase Overcomes Resistance of Mantle Cell Lymphoma to Ibrutinib in the Bone Marrow Microenvironment. Haematologica 2018, 103, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Chiron, D.; Dousset, C.; Brosseau, C.; Touzeau, C.; Maïga, S.; Moreau, P.; Pellat-Deceunynck, C.; Le Gouill, S.; Amiot, M. Biological Rational for Sequential Targeting of Bruton Tyrosine Kinase and Bcl-2 to Overcome CD40-Induced ABT-199 Resistance in Mantle Cell Lymphoma. Oncotarget 2015, 6, 8750–8759. [Google Scholar] [CrossRef] [Green Version]
- Furtado, M.; Wang, M.L.; Munneke, B.; McGreivy, J.; Beaupre, D.M.; Rule, S. Ibrutinib-Associated Lymphocytosis Corresponds to Bone Marrow Involvement in Mantle Cell Lymphoma. Br. J. Haematol. 2015, 170, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Castillo, R.; Mascarenhas, J.; Telford, W.; Chadburn, A.; Friedman, S.M.; Schattner, E.J. Proliferative Response of Mantle Cell Lymphoma Cells Stimulated by CD40 Ligation and IL-4. Leukemia 2000, 14, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Decombis, S.; Papin, A.; Bellanger, C.; Sortais, C.; Dousset, C.; Le Bris, Y.; Riveron, T.; Blandin, S.; Hulin, P.; Tessoulin, B.; et al. The IL32/BAFF Axis Supports Prosurvival Dialogs in the Lymphoma Ecosystem and Is Disrupted by NIK Inhibition. Haematologica 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Agarwal, R.; Chan, Y.-C.; Tam, C.S.; Hunter, T.; Vassiliadis, D.; Teh, C.E.; Thijssen, R.; Yeh, P.; Wong, S.Q.; Ftouni, S.; et al. Dynamic Molecular Monitoring Reveals That SWI-SNF Mutations Mediate Resistance to Ibrutinib plus Venetoclax in Mantle Cell Lymphoma. Nat. Med. 2019, 25, 119–129. [Google Scholar] [CrossRef]
- Rahal, R.; Frick, M.; Romero, R.; Korn, J.M.; Kridel, R.; Chan, F.C.; Meissner, B.; Bhang, H.; Ruddy, D.; Kauffmann, A.; et al. Pharmacological and Genomic Profiling Identifies NF-ΚB-Targeted Treatment Strategies for Mantle Cell Lymphoma. Nat. Med. 2014, 20, 87–92. [Google Scholar] [CrossRef]
- Le Gouill, S.; Morschhauser, F.; Chiron, D.; Bouabdallah, K.; Cartron, G.; Casasnovas, O.; Bodet-Milin, C.; Ragot, S.; Bossard, C.; Nadal, N.; et al. Ibrutinib, Obinutuzumab, and Venetoclax in Relapsed and Untreated Patients with Mantle Cell Lymphoma: A Phase 1/2 Trial. Blood 2021, 137, 877–887. [Google Scholar] [CrossRef]
- Rodrigues, J.M.; Nikkarinen, A.; Hollander, P.; Weibull, C.E.; Räty, R.; Kolstad, A.; Amini, R.-M.; Porwit, A.; Jerkeman, M.; Ek, S.; et al. Infiltration of CD163-, PD-L1- and FoxP3-Positive Cells Adversely Affects Outcome in Patients with Mantle Cell Lymphoma Independent of Established Risk Factors. Br. J. Haematol. 2021, 193, 520–531. [Google Scholar] [CrossRef]
- Papin, A.; Tessoulin, B.; Bellanger, C.; Moreau, A.; Le Bris, Y.; Maisonneuve, H.; Moreau, P.; Touzeau, C.; Amiot, M.; Pellat-Deceunynck, C.; et al. CSF1R and BTK Inhibitions as Novel Strategies to Disrupt the Dialog between Mantle Cell Lymphoma and Macrophages. Leukemia 2019, 33, 2442–2453. [Google Scholar] [CrossRef]
- Schneider, P.; MacKay, F.; Steiner, V.; Hofmann, K.; Bodmer, J.L.; Holler, N.; Ambrose, C.; Lawton, P.; Bixler, S.; Acha-Orbea, H.; et al. BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth. J. Exp. Med. 1999, 189, 1747–1756. [Google Scholar] [CrossRef]
- Rodig, S.J.; Shahsafaei, A.; Li, B.; Mackay, C.R.; Dorfman, D.M. BAFF-R, the Major B Cell-Activating Factor Receptor, Is Expressed on Most Mature B Cells and B-Cell Lymphoproliferative Disorders. Hum. Pathol. 2005, 36, 1113–1119. [Google Scholar] [CrossRef]
- Sakurai, D.; Kanno, Y.; Hase, H.; Kojima, H.; Okumura, K.; Kobata, T. TACI Attenuates Antibody Production Costimulated by BAFF-R and CD40. Eur. J. Immunol. 2007, 37, 110–118. [Google Scholar] [CrossRef]
- Rickert, R.C.; Jellusova, J.; Miletic, A.V. Signaling by the Tumor Necrosis Factor Receptor Superfamily in B-Cell Biology and Disease. Immunol. Rev. 2011, 244, 115–133. [Google Scholar] [CrossRef]
- Burger, J.A.; Ford, R.J. The Microenvironment in Mantle Cell Lymphoma: Cellular and Molecular Pathways and Emerging Targeted Therapies. Semin. Cancer Biol. 2011, 21, 308–312. [Google Scholar] [CrossRef]
- Kurtova, A.V.; Tamayo, A.T.; Ford, R.J.; Burger, J.A. Mantle Cell Lymphoma Cells Express High Levels of CXCR4, CXCR5, and VLA-4 (CD49d): Importance for Interactions with the Stromal Microenvironment and Specific Targeting. Blood 2009, 113, 4604–4613. [Google Scholar] [CrossRef]
- Lwin, T.; Hazlehurst, L.A.; Dessureault, S.; Lai, R.; Bai, W.; Sotomayor, E.; Moscinski, L.C.; Dalton, W.S.; Tao, J. Cell Adhesion Induces P27Kip1-Associated Cell-Cycle Arrest through down-Regulation of the SCFSkp2 Ubiquitin Ligase Pathway in Mantle-Cell and Other Non-Hodgkin B-Cell Lymphomas. Blood 2007, 110, 1631–1638. [Google Scholar] [CrossRef]
- Lwin, T.; Crespo, L.A.; Wu, A.; Dessureault, S.; Shu, H.B.; Moscinski, L.C.; Sotomayor, E.; Dalton, W.S.; Tao, J. Lymphoma Cell Adhesion-Induced Expression of B Cell-Activating Factor of the TNF Family in Bone Marrow Stromal Cells Protects Non-Hodgkin’s B Lymphoma Cells from Apoptosis. Leukemia 2009, 23, 170–177. [Google Scholar] [CrossRef]
- Chen, Z.; Teo, A.E.; McCarty, N. ROS-Induced CXCR4 Signaling Regulates Mantle Cell Lymphoma (MCL) Cell Survival and Drug Resistance in the Bone Marrow Microenvironment via Autophagy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Medina, D.J.; Goodell, L.; Glod, J.; Gélinas, C.; Rabson, A.B.; Strair, R.K. Mesenchymal Stromal Cells Protect Mantle Cell Lymphoma Cells from Spontaneous and Drug-Induced Apoptosis through Secretion of B-Cell Activating Factor and Activation of the Canonical and Non-Canonical Nuclear Factor ΚB Pathways. Haematologica 2012, 97, 1255–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Roy, N.K.; Vicioso, Y.; Woo, J.; Beck, R.; de Lima, M.; Caimi, P.; Feinberg, D.; Parameswaran, R. BAFF Receptor Antibody for Mantle Cell Lymphoma Therapy. Oncoimmunology 2021, 10, 1893501. [Google Scholar] [CrossRef] [PubMed]
- Mozos, A.; Royo, C.; Hartmann, E.; De Jong, D.; Baró, C.; Valera, A.; Fu, K.; Weisenburger, D.D.; Delabie, J.; Chuang, S.-S.; et al. SOX11 Expression Is Highly Specific for Mantle Cell Lymphoma and Identifies the Cyclin D1-Negative Subtype. Haematologica 2009, 94, 1555–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, A.; Clot, G.; Royo, C.; Jares, P.; Hadzidimitriou, A.; Agathangelidis, A.; Bikos, V.; Darzentas, N.; Papadaki, T.; Salaverria, I.; et al. Molecular Subsets of Mantle Cell Lymphoma Defined by the IGHV Mutational Status and SOX11 Expression Have Distinct Biologic and Clinical Features. Cancer Res. 2012, 72, 5307–5316. [Google Scholar] [CrossRef] [Green Version]
- Vegliante, M.C.; Palomero, J.; Pérez-Galán, P.; Roué, G.; Castellano, G.; Navarro, A.; Clot, G.; Moros, A.; Suárez-Cisneros, H.; Beà, S.; et al. SOX11 Regulates PAX5 Expression and Blocks Terminal B-Cell Differentiation in Aggressive Mantle Cell Lymphoma. Blood 2013, 121, 2175–2185. [Google Scholar] [CrossRef]
- Palomero, J.; Vegliante, M.C.; Rodríguez, M.L.; Eguileor, A.; Castellano, G.; Planas-Rigol, E.; Jares, P.; Ribera-Cortada, I.; Cid, M.C.; Campo, E.; et al. SOX11 Promotes Tumor Angiogenesis through Transcriptional Regulation of PDGFA in Mantle Cell Lymphoma. Blood 2014, 124, 2235–2247. [Google Scholar] [CrossRef]
- Annese, T.; Ingravallo, G.; Tamma, R.; De Giorgis, M.; Maiorano, E.; Perrone, T.; Albano, F.; Specchia, G.; Ribatti, D. Inflammatory Infiltrate and Angiogenesis in Mantle Cell Lymphoma. Transl. Oncol. 2020, 13, 100744. [Google Scholar] [CrossRef]
- Balsas, P.; Palomero, J.; Eguileor, Á.; Rodríguez, M.L.; Vegliante, M.C.; Planas-Rigol, E.; Sureda-Gómez, M.; Cid, M.C.; Campo, E.; Amador, V. SOX11 Promotes Tumor Protective Microenvironment Interactions through CXCR4 and FAK Regulation in Mantle Cell Lymphoma. Blood 2017, 130, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Balsas, P.; Veloza, L.; Clot, G.; Sureda-Gómez, M.; Rodríguez, M.-L.; Masaoutis, C.; Frigola, G.; Navarro, A.; Beà, S.; Nadeu, F.; et al. SOX11, CD70, and Treg Cells Configure the Tumor-Immune Microenvironment of Aggressive Mantle Cell Lymphoma. Blood 2021, 138, 2202–2215. [Google Scholar] [CrossRef]
- Wang, L.; Qian, J.; Lu, Y.; Li, H.; Bao, H.; He, D.; Liu, Z.; Zheng, Y.; He, J.; Li, Y.; et al. Immune Evasion of Mantle Cell Lymphoma: Expression of B7-H1 Leads to Inhibited T-Cell Response to and Killing of Tumor Cells. Haematologica 2013, 98, 1458–1466. [Google Scholar] [CrossRef] [Green Version]
- Harrington, B.K.; Wheeler, E.; Hornbuckle, K.; Shana’ah, A.Y.; Youssef, Y.; Smith, L.; Hassan, Q.; Klamer, B.; Zhang, X.; Long, M.; et al. Modulation of Immune Checkpoint Molecule Expression in Mantle Cell Lymphoma. Leuk. Lymphoma 2019, 60, 2498–2507. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Zhou, J.; Young, K.H. PD-1 Expression and Clinical PD-1 Blockade in B-Cell Lymphomas. Blood 2018, 131, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Davids, M.S.; Roberts, A.W.; Seymour, J.F.; Pagel, J.M.; Kahl, B.S.; Wierda, W.G.; Puvvada, S.; Kipps, T.J.; Anderson, M.A.; Salem, A.H.; et al. Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.; Anderson, M.A.; Pott, C.; Agarwal, R.; Handunnetti, S.; Hicks, R.J.; Burbury, K.; Turner, G.; Di Iulio, J.; Bressel, M.; et al. Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma. N. Engl. J. Med. 2018, 378, 1211–1223. [Google Scholar] [CrossRef]
- Morschhauser, F.; Fowler, N.H.; Feugier, P.; Bouabdallah, R.; Tilly, H.; Palomba, M.L.; Fruchart, C.; Libby, E.N.; Casasnovas, R.-O.; Flinn, I.W.; et al. Rituximab plus Lenalidomide in Advanced Untreated Follicular Lymphoma. N. Engl. J. Med. 2018, 379, 934–947. [Google Scholar] [CrossRef]
- Renneville, A.; Gasser, J.A.; Grinshpun, D.E.; Jean Beltran, P.M.; Udeshi, N.D.; Matyskiela, M.E.; Clayton, T.; McConkey, M.; Viswanathan, K.; Tepper, A.; et al. Avadomide Induces Degradation of ZMYM2 Fusion Oncoproteins in Hematologic Malignancies. Blood Cancer Discov. 2021, 2, 250–265. [Google Scholar] [CrossRef]
- Yang, Y.; Shaffer, A.L.; Emre, N.C.T.; Ceribelli, M.; Zhang, M.; Wright, G.; Xiao, W.; Powell, J.; Platig, J.; Kohlhammer, H.; et al. Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma. Cancer Cell 2012, 21, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-H.; Kosek, J.; Wang, M.; Heise, C.; Schafer, P.H.; Chopra, R. Lenalidomide Efficacy in Activated B-Cell-like Subtype Diffuse Large B-Cell Lymphoma Is Dependent upon IRF4 and Cereblon Expression. Br. J. Haematol. 2013, 160, 487–502. [Google Scholar] [CrossRef]
- Gandhi, A.K.; Kang, J.; Havens, C.G.; Conklin, T.; Ning, Y.; Wu, L.; Ito, T.; Ando, H.; Waldman, M.F.; Thakurta, A.; et al. Immunomodulatory Agents Lenalidomide and Pomalidomide Co-Stimulate T Cells by Inducing Degradation of T Cell Repressors Ikaros and Aiolos via Modulation of the E3 Ubiquitin Ligase Complex CRL4(CRBN.). Br. J. Haematol. 2014, 164, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, N.; Jain, K.; Ramsay, A.G. Immunomodulatory Drugs for the Treatment of B Cell Malignancies. Int. J. Mol. Sci. 2021, 22, 8572. [Google Scholar] [CrossRef]
- Ioannou, N.; Hagner, P.R.; Stokes, M.; Gandhi, A.K.; Apollonio, B.; Fanous, M.; Papazoglou, D.; Sutton, L.-A.; Rosenquist, R.; Amini, R.-M.; et al. Triggering Interferon Signaling in T Cells with Avadomide Sensitizes CLL to Anti-PD-L1/PD-1 Immunotherapy. Blood 2021, 137, 216–231. [Google Scholar] [CrossRef]
- Fecteau, J.-F.; Corral, L.G.; Ghia, E.M.; Gaidarova, S.; Futalan, D.; Bharati, I.S.; Cathers, B.; Schwaederlé, M.; Cui, B.; Lopez-Girona, A.; et al. Lenalidomide Inhibits the Proliferation of CLL Cells via a Cereblon/P21(WAF1/Cip1)-Dependent Mechanism Independent of Functional P53. Blood 2014, 124, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Ménard, C.; Rossille, D.; Dulong, J.; Nguyen, T.-T.; Papa, I.; Latour, M.; Bescher, N.; Bezier, I.; Chouteau, M.; Fest, T.; et al. Lenalidomide Triggers T-Cell Effector Functions in Vivo in Patients with Follicular Lymphoma. Blood Adv. 2021, 5, 2063–2074. [Google Scholar] [CrossRef]
- Wu, L.; Adams, M.; Carter, T.; Chen, R.; Muller, G.; Stirling, D.; Schafer, P.; Bartlett, J.B. Lenalidomide Enhances Natural Killer Cell and Monocyte-Mediated Antibody-Dependent Cellular Cytotoxicity of Rituximab-Treated CD20+ Tumor Cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 4650–4657. [Google Scholar] [CrossRef] [Green Version]
- Goy, A.; Sinha, R.; Williams, M.E.; Kalayoglu Besisik, S.; Drach, J.; Ramchandren, R.; Zhang, L.; Cicero, S.; Fu, T.; Witzig, T.E. Single-Agent Lenalidomide in Patients with Mantle-Cell Lymphoma Who Relapsed or Progressed after or Were Refractory to Bortezomib: Phase II MCL-001 (EMERGE) Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3688–3695. [Google Scholar] [CrossRef]
- Jerkeman, M.; Eskelund, C.W.; Hutchings, M.; Räty, R.; Wader, K.F.; Laurell, A.; Toldbod, H.; Pedersen, L.B.; Niemann, C.U.; Dahl, C.; et al. Ibrutinib, Lenalidomide, and Rituximab in Relapsed or Refractory Mantle Cell Lymphoma (PHILEMON): A Multicentre, Open-Label, Single-Arm, Phase 2 Trial. Lancet Haematol. 2018, 5, e109–e116. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.; Martin, P.; Christos, P.; Cerchietti, L.; Tam, W.; Shah, B.; Schuster, S.J.; Rodriguez, A.; Hyman, D.; Calvo-Vidal, M.N.; et al. Five-Year Follow-up of Lenalidomide plus Rituximab as Initial Treatment of Mantle Cell Lymphoma. Blood 2018, 132, 2016–2025. [Google Scholar] [CrossRef] [Green Version]
- Albertsson-Lindblad, A.; Kolstad, A.; Laurell, A.; Räty, R.; Grønbæk, K.; Sundberg, J.; Pedersen, L.B.; Ralfkiær, E.; Karjalainen-Lindsberg, M.-L.; Sundström, C.; et al. Lenalidomide-Bendamustine-Rituximab in Patients Older than 65 Years with Untreated Mantle Cell Lymphoma. Blood 2016, 128, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- Phillips, T.J.; Danilov, A.V.; Bond, D.A.; Herrera, A.F.; Maddocks, K.J.; Devata, S.; Karimi, Y.; Carty, S.; Wilcox, R.A.; Kaminski, M.S.; et al. The Combination of Venetoclax, Lenalidomide, and Rituximab in Patients with Newly Diagnosed Mantle Cell Lymphoma Induces High Response Rates and MRD Undetectability. J. Clin. Oncol. 2021, 39, 7505. [Google Scholar] [CrossRef]
- Ribrag, V. Rituximab-Lenalidomide(R2) Maintenance Is Superior to Rituximab Maintenance after First Line Immunochemotherapy in Mantle Cell Lymphoma: Results of the MCL R2 Elderly Clinical Trial. Blood 2021, 138, 379. [Google Scholar] [CrossRef]
- Delfau, M.-H. Impact of Maintenance Arm on Prognostic Value of MRD after Induction Treatment in MCL R2 Elderly Trial, a Mantle Cell Lymphoma Network Study. Blood 2021, 138, 40. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Vose, J.M.; Czuczman, M.S.; Reeder, C.B.; Haioun, C.; Polikoff, J.; Tilly, H.; Zhang, L.; Prandi, K.; Li, J.; et al. Long-Term Follow-up of Lenalidomide in Relapsed/Refractory Mantle Cell Lymphoma: Subset Analysis of the NHL-003 Study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 2892–2897. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fayad, L.; Wagner-Bartak, N.; Zhang, L.; Hagemeister, F.; Neelapu, S.S.; Samaniego, F.; McLaughlin, P.; Fanale, M.; Younes, A.; et al. Lenalidomide in Combination with Rituximab for Patients with Relapsed or Refractory Mantle-Cell Lymphoma: A Phase 1/2 Clinical Trial. Lancet Oncol. 2012, 13, 716–723. [Google Scholar] [CrossRef]
- Yamshon, S. Initial Treatment with Lenalidomide Plus Rituximab for Mantle Cell Lymphoma (MCL): 7-Year Analysis from a Multi-Center Phase II Study. Blood 2020, 136, 45–46. [Google Scholar] [CrossRef]
- Melani, C. Phase 1b/2 Study of Vipor (Venetoclax, Ibrutinib, Prednisone, Obinutuzumab, and Lenalidomide) in Relapsed/Refractory and Untreated Mantle Cell Lymphoma: Safety, Efficacy, and Molecular Analysis. Blood 2021, 138, 3537. [Google Scholar] [CrossRef]
- Hagner, P.R.; Chiu, H.; Ortiz, M.; Apollonio, B.; Wang, M.; Couto, S.; Waldman, M.F.; Flynt, E.; Ramsay, A.G.; Trotter, M.; et al. Activity of Lenalidomide in Mantle Cell Lymphoma Can Be Explained by NK Cell-Mediated Cytotoxicity. Br. J. Haematol. 2017, 179, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Carpio, C.; Bouabdallah, R.; Ysebaert, L.; Sancho, J.-M.; Salles, G.; Cordoba, R.; Pinto, A.; Gharibo, M.; Rasco, D.; Panizo, C.; et al. Avadomide Monotherapy in Relapsed/Refractory DLBCL: Safety, Efficacy, and a Predictive Gene Classifier. Blood 2020, 135, 996–1007. [Google Scholar] [CrossRef]
- Kortüm, K.M.; Mai, E.K.; Hanafiah, N.H.; Shi, C.-X.; Zhu, Y.-X.; Bruins, L.; Barrio, S.; Jedlowski, P.; Merz, M.; Xu, J.; et al. Targeted Sequencing of Refractory Myeloma Reveals a High Incidence of Mutations in CRBN and Ras Pathway Genes. Blood 2016, 128, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Haertle, L.; Barrio, S.; Munawar, U.; Han, S.; Zhou, X.; Vogt, C.; Fernández, R.A.; Bittrich, M.; Ruiz-Heredia, Y.; Da Viá, M.; et al. Cereblon Enhancer Methylation and IMiD Resistance in Multiple Myeloma. Blood 2021, 138, 1721–1726. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Phillips, T.; Barr, P.M.; Park, S.I.; Kolibaba, K.; Caimi, P.F.; Chhabra, S.; Kingsley, E.C.; Boyd, T.; Chen, R.; Carret, A.-S.; et al. A Phase 1 Trial of SGN-CD70A in Patients with CD70-Positive Diffuse Large B Cell Lymphoma and Mantle Cell Lymphoma. Investig. New Drugs 2019, 37, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Jatiani, S.S.; Christie, S.; Leshchenko, V.V.; Jain, R.; Kapoor, A.; Bisignano, P.; Lee, C.; Kaniskan, H.Ü.; Edwards, D.; Meng, F.; et al. SOX11 Inhibitors Are Cytotoxic in Mantle Cell Lymphoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 4652–4663. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Rosenberg, S.A. Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nat. Rev. Clin. Oncol. 2013, 10, 267–276. [Google Scholar] [CrossRef]
- Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T Cell Engineering. Nature 2017, 545, 423–431. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, R.; Visco, C.; Eyre, T.A.; Frewin, R.; Phillips, N.; Tucker, D.L.; Quaglia, F.M.; McMillan, A.; Lambert, J.; Crosbie, N.; et al. Efficacy of R-BAC in Relapsed, Refractory Mantle Cell Lymphoma Post BTK Inhibitor Therapy. Br. J. Haematol. 2020, 189, 684–688. [Google Scholar] [CrossRef]
- Wang, M. One-Year Follow-up of ZUMA-2, the Multicenter, Registrational Study of KTE-X19 in Patients with Relapsed/Refractory Mantle Cell Lymphoma. Blood 2020, 136, 20–22. [Google Scholar] [CrossRef]
- Herbaux, C. Kte-X19 in Relapsed or Refractory Mantle-Cell Lymphoma, a “Real-Life” Study from the Descar-T Registry and Lysa Group. Blood 2021, 138, 743. [Google Scholar] [CrossRef]
- Wang, Y. Brexucabtagene Autoleucel for Relapsed/Refractory Mantle Cell Lymphoma: Real World Experience from the US Lymphoma CAR T Consortium. Blood 2021, 138, 744. [Google Scholar] [CrossRef]
- Palomba, M.L. Safety and Preliminary Efficacy in Patients with Relapsed/Refractory Mantle Cell Lymphoma Receiving Lisocabtagene Maraleucel in Transcend NHL 001. Blood 2020, 136, 10–11. [Google Scholar] [CrossRef]
- Chong, E.A.; Alanio, C.; Svoboda, J.; Nasta, S.D.; Landsburg, D.J.; Lacey, S.F.; Ruella, M.; Bhattacharyya, S.; Wherry, E.J.; Schuster, S.J. Pembrolizumab for B-Cell Lymphomas Relapsing after or Refractory to CD19-Directed CAR T-Cell Therapy. Blood 2022, 139, 1026–1038. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, M.; Ren, F.; Meng, X.; Yu, J. The Landscape of Bispecific T Cell Engager in Cancer Treatment. Biomark. Res. 2021, 9, 38. [Google Scholar] [CrossRef]
- Goebeler, M.-E.; Knop, S.; Viardot, A.; Kufer, P.; Topp, M.S.; Einsele, H.; Noppeney, R.; Hess, G.; Kallert, S.; Mackensen, A.; et al. Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 1104–1111. [Google Scholar] [CrossRef]
- Dufner, V.; Sayehli, C.M.; Chatterjee, M.; Hummel, H.D.; Gelbrich, G.; Bargou, R.C.; Goebeler, M.-E. Long-Term Outcome of Patients with Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma Treated with Blinatumomab. Blood Adv. 2019, 3, 2491–2498. [Google Scholar] [CrossRef] [Green Version]
- Budde, L.E.; Assouline, S.; Sehn, L.H.; Schuster, S.J.; Yoon, S.-S.; Yoon, D.H.; Matasar, M.J.; Bosch, F.; Kim, W.S.; Nastoupil, L.J.; et al. Single-Agent Mosunetuzumab Shows Durable Complete Responses in Patients With Relapsed or Refractory B-Cell Lymphomas: Phase I Dose-Escalation Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 481–491. [Google Scholar] [CrossRef]
- Bacac, M.; Colombetti, S.; Herter, S.; Sam, J.; Perro, M.; Chen, S.; Bianchi, R.; Richard, M.; Schoenle, A.; Nicolini, V.; et al. CD20-TCB with Obinutuzumab Pretreatment as Next-Generation Treatment of Hematologic Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 4785–4797. [Google Scholar] [CrossRef] [Green Version]
- Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.-S.; Illmer, T.; et al. Obinutuzumab plus Chlorambucil in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2014, 370, 1101–1110. [Google Scholar] [CrossRef] [Green Version]
- Mössner, E.; Brünker, P.; Moser, S.; Püntener, U.; Schmidt, C.; Herter, S.; Grau, R.; Gerdes, C.; Nopora, A.; van Puijenbroek, E.; et al. Increasing the Efficacy of CD20 Antibody Therapy through the Engineering of a New Type II Anti-CD20 Antibody with Enhanced Direct and Immune Effector Cell-Mediated B-Cell Cytotoxicity. Blood 2010, 115, 4393–4402. [Google Scholar] [CrossRef] [Green Version]
- Herter, S.; Birk, M.C.; Klein, C.; Gerdes, C.; Umana, P.; Bacac, M. Glycoengineering of Therapeutic Antibodies Enhances Monocyte/Macrophage-Mediated Phagocytosis and Cytotoxicity. J. Immunol. Baltim. 2014, 192, 2252–2260. [Google Scholar] [CrossRef] [Green Version]
- Paper: Glofitamab Step-up Dosing Induces High Response Rates in Patients (Pts) with Relapsed or Refractory (R/R) Mantle Cell Lymphoma (MCL), Most of Whom Had Failed Prior Bruton’s Tyrosine Kinase Inhibitor (BTKi) Therapy. Available online: https://ash.confex.com/ash/2021/webprogram/Paper148949.html (accessed on 3 May 2022).
- Hutchings, M.; Mous, R.; Clausen, M.R.; Johnson, P.; Linton, K.M.; Chamuleau, M.E.D.; Lewis, D.J.; Sureda Balari, A.; Cunningham, D.; Oliveri, R.S.; et al. Dose Escalation of Subcutaneous Epcoritamab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma: An Open-Label, Phase 1/2 Study. Lancet 2021, 398, 1157–1169. [Google Scholar] [CrossRef]
- Di, M.; Cui, C.; Kothari, S.; Zeidan, A.M.; Podoltsev, N.A.; Neparidze, N.; Shallis, R.M.; Wang, R.; Ma, X.; Huntington, S.F. Survival of Mantle Cell Lymphoma in the Era of Bruton Tyrosine Kinase Inhibitors: A Population-Based Analysis. Blood Adv. 2022, 6, 3339–3342. [Google Scholar] [CrossRef]
- Castellino, A.; Wang, Y.; Larson, M.C.; Maurer, M.J.; Link, B.K.; Farooq, U.; Feldman, A.L.; Syrbu, S.I.; Habermann, T.M.; Paludo, J.; et al. Evolving Frontline Immunochemotherapy for Mantle Cell Lymphoma and the Impact on Survival Outcomes. Blood Adv. 2022, 6, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
Trial | Population | Agents | Phase | N | Primary Endpoint |
---|---|---|---|---|---|
NCT03153202 | R/R MCL or CLL | Pembrolizumab (anti-PD-1) + ibrutinib | I/II | 40 | DLT |
NCT03015896 | R/R B-cell NHL including MCL | Nivolumab + lenalidomide | I/II | 102 | Adverse events MTD |
NCT04599634 | R/R B-cell malignancies including MCL | Obinutuzumab with venetoclax and magrolimab (VENOM) | I | 76 | Safety and tolerability |
NCT02733042 | RR NHL and CLL. FUSION NHL 001 | Durvalumab and Ibrutinib/Durva Benda | I/II | 106 | DLT |
Trial | Population | Agents | Phase | N | Primary Outcome |
---|---|---|---|---|---|
ZUMA-2 cohort 3 (NCT04880434) | R/R MCL not receiving BTKi | brexucabtagene autoleucel (KTE-X19) | II | 90 | ORR |
TARMAC (NCT04234061) | R/R MCL | tisagenlecleucel + ibrutinib | II | 20 | CR rate at month 4 |
NCT04484012 | R/R MCL | CD19-targeting autologous CAR-T cell + acalabrutinib | II | 36 | CR rate DLT |
NCT03277729 | R/R B-cell NHL including MCL | CD20-targeting autologous CAR-T cell | I/II | 35 | DLT |
NCT04007029 | R/R B-cell NHL including MCL | bispecific Anti-CD19/CD20 autologous CAR-T Cells | I | 24 | Safety MTD |
NCT04186520 | R/R B-cell NHL and MCL | bispecific Anti-CD19/CD20 autologous CAR-T Cells | I/II | 32 | Number of adverse events |
NCT04176913 | R/R DLBCL, FL, MCL, and SLL | LUCAR-20S (CD20-targeting allogenic CAR-T cell) | I | 34 | DLT Adverse events Pharmacokinetics in blood and bone marrow |
NCT04223765 | kappa+ NHL or CLL including MCL | Autologous T Lymphocyte CAR cells targeting kappa light chain | I | 20 | Safety and tolerability |
NCT04323657 | R/R B-cell NHL including MCL and ALL | TC-110 (CD19 targeting TCR complex) | I/II | 120 | (RP2D) Efficacy in NHL and ALL |
Study | Agent | Target | Phase | Nb of Patients | Population |
---|---|---|---|---|---|
NCT04703686 | Glofitamab (RO7082859) after single injection of obinutuzumab | CD20x2/CD3 | II | 78 | R/R lymphomas after failure of CAR-T cell |
NCT03467373 | Glofitamab + R or O + CHOP or glofitamab + P + R + CHP | CD20x2/CD3 | Ib | 172 | R/R NHL or untreated DLBCL |
NCT03075696 | Glofitamab as single agent or + O | CD20x2/CD3 | I/II | 860 | R/R B-cell NHL |
NCT03533283 | Glofitamab + Atezolizumab or Polatuzumab Vedotin | CD20x2/CD3 | Ib/II | 140 | R/R B-cell NHL |
NCT05219513 | Glofitamab + RO7443904 | CD20/CD3 | I | 200 | R/R B-cell NHL |
NCT04082936 | IGM-2323 (BsAb) | CD20/CD3 | I | 160 | R/R B-cell NHL (FL, DLBCL, MCL, MZL) after failure of at least 2 prior treatments |
NCT03625037 | Epcoritamab (GEN3013) | CD20/CD3 | I/II | 486 | R/R B-cell lymphoma (DLBCL, PMBCL, FL, MCL, SLL, MZL) |
NCT04358458 | Epcoritamab + GEN3009 | CD20/CD3 + CD37x2 | I/II | 182 | R/R B-cell NHL |
NCT02924402 | Plamotamab (XMAB13676) | CD20/CD3 | I | 160 | R/R non CLL B-cell malignancies |
NCT04763083 | NVG-111 | ROR1/CD3 | I/II | 90 | RR MCL or CLL, SLL |
NCT03888105 (ELM-2 trial) | Odronextamab (REGN1979) | CD20/CD3 | II | 512 (78 MCL after BTKi failure) | R/R B-cell NHL including FL, DLBCL, MCL, MZL |
NCT02500407 | Mosunetuzumab | CD20/CD3 | I/II | 836 | R/R B-cell NHL and CLL |
NCT03671018 | Mosunetuzumab (BTCT4465A) + Polatuzumab Vedotin | CD20/CD3 | I/II | 262 | R/R FL, DLBCL, MCL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, K.; Cheminant, M.; Chiron, D.; Burroni, B.; Ribrag, V.; Sarkozy, C. Tumor Microenvironment and Immunotherapy-Based Approaches in Mantle Cell Lymphoma. Cancers 2022, 14, 3229. https://doi.org/10.3390/cancers14133229
Saleh K, Cheminant M, Chiron D, Burroni B, Ribrag V, Sarkozy C. Tumor Microenvironment and Immunotherapy-Based Approaches in Mantle Cell Lymphoma. Cancers. 2022; 14(13):3229. https://doi.org/10.3390/cancers14133229
Chicago/Turabian StyleSaleh, Khalil, Morgane Cheminant, David Chiron, Barbara Burroni, Vincent Ribrag, and Clémentine Sarkozy. 2022. "Tumor Microenvironment and Immunotherapy-Based Approaches in Mantle Cell Lymphoma" Cancers 14, no. 13: 3229. https://doi.org/10.3390/cancers14133229
APA StyleSaleh, K., Cheminant, M., Chiron, D., Burroni, B., Ribrag, V., & Sarkozy, C. (2022). Tumor Microenvironment and Immunotherapy-Based Approaches in Mantle Cell Lymphoma. Cancers, 14(13), 3229. https://doi.org/10.3390/cancers14133229