Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Primary Outcome
3.3. Secondary Outcomes
3.3.1. COVID-19-Related Outcomes in Patients Who Were Vaccinated against COVID-19
3.3.2. COVID-19-Related Outcomes in Patients Who Received COVID-19 Monoclonal Antibody Treatment
3.3.3. COVID-19-Related Outcomes in Additional Patient Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Berger, N.A.; Xu, R. When hematologic malignancies meet COVID-19 in the United States: Infections, death and disparities. Blood Rev. 2021, 47, 100775. [Google Scholar] [CrossRef] [PubMed]
- Bonuomo, V.; Ferrarini, I.; Dell’Eva, M.; Sbisà, E.; Krampera, M.; Visco, C. COVID-19 (SARS-CoV-2 infection) in lymphoma patients: A review. World J. Virol. 2021, 10, 312–325. [Google Scholar] [CrossRef]
- Beraud, M.; Goodhue Meyer, E.; Lozano, M.; Bah, A.; Vassallo, R.; Brown, B.L. Lessons learned from the use of convalescent plasma for the treatment of COVID-19 and specific considerations for immunocompromised patients. Transfus. Apher. Sci. 2022, 61, 103355. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 665–676. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Altarawneh, H.N.; Chemaitelly, H.; Hasan, M.R.; Ayoub, H.H.; Qassim, S.; AlMukdad, S.; Coyle, P.; Yassine, H.M.; Al-Khatib, H.A.; Benslimane, F.M.; et al. Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. N. Engl. J. Med. 2022, 386, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. Table A. SARS-CoV-2 Variants and Susceptibility to Anti-SARS-CoV-2 Monoclonal Antibodies; U.S. Government Printing Office: Washington, DC, USA, 2022. Available online: https://www.covid19treatmentguidelines.nih.gov/tables/variants-and-susceptibility-to-mabs/ (accessed on 1 July 2022).
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 2022, 185, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, A.R.; Vijayakumaran, S.C.; Gupta, S.; Divatia, J.V. Mortality in Cancer Patients With COVID-19 Who Are Admitted to an ICU or Who Have Severe COVID-19: A Systematic Review and Meta-Analysis. JCO Glob. Oncol. 2021, 7, 1286–1305. [Google Scholar] [CrossRef] [PubMed]
- Fung, M.; Nambiar, A.; Pandey, S.; Aldrich, J.M.; Teraoka, J.; Freise, C.; Roberts, J.; Chandran, S.; Hays, S.R.; Bainbridge, E.; et al. Treatment of immunocompromised COVID-19 patients with convalescent plasma. Transpl. Infect. Dis. 2021, 23, e13477. [Google Scholar] [CrossRef] [PubMed]
- Simonovich, V.A.; Burgos Pratx, L.D.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.; et al. A Randomized Trial of Convalescent Plasma in COVID-19 Severe Pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.; Guilpain, P.; Filip, I.L.; Pansu, N.; Le Bihan, C.; Cartron, G.; Tchernonog, E.; Roubille, C.; Morquin, D.; Makinson, A.; et al. Convalescent plasma for persisting COVID-19 following therapeutic lymphocyte depletion: A report of rapid recovery. Br. J. Haematol. 2020, 190, e154–e156. [Google Scholar] [CrossRef]
- Rodionov, R.N.; Biener, A.; Spieth, P.; Achleitner, M.; Hölig, K.; Aringer, M.; Mingrone, G.; Corman, V.M.; Drosten, C.; Bornstein, S.R.; et al. Potential benefit of convalescent plasma transfusions in immunocompromised patients with COVID-19. Lancet Microbe 2021, 2, e138. [Google Scholar] [CrossRef]
- Donato, M.L.; Park, S.; Baker, M.; Korngold, R.; Morawski, A.; Geng, X.; Tan, M.; Ip, A.; Goldberg, S.; Rowley, S.; et al. Clinical and laboratory evaluation of patients with SARS-CoV-2 pneumonia treated with high-titer convalescent plasma. JCI Insight 2021, 6, e143196. [Google Scholar] [CrossRef] [PubMed]
- Bégin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef]
- Song, Q.; Bates, B.; Shao, Y.R.; Hsu, F.C.; Liu, F.; Madhira, V.; Mitra, A.K.; Bergquist, T.; Kavuluru, R.; Li, X.; et al. Risk and Outcome of Breakthrough COVID-19 Infections in Vaccinated Patients with Cancer: Real-World Evidence From the National COVID Cohort Collaborative. J. Clin. Oncol. 2022, 40, 1414–1427. [Google Scholar] [CrossRef]
- Rubinstein, S.M.; Bhutani, D.; Lynch, R.C.; Hsu, C.Y.; Shyr, Y.; Advani, S.; Mesa, R.A.; Mishra, S.; Mundt, D.P.; Shah, D.P.; et al. COVID-19 and Cancer Consortium. Patients Recently Treated for B-lymphoid Malignancies Show Increased Risk of Severe COVID-19. Blood Cancer Discov. 2022, 3, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Schietzel, S.; Anderegg, M.; Limacher, A.; Born, A.; Horn, M.P.; Maurer, B.; Hirzel, C.; Sidler, D.; Moor, M.B. Humoral and cellular immune responses on SARS-CoV-2 vaccines in patients with anti-CD20 therapies: A systematic review and meta-analysis of 1342 patients. RMD Open 2022, 8, e002036. [Google Scholar] [CrossRef] [PubMed]
- Tarke, A.; Sidney, J.; Kidd, C.K.; Dan, J.M.; Ramirez, S.I.; Yu, E.D.; Mateus, J.; da Silva Antunes, R.; Moore, E.; Rubiro, P.; et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep. Med. 2021, 2, 100204. [Google Scholar] [CrossRef]
- Liebers, N.; Speer, C.; Benning, L.; Bruch, P.M.; Kraemer, I.; Meissner, J.; Schnitzler, P.; Kräusslich, H.G.; Dreger, P.; Mueller-Tidow, C.; et al. Humoral and cellular responses after COVID-19 vaccination in anti-CD20-treated lymphoma patients. Blood 2022, 139, 142–147. [Google Scholar] [CrossRef]
- Khan, Q.J.; Bivona, C.R.; Martin, G.A.; Zhang, J.; Liu, B.; He, J.; Li, K.H.; Nelson, M.; Williamson, S.; Doolittle, G.C.; et al. Evaluation of the Durability of the Immune Humoral Response to COVID-19 Vaccines in Patients With Cancer Undergoing Treatment or Who Received a Stem Cell Transplant. JAMA Oncol. 2022, 8, 1053–1058. [Google Scholar] [CrossRef]
- VanBlargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, S.J.; Crowe, J.E., Jr.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef]
- Belsky, J.A.; Tullius, B.P.; Lamb, M.G.; Sayegh, R.; Stanek, J.R.; Auletta, J.J. COVID-19 in immunocompromised patients: A systematic review of cancer, hematopoietic cell and solid organ transplant patients. J. Infect. 2021, 82, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Babady, N.E.; Cohen, B.; McClure, T.; Chow, K.; Caldararo, M.; Jani, K.; McMillen, T.; Taur, Y.; Shah, M.; Robilotti, E.; et al. Variable duration of viral shedding in cancer patients with coronavirus disease 2019 (COVID-19). Infect. Control. Hosp. Epidemiol. 2021, 1–3. [Google Scholar] [CrossRef]
- Gilead Sciences, Inc. Remdesivir [Package Insert]; Gilead Sciences, Inc.: Foster City, CA, USA, 2022. [Google Scholar]
- Merck Sharp & Dohme Corp., a Subsidiary of Merck & Co., Inc. Molnupiravir [Package Insert]; Merck Sharp & Dohme Corp., a Subsidiary of Merck & Co., Inc.: Whitehouse Station, NJ, USA, 2022. [Google Scholar]
- Pfizer Labs, Division of Pfizer Inc. Nirmatrelvir and Ritonavir [Package Insert]; Pfizer Labs, Division of Pfizer Inc.: New York, NY, USA, 2022. [Google Scholar]
Characteristics | Patients N = 68 n (%) |
---|---|
Age, median years (IQR) | 66 (59–75) |
Male | 38 (56) |
Race | |
Black or African American | 1 (2) |
Hispanic or Latino | 11 (16) |
White | 45 (66) |
Other | 11 (16) |
Disease type | |
Burkitt’s, DLBCL, PMBL | 20 (29) |
CLL/SLL | 14 (21) |
Hodgkin’s lymphoma (HL) | 2 (3) |
Indolent lymphomas † | 20 (29) |
Mantle cell lymphoma (MCL) | 3 (4) |
T-cell lymphomas (TCLs) ‡ | 6 (10) |
Other § | 3 (4) |
Comorbidities | |
Cardiovascular disease | 23 (34) |
COPD | 5 (7) |
Autoimmune disease †† | 5 (7) |
Mild liver disease ‡‡ | 2 (3) |
Diabetes | 19 (28) |
Chronic kidney disease ¶ | 6 (10) |
HIV/AIDS | 1 (2) |
Smoking history | |
Current smoker | 3 (4) |
Former smoker | 18 (27) |
Absolute neutrophil count at COVID-19 diagnosis | |
Median cells × 103 (IQR) | 3.25 (2.175–4.7) |
Less than or equal to 1000 cells/mm3 | 6 (9) |
Absolute lymphocyte count at COVID-19 diagnosis | |
Median cells × 103 (IQR) | 1.1 (0.7–1.625) |
Less than or equal to 500 cells/mm3 | 15 (22) |
Vaccine received | |
Pfizer-BioNTech | 28 (41) |
Moderna | 24 (35) |
Johnson & Johnson | 1 (2) |
Outcomes | Patients n (%) |
---|---|
Hospitalization due to COVID-19 infection | |
Overall population | 23/68 (34) |
Death due to COVID-19 infection | |
Overall population | 6/68 (9) |
Hospitalized patients | 6/23 (26) |
Patient Subgroups | COVID-19-Associated Hospitalization or Death | p-Value; UVA OR (95% CI), p-Value; MVA OR (95% CI), p-Value | |
---|---|---|---|
Yes n (%) | No n (%) | ||
COVID-19 vaccine received * | p = 0.759; 0.729 (0.223, 2.382), p = 0.6; 0.929 (0.222, 3.886), p = 0.919 | ||
Yes (n = 52) | 17/23 (74) | 35/45 (78) | |
No (n = 15) | 6/23 (26) | 9/45 (20) | |
COVID-19 mAb treatment received | p = 0.070; 0.338 (0.112, 1.013), p = 0.053; 0.324 (0.096, 1.098), p = 0.07 | ||
Yes (n = 29) | 6/23 (26) | 23/45 (51) | |
No (n = 39) | 17/23 (74) | 22/45 (49) | |
Anti-CD20 mAb or BTKi-containing regimen φ | p = 0.907 1.5 (0.386, 5.825), p = 0.558; 2.899 (0.459, 18.319), p = 0.258 1 (0.15, 6.671), p = 1; 1.492 (0.178, 12.489), p = 0.712 0.857 (0.239, 3.079), p = 0.813; 1.571 (0.281, 8.775), p = 0.607 | ||
Anti-CD20 mAb monotherapy (n = 14) | 6/23 (26) | 8/45 (18) | |
BTKi monotherapy (n = 6) | 2/23 (9) | 4/45 (9) | |
Anti-CD20 mAb + chemotherapy (n = 20) | 6/23 (26) | 14/45 (31) | |
All others (ref) (n = 25) | 8/23 (35) | 17/45 (38) | |
Lymphoma diagnosis | p = 1 1.148 (0.327, 4.028), p = 0.829, 1.789 (0.321, 9.961), p = 0.507 1.240 (0.261, 5.891), p = 0.787; 1.157 (0.167,8.03), p = 0.883 | ||
CLL/SLL (n = 14) | 5/23 (22) | 9/45 (20) | |
HL/TCL (n = 8) | 3/23 (13) | 5/45 (11) | |
All others (ref) (n = 46) | 15/23 (65) | 31/45 (69) | |
Anticancer treatment in previous 6 months | p = 0.481 1.368 (0.379, 4.944), p = 0.632; 0.725 (0.143, 3.68), p = 0.68976 0.625 (0.144, 2.718), p = 0.531; 0.366 (0.063, 2.12), p = 0.2622 | ||
Yes (n = 32) | 13/23 (57) | 19/45 (42) | |
No (n = 21) | 5/23 (9) | 16/45 (36) | |
All others (ref) (n = 15) | 5/23 (9) | 10/45 (22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Pia, A.; Zhao, C.; Jandir, P.; Gupta, A.; Batistick, M.; Kim, G.Y.; Xia, Y.; Ahn, J.; Magarelli, G.; Lukasik, B.; et al. Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era. Cancers 2022, 14, 4252. https://doi.org/10.3390/cancers14174252
Della Pia A, Zhao C, Jandir P, Gupta A, Batistick M, Kim GY, Xia Y, Ahn J, Magarelli G, Lukasik B, et al. Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era. Cancers. 2022; 14(17):4252. https://doi.org/10.3390/cancers14174252
Chicago/Turabian StyleDella Pia, Alexandra, Charles Zhao, Parul Jandir, Amolika Gupta, Mark Batistick, Gee Youn (Geeny) Kim, Yi Xia, Jaeil Ahn, Gabriella Magarelli, Brittany Lukasik, and et al. 2022. "Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era" Cancers 14, no. 17: 4252. https://doi.org/10.3390/cancers14174252
APA StyleDella Pia, A., Zhao, C., Jandir, P., Gupta, A., Batistick, M., Kim, G. Y., Xia, Y., Ahn, J., Magarelli, G., Lukasik, B., Leslie, L. A., Goy, A. H., Ip, A., & Feldman, T. A. (2022). Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era. Cancers, 14(17), 4252. https://doi.org/10.3390/cancers14174252