Effect of Pre-Existing Sarcopenia on Oncological Outcomes for Oral Cavity Squamous Cell Carcinoma Undergoing Curative Surgery: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Interventions/Exposures
2.3. Comparisons
2.4. Outcomes
2.5. Design Setting
2.6. Statistical Analysis
3. Results
3.1. Study Cohorts before and after PSM
3.2. Cox Proportional Hazard Models of All-Cause Mortality
3.3. Cox Proportional Hazard Models of LRR and DM
3.4. Kaplan–Meier Curves of Overall Survival, LRR, and DM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Health Promotion Administration, Ministry of Health and Welfare. Taiwan Cancer Registry Annual Report; Health Promotion Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2020.
- Ko, Y.C.; Huang, Y.L.; Lee, C.H.; Chen, M.J.; Lin, L.M.; Tsai, C.C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 1995, 24, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Wu, C.C.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Locoregionally recurrent head and neck squamous cell carcinoma: Incidence, survival, prognostic factors, and treatment outcomes. Oncotarget 2017, 8, 55600–55612. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Yen, Y.C.; Chen, T.M.; Yuan, K.S.; Lee, F.P.; Lin, K.C.; Lai, M.T.; Wu, C.C.; Chang, C.L.; Wu, S.Y. Survival prognostic factors for metachronous second primary head and neck squamous cell carcinoma. Cancer Med. 2017, 6, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Yuan, K.S.; Wu, S.Y. High-dose or low-dose cisplatin concurrent with radiotherapy in locally advanced head and neck squamous cell cancer. Head Neck 2017, 39, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Yen, Y.C.; Yang, H.C.; Liu, S.H.; Yuan, S.P.; Wu, L.L.; Lee, F.P.; Lin, K.C.; Lai, M.T.; Wu, C.C.; et al. Curative-Intent Aggressive Treatment Improves Survival in Elderly Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and High Comorbidity Index. Medicine 2016, 95, e3268. [Google Scholar] [CrossRef]
- Wu, S.Y.; Wu, A.T.; Liu, S.H. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing. Oncotarget 2016, 7, 51482–51493. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.C.; Liu, H.E.; Kao, Y.W.; Qin, L.; Lin, K.C.; Fang, C.Y.; Tsai, L.L.; Shia, B.C.; Wu, S.Y. Definitive intensity-modulated radiotherapy or surgery for early oral cavity squamous cell carcinoma: Propensity-score-matched, nationwide, population-based cohort study. Head Neck 2020, 43, 1142–1152. [Google Scholar] [CrossRef]
- Lin, K.C.; Chen, T.M.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Assessment of Predictive Scoring System for 90-Day Mortality among Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Who Have Completed Concurrent Chemoradiotherapy. JAMA Netw. Open 2020, 3, e1920671. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.C.; Liu, H.E.; Kao, Y.W.; Qin, L.; Lin, K.C.; Fang, C.Y.; Tsai, L.L.; Shia, B.C.; Wu, S.Y. Definitive radiotherapy or surgery for early oral squamous cell carcinoma in old and very old patients: A propensity-score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2020, 152, 214–221. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Roubenoff, R. Origins and clinical relevance of sarcopenia. Can. J. Appl. Physiol. 2001, 26, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I. The epidemiology of sarcopenia. Clin. Geriatr. Med. 2011, 27, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 1997, 83, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Janssen, I. Influence of sarcopenia on the development of physical disability: The Cardiovascular Health Study. J. Am. Geriatr. Soc. 2006, 54, 56–62. [Google Scholar] [CrossRef]
- Shachar, S.S.; Williams, G.R.; Muss, H.B.; Nishijima, T.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef]
- Buentzel, J.; Heinz, J.; Bleckmann, A.; Bauer, C.; Rover, C.; Bohnenberger, H.; Saha, S.; Hinterthaner, M.; Baraki, H.; Kutschka, I.; et al. Sarcopenia as Prognostic Factor in Lung Cancer Patients: A Systematic Review and Meta-analysis. Anticancer Res. 2019, 39, 4603–4612. [Google Scholar] [CrossRef] [Green Version]
- Hua, X.; Liu, S.; Liao, J.F.; Wen, W.; Long, Z.Q.; Lu, Z.J.; Guo, L.; Lin, H.X. When the Loss Costs Too Much: A Systematic Review and Meta-Analysis of Sarcopenia in Head and Neck Cancer. Front. Oncol. 2019, 9, 1561. [Google Scholar] [CrossRef]
- Au, P.C.; Li, H.L.; Lee, G.K.; Li, G.H.; Chan, M.; Cheung, B.M.; Wong, I.C.; Lee, V.H.; Mok, J.; Yip, B.H.; et al. Sarcopenia and mortality in cancer: A meta-analysis. Osteoporos Sarcopenia 2021, 7, S28–S33. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Zhou, X.L.; Yu, C.H.; Wang, W.W.; Ji, F.Z.; He, D.C.; Zhu, W.G.; Tong, Y.S. Association of Sarcopenia with Toxicity and Survival in Postoperative Recurrent Esophageal Squamous Cell Carcinoma Patients Receiving Chemoradiotherapy. Front. Oncol. 2021, 11, 655071. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Liao, J.F.; Huang, X.; Huang, H.Y.; Wen, W.; Long, Z.Q.; Guo, L.; Yuan, Z.Y.; Lin, H.X. Sarcopenia is associated with higher toxicity and poor prognosis of nasopharyngeal carcinoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920947612. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. A comparison of 12 algorithms for matching on the propensity score. Stat. Med. 2014, 33, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [Green Version]
- Dias, F.L.; Lima, R.A.; Kligerman, J.; Farias, T.P.; Soares, J.R.; Manfro, G.; Sa, G.M. Relevance of skip metastases for squamous cell carcinoma of the oral tongue and the floor of the mouth. Otolaryngol. Head Neck Surg. 2006, 134, 460–465. [Google Scholar] [CrossRef]
- Byers, R.M.; Weber, R.S.; Andrews, T.; McGill, D.; Kare, R.; Wolf, P. Frequency and therapeutic implications of “skip metastases” in the neck from squamous carcinoma of the oral tongue. Head Neck 1997, 19, 14–19. [Google Scholar] [CrossRef]
- Capote-Moreno, A.; Naval, L.; Munoz-Guerra, M.F.; Sastre, J.; Rodriguez-Campo, F.J. Prognostic factors influencing contralateral neck lymph node metastases in oral and oropharyngeal carcinoma. J. Oral Maxillofac. Surg. 2010, 68, 268–275. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology: Head and Neck Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 22 April 2022).
- Qin, L.; Chen, T.-M.; Kao, Y.-W.; Lin, K.-C.; Yuan, K.S.-P.; Wu, A.T.H.; Shia, B.-C.; Wu, S.-Y. Predicting 90-Day Mortality in Locoregionally Advanced Head and Neck Squamous Cell Carcinoma after Curative Surgery. Cancers 2018, 10, 392. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.Y.; Chang, C.L.; Lu, C.Y.; Wu, S.Y.; Zhang, J.Q. Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study. Nutrients 2022, 14, 1910. [Google Scholar] [CrossRef]
- Chien, M.Y.; Huang, T.Y.; Wu, Y.T. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J. Am. Geriatr. Soc. 2008, 56, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Wu, S.Y.; Chang, S.C.; Chen, C.I.; Huang, C.C. Oncologic Outcomes of Radical Prostatectomy and High-Dose Intensity-Modulated Radiotherapy with Androgen-Deprivation Therapy for Relatively Young Patients with Unfavorable Intermediate-Risk Prostate Adenocarcinoma. Cancers 2021, 13, 1517. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.J.; Chang, S.C.; Hsu, C.H.; Lin, Y.C.; Hung, C.H.; Wu, S.Y. Comparison of Clinical Outcomes of Radical Prostatectomy versus IMRT with Long-Term Hormone Therapy for Relatively Young Patients with High- to Very High-Risk Localized Prostate Cancer. Cancers 2021, 13, 5986. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.Y.; Qin, L.; Chen, H.M.; Wu, S.Y. Breast-conserving surgery with or without irradiation in women with invasive ductal carcinoma of the breast receiving preoperative systemic therapy: A cohort study. Breast 2020, 54, 139–147. [Google Scholar] [CrossRef]
- Austin, P.C. The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 2013, 32, 2837–2849. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Collins, G.S.; Spence, J.; Daures, J.P.; Devereaux, P.J.; Landais, P.; Le Manach, Y. Double-adjustment in propensity score matching analysis: Choosing a threshold for considering residual imbalance. BMC Med. Res. Methodol. 2017, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2014, 33, 1242–1258. [Google Scholar] [CrossRef] [Green Version]
- Thureau, S.; Lebret, L.; Lequesne, J.; Cabourg, M.; Dandoy, S.; Gouley, C.; Lefebvre, L.; Mallet, R.; Mihailescu, S.D.; Moldovan, C.; et al. Prospective Evaluation of Sarcopenia in Head and Neck Cancer Patients Treated with Radiotherapy or Radiochemotherapy. Cancers 2021, 13, 753. [Google Scholar] [CrossRef]
- Stone, L.; Olson, B.; Mowery, A.; Krasnow, S.; Jiang, A.; Li, R.; Schindler, J.; Wax, M.K.; Andersen, P.; Marks, D.; et al. Association Between Sarcopenia and Mortality in Patients Undergoing Surgical Excision of Head and Neck Cancer. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 647–654. [Google Scholar] [CrossRef] [PubMed]
- van Rijn-Dekker, M.I.; van den Bosch, L.; van den Hoek, J.G.M.; Bijl, H.P.; van Aken, E.S.M.; van der Hoorn, A.; Oosting, S.F.; Halmos, G.B.; Witjes, M.J.H.; van der Laan, H.P.; et al. Impact of sarcopenia on survival and late toxicity in head and neck cancer patients treated with radiotherapy. Radiother. Oncol. 2020, 147, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, Y.; Takemoto, N.; Oya, R.; Inohara, H. Prognostic impact of sarcopenia in patients with head and neck cancer treated with surgery or radiation: A meta-analysis. PLoS ONE 2021, 16, e0259288. [Google Scholar] [CrossRef] [PubMed]
- Findlay, M.; White, K.; Stapleton, N.; Bauer, J. Is sarcopenia a predictor of prognosis for patients undergoing radiotherapy for head and neck cancer? A meta-analysis. Clin. Nutr. 2021, 40, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Chargi, N.; Bril, S.I.; Emmelot-Vonk, M.H.; de Bree, R. Sarcopenia is a prognostic factor for overall survival in elderly patients with head-and-neck cancer. Eur. Arch. Otorhinolaryngol. 2019, 276, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Synergistic effect of bodyweight resistance exercise and protein supplementation on skeletal muscle in sarcopenic or dynapenic older adults. Geriatr. Gerontol. Int. 2019, 19, 429–437. [Google Scholar] [CrossRef]
- Morley, J.E.; Argiles, J.M.; Evans, W.J.; Bhasin, S.; Cella, D.; Deutz, N.E.; Doehner, W.; Fearon, K.C.; Ferrucci, L.; Hellerstein, M.K.; et al. Nutritional recommendations for the management of sarcopenia. J. Am. Med. Dir. Assoc. 2010, 11, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Gkekas, N.K.; Anagnostis, P.; Paraschou, V.; Stamiris, D.; Dellis, S.; Kenanidis, E.; Potoupnis, M.; Tsiridis, E.; Goulis, D.G. The effect of vitamin D plus protein supplementation on sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2021, 145, 56–63. [Google Scholar] [CrossRef]
- Phu, S.; Boersma, D.; Duque, G. Exercise and Sarcopenia. J. Clin. Densitom. 2015, 18, 488–492. [Google Scholar] [CrossRef]
- Matsuzuka, T.; Kiyota, N.; Mizusawa, J.; Akimoto, T.; Fujii, M.; Hasegawa, Y.; Iwae, S.; Monden, N.; Matsuura, K.; Onozawa, Y.; et al. Clinical impact of cachexia in unresectable locally advanced head and neck cancer: Supplementary analysis of a phase II trial (JCOG0706-S2). Jpn. J. Clin. Oncol. 2019, 49, 37–41. [Google Scholar] [CrossRef]
- Hayashi, N.; Sato, Y.; Fujiwara, Y.; Fukuda, N.; Wang, X.; Nakano, K.; Urasaki, T.; Ohmoto, A.; Ono, M.; Tomomatsu, J.; et al. Clinical Impact of Cachexia in Head and Neck Cancer Patients Who Received Chemoradiotherapy. Cancer Manag. Res. 2021, 13, 8377–8385. [Google Scholar] [CrossRef] [PubMed]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.; Cooper, J.S.; Pajak, T.F.; van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.K.; et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005, 27, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.; Domenge, C.; Ozsahin, M.; Matuszewska, K.; Lefebvre, J.L.; Greiner, R.H.; Giralt, J.; Maingon, P.; Rolland, F.; Bolla, M.; et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 2004, 350, 1945–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2004, 350, 1937–1944. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.Y.; Lin, C.Y.; Cheng, N.M.; Tsai, C.Y.; Hsueh, C.; Fan, K.H.; Wang, H.M.; Hsieh, C.H.; Ng, S.H.; Yeh, C.H.; et al. Poor tumor differentiation is an independent adverse prognostic variable in patients with locally advanced oral cavity cancer--Comparison with pathological risk factors according to the NCCN guidelines. Cancer Med. 2021, 10, 6627–6641. [Google Scholar] [CrossRef]
- Shia, B.C.; Qin, L.; Lin, K.C.; Fang, C.Y.; Tsai, L.L.; Kao, Y.W.; Wu, S.Y. Outcomes for Elderly Patients Aged 70 to 80 Years or Older with Locally Advanced Oral Cavity Squamous Cell Carcinoma: A Propensity Score-Matched, Nationwide, Oldest Old Patient-Based Cohort Study. Cancers 2020, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Antoun, S.; Borget, I.; Lanoy, E. Impact of sarcopenia on the prognosis and treatment toxicities in patients diagnosed with cancer. Curr. Opin. Support. Palliat. Care 2013, 7, 383–389. [Google Scholar] [CrossRef]
- Liao, C.T.; Wallace, C.G.; Lee, L.Y.; Hsueh, C.; Lin, C.Y.; Fan, K.H.; Wang, H.M.; Ng, S.H.; Lin, C.H.; Tsao, C.K.; et al. Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral Oncol. 2014, 50, 721–731. [Google Scholar] [CrossRef]
- Liao, C.T.; Kang, C.J.; Chang, J.T.; Wang, H.M.; Ng, S.H.; Hsueh, C.; Lee, L.Y.; Lin, C.H.; Cheng, A.J.; Chen, I.H.; et al. Survival of second and multiple primary tumors in patients with oral cavity squamous cell carcinoma in the betel quid chewing area. Oral Oncol. 2007, 43, 811–819. [Google Scholar] [CrossRef]
Nonsarcopenia | Sarcopenia | p Value | |||
---|---|---|---|---|---|
N = 10,855 | N = 5439 | ||||
N | % | N | % | ||
Age (mean ± SD) | 55.79 ± 10.89 | 55.44 ± 11.14 | 0.2384 | ||
Age, median (IQR), years | 55.00 (48.00, 63.00) | 55.00 (48.00, 63.00) | 0.9929 | ||
Age groups | 0.5057 | ||||
<50 years | 3061 | 28.20% | 1492 | 27.43% | |
50–60 years | 3930 | 36.20% | 1969 | 36.20% | |
≥60 years | 3864 | 35.60% | 1978 | 36.37% | |
Sex | 0.1720 | ||||
Male | 9803 | 90.31% | 4875 | 89.63% | |
Female | 1052 | 9.69% | 564 | 10.37% | |
Years of diagnosis | 0.3349 | ||||
2007–2010 | 2264 | 20.86% | 1149 | 21.13% | |
2011–2014 | 4612 | 42.49% | 2246 | 41.29% | |
2015–2017 | 3979 | 36.66% | 2044 | 37.58% | |
AJCC pathologic stage | 0.9995 | ||||
I | 2279 | 21.00% | 1142 | 21.00% | |
II | 1492 | 13.74% | 747 | 13.73% | |
III | 1281 | 11.80% | 642 | 11.80% | |
IVA | 5304 | 48.86% | 2658 | 48.87% | |
IVB | 499 | 4.60% | 250 | 4.60% | |
AJCC pathologic stage T | 0.9899 | ||||
pT1 | 107 | 0.99% | 56 | 1.03% | |
pT2 | 3186 | 29.35% | 1595 | 29.33% | |
pT3 | 3270 | 30.12% | 1637 | 30.10% | |
pT4A | 989 | 9.11% | 497 | 9.14% | |
pT4B | 3303 | 30.43% | 1654 | 30.41% | |
AJCC pathologic stage N | 0.9979 | ||||
pN0 | 5117 | 47.14% | 2572 | 47.29% | |
pN1 | 1560 | 14.37% | 779 | 14.32% | |
pN2 | 3745 | 34.50% | 1872 | 34.42% | |
pN3 | 433 | 3.99% | 216 | 3.97% | |
Differentiation | 0.9526 | ||||
I | 2253 | 20.76% | 1130 | 20.78% | |
II | 6272 | 57,78% | 3140 | 57.73% | |
III | 2330 | 21.46% | 1169 | 21.49% | |
Surgical margin | 10,855 | 5439 | 0.9467 | ||
Negative | 9078 | 83.63% | 4539 | 83.45% | |
Positive | 1777 | 16.37% | 900 | 16.55% | |
Lymphovascular invasion | 0.9705 | ||||
No | 4962 | 45.71% | 2481 | 45.62% | |
YES | 5893 | 54.29% | 2958 | 54.38% | |
Adjuvant treatments | 0.2968 | ||||
No adjuvant | 2129 | 19.61% | 1080 | 19.86% | |
Adjuvant RT | 1452 | 13.38% | 779 | 14.32% | |
Adjuvant sequential CT and RT | 2149 | 19.80% | 1097 | 20.17% | |
Adjuvant CT | 322 | 2.97% | 164 | 3.02% | |
Adjuvant CCRT | 4803 | 44.25% | 2319 | 42.64% | |
Adjuvant RT dose (Gy), mean | 63.08 ± 15.48 | 63.77 ± 15.34 | 0.1691 | ||
Median (IQR, Q1, Q3) | 66.00 (60.00, 70.00) | 66.00 (60.00, 70.00) | 0.1414 | ||
Adjuvant chemotherapy with cumulative platinum dose (mg), mean | 542.11 ± 413.46 | 541.16 ± 414.90 | 0.9082 | ||
Median | 450.00 (300.00, 650.00) | 450.00 (300.00, 650.00) | 0.1630 | ||
CCI scores | |||||
Mean (SD) | 0.70 ± 1.11 | 0.73 ± 1.13 | 0.2747 | ||
CCI scores | 0.3813 | ||||
0 | 7032 | 64.78% | 3448 | 63.39% | |
≥1 | 3823 | 35.22% | 1991 | 36.61% | |
Cigarette smoking | 7590 | 69.92% | 3794 | 69.76% | 0.9891 |
Alcohol use | 6299 | 58.03% | 3144 | 57.80% | 0.8910 |
Betel nut chewing | 6624 | 61.02% | 3310 | 60.86% | 0.8872 |
Outcomes | |||||
Median follow-up, y (mean ± SD) | 3.87 ± 3.03 | 3.46 ± 2.90 | <0.0001 | ||
Median follow-up, y (IQR, Q1, Q3) | 3.11 (1.28, 5.81) | 2.65 (1.00, 5.18) | <0.0001 | ||
All-cause mortality | 10,855 | 5439 | 0.0039 | ||
No | 5445 | 50.16% | 2598 | 47.77% | |
YES | 5410 | 49.84% | 2841 | 52.23% | |
Metastasis | <0.0001 | ||||
No | 9086 | 83.70% | 4515 | 83.01% | |
YES | 1769 | 16.30% | 924 | 16.99% | |
Locoregional recurrence | 0.0030 | ||||
No | 9152 | 84.31% | 4569 | 84.00% | |
YES | 1703 | 15.69% | 870 | 16.00% |
Crude HR (95% CI) | p Value | Adjusted HR * (95% CI) | p Value | |||
---|---|---|---|---|---|---|
Sarcopenia | ||||||
Nonsarcopenia (Ref.) | 1 | 1 | ||||
Sarcopenia | 1.18 | (1.12, 1.24) | <0.0001 | 1.15 | (1.11, 1.21) | <0.0001 |
Sex | ||||||
Female (Ref.) | 1 | 1 | ||||
Male | 1.36 | (1.28, 1.44) | <0.0001 | 1.28 | (1.20, 1.39) | <0.0001 |
Age | ||||||
<50 years (Ref.) | 1 | 1 | ||||
50–60 years | 1.06 | (1.04, 1.16) | 0.0430 | 1.14 | (1.07, 1.19) | 0.0021 |
≥60 years | 1.14 | (1.12, 1.22) | <0.0001 | 1.25 | (1.19, 1.33) | <0.0001 |
Years of diagnosis | ||||||
2007–2010 (Ref.) | 1 | 1 | ||||
2011–2014 | 0.90 | (0.84, 1.06) | 0.6420 | 0.91 | (0.89, 1.08) | 0.4268 |
2015–2017 | 0.77 | (0.72, 1.09) | 0.6664 | 0.83 | (0.79, 1.09) | 0.2332 |
AJCC pathologic T | ||||||
pT1 (Ref.) | 1 | 1 | ||||
pT2 | 0.94 | (1.04, 1.21) | 0.2361 | 1.05 | (1.01, 1.31) | 0.0380 |
pT3 | 1.14 | (0.92, 1.46) | 0.1412 | 1.31 | (1.05, 1.63) | 0.0113 |
pT4A | 1.64 | (1.31, 2.01) | <0.0001 | 1.66 | (1.33, 2.11) | <0.0001 |
pT4B | 1.71 | (1.37, 2.13) | <0.0001 | 1.72 | (1.39, 2.17) | <0.0001 |
AJCC pathologic N | ||||||
pN0 (Ref.) | 1 | 1 | ||||
pN1 | 1.51 | (1.42, 1.64) | <0.0001 | 1.11 | (1.04, 1.24) | 0.0002 |
pN2 | 2.37 | (2.14, 2.58) | <0.0001 | 1.21 | (1.05, 1.41) | 0.0023 |
pN3 | 3.89 | (3.31, 5.03) | <0.0001 | 2.03 | (1.72, 2.71) | <0.0001 |
Differentiation | ||||||
I (Ref.) | 1 | 1 | ||||
II | 1.41 | (1.35, 1.43) | <0.0001 | 1.18 | (1.12, 1.23) | <0.0001 |
III | 1.67 | (1.54, 1.80) | <0.0001 | 1.21 | (1.12, 1.31) | <0.0001 |
Surgical margin | ||||||
Negative (Ref.) | 1 | 1 | ||||
Positive | 1.50 | (1.42, 1.61) | <0.0001 | 1.23 | (1.18, 1.33) | <0.0001 |
Lymphovascular invasion | ||||||
No | 1 | 1 | ||||
Yes | 2.16 | (2.04, 2.29) | <0.0001 | 1.59 | (1.38, 1.87) | <0.0001 |
Adjuvant treatments | ||||||
No adjuvant treatments (Ref.) | ||||||
Adjuvant RT | 1.05 | (0.82, 1.44) | 0.3530 | 1.04 | (0.92, 1.45) | 0.6012 |
Adjuvant sequential CT and RT | 1.13 | (0.69, 1.84) | 0.5731 | 1.10 | (0.72, 1.82) | 0.7531 |
Adjuvant CT | 1.10 | (0.67, 1.44) | 0.4310 | 1.07 | (0.79, 1.45) | 0.7405 |
Adjuvant CCRT | 1.15 | (0.62, 1.91) | 0.1320 | 1.09 | (0.79, 1.31) | 0.3302 |
CCI ≥1 (Ref. CCI = 0) | 1.21 | (1.18, 1.29) | <0.0001 | 1.19 | (1.13, 1.26) | <0.0001 |
Cigarette smoking (Ref. no use) | 1.13 | (1.03, 1.34) | <0.0001 | 1.10 | (1.04, 1.22) | <0.0001 |
Alcohol use (Ref. no use) | 1.16 | (1.08, 1.39) | <0.0001 | 1.08 | (1.03, 1.23) | <0.0001 |
Betel nut chewing (Ref. no use) | 1.11 | (1.03, 1.41) | <0.0001 | 1.09 | (1.02, 1.30) | <0.0001 |
Crude HR (95% CI) | p Value | Adjusted HR (95% CI) | p Value | |||
---|---|---|---|---|---|---|
Sarcopenia | ||||||
Nonsarcopenia (Ref.) | 1 | 1 | ||||
Sarcopenia | 1.08 | (1.04, 1.15) | 0.0061 | 1.07 | (1.03, 1.18) | 0.0020 |
Sex | ||||||
Female (Ref.) | 1 | 1 | ||||
Male | 1.51 | (1.37, 1.70) | <0.0001 | 1.46 | (1.30, 1.64) | <0.0001 |
Age | ||||||
<50 years (Ref.) | 1 | 1 | ||||
50–60 years | 0.97 | (0.90, 1.07) | 0.6451 | 0.96 | (0.90, 1.05) | 0.6530 |
≥60 years | 0.88 | (0.82, 1.03) | 0.3510 | 0.92 | (0.80, 1.11) | 0.2035 |
Years of diagnosis | ||||||
2007–2010 (Ref.) | 1 | 1 | ||||
2011–2014 | 0.87 | (0.50, 1.15) | 0.3751 | 0.88 | (0.52, 1.19) | 0.3292 |
2015–2017 | 0.89 | (0.62, 1.10) | 0.2307 | 0.91 | (0.61, 1.09) | 0.2211 |
AJCC pathologic T | ||||||
pT1(Ref.) | 1 | 1 | ||||
pT2 | 1.11 | (0.86, 1.44) | 0.4421 | 1.51 | (1.15, 2.01) | 0.0017 |
pT3 | 1.08 | (0.83, 1.42) | 0.6248 | 1.38 | (1.05, 1.85) | 0.0064 |
pT4A | 1.03 | (0.88, 1.31) | 0.5462 | 1.21 | (1.05, 1.64) | 0.0110 |
pT4B | 1.08 | (0.89, 1.34) | 0.6286 | 1.17 | (1.08, 1.55) | 0.0089 |
AJCC pathologic N | ||||||
pN0 (Ref.) | 1 | 1 | ||||
pN1 | 1.13 | (1.06, 1.23) | 0.0012 | 1.12 | (1.04, 1.30) | 0.0017 |
pN2 | 1.04 | (1.02, 1.11) | 0.0269 | 1.17 | (1.05, 1.25) | 0.0002 |
pN3 | 1.13 | (1.04, 1.29) | 0.0006 | 1.21 | (1.11, 1.88) | 0.0008 |
Differentiation | ||||||
I (Ref.) | 1 | 1 | ||||
II | 1.09 | (1.03, 1.16) | 0.0105 | 1.06 | (1.01, 1.14) | 0.0147 |
III | 1.13 | (0.86, 1.05) | 0.0962 | 1.12 | (1.03, 1.20) | 0.0188 |
Surgical margin | ||||||
Negative (Ref.) | 1 | 1 | ||||
Positive | 1.21 | (1.18, 1.33) | <0.0001 | 1.20 | (1.11, 1.33) | <0.0001 |
Lymphovascular invasion | ||||||
No | ||||||
Yes | 1.08 | (1.04, 1.15) | 0.0022 | 1.30 | (1.07, 1.66) | 0.0011 |
Adjuvant treatments | ||||||
No adjuvant treatments (Ref.) | ||||||
Adjuvant RT | 0.99 | (0.94, 1.06) | 0.7440 | 1.01 | (0.94, 1.05) | 0.7624 |
Adjuvant sequential CT and RT | 0.97 | (0.93, 1.04) | 0.4545 | 1.00 | (0.96, 1.09) | 0.7827 |
Adjuvant CT | 1.03 | (0.95, 1.08) | 0.7632 | 1.04 | (0.96, 1.12) | 0.2424 |
Adjuvant CCRT | 1.11 | (0.98, 1.26) | 0.0922 | 1.09 | (0.96, 1.24) | 0.1145 |
CCI ≥1 (Ref. CCI = 0) | 0.96 | (0.91, 1.06) | 0.3596 | 0.98 | (0.92, 1.05) | 0.8620 |
Cigarette smoking (Ref. no use) | 1.08 | (1.01, 1.22) | 0.0085 | 1.07 | (1.00, 120) | 0.0431 |
Alcohol use (Ref. no use) | 1.11 | (1.03, 1.19) | 0.0020 | 1.06 | (1.01, 1.13) | 0.0338 |
Betel nut chewing (Ref. no use) | 1.31 | (1.12, 1.45) | <0.0001 | 1.19 | (1.10, 1.38) | <0.0001 |
Crude HR (95% CI) | p Value | Adjusted HR (95% CI) | p Value | |||
---|---|---|---|---|---|---|
Sarcopenia | ||||||
Nonsarcopenia (Ref.) | 1 | 1 | ||||
Sarcopenia | 1.08 | (1.02, 1.15) | 0.0342 | 1.07 | (1.03, 1.20) | 0.01482 |
Sex | ||||||
Female (Ref.) | 1 | 1 | ||||
Male | 1.72 | (1.54, 1.91) | <0.0001 | 1.60 | (1.45, 1.80) | <0.0001 |
Age | ||||||
<50 years (Ref.) | 1 | 1 | ||||
50–60 years | 0.93 | (0.88, 1.12) | 0.1793 | 0.98 | (0.93, 1.07) | 0.8381 |
≥60 years | 0.80 | (0.64, 1.09) | 0.5402 | 0.82 | (0.79, 1.07) | 0.4429 |
Years of diagnosis | ||||||
2007–2010 (Ref.) | 1 | 1 | ||||
2011–2014 | 0.98 | (0.92, 1.09) | 0.7552 | 1.03 | (0.96, 1.11) | 0.2075 |
2015–2017 | 1.01 | (0.94, 1.12) | 0.8335 | 1.14 | (0.90, 1.19) | 0.6418 |
AJCC pathologic T | ||||||
pT1 (Ref.) | 1 | 1 | ||||
pT2 | 1.26 | (0.88, 1.80) | 0.1719 | 2.32 | (1.64, 3.40) | <0.0001 |
pT3 | 1.59 | (1.12, 2.28) | 0.0072 | 2.37 | (1.64, 3.34) | <0.0001 |
pT4A | 1.71 | (1.22, 2.67) | 0.0001 | 2.44 | (1.60, 3.35) | <0.0001 |
pT4B | 1.76 | (1.25, 2.49) | 0.0018 | 2.11 | (1.51, 3.33) | <0.0001 |
AJCC pathologic N | ||||||
pN0 (Ref.) | 1 | 1 | ||||
pN1 | 1.47 | (1.32, 1.65) | <0.0001 | 1.26 | (1.14, 1.95) | <0.0001 |
pN2 | 1.80 | (1.64, 1.92) | <0.0001 | 1.41 | (1.23, 1.50) | <0.0001 |
pN3 | 2.29 | (1.53, 3.42) | <0.0001 | 1.51 | (1.22, 1.72) | <0.0001 |
Differentiation | ||||||
I (WD) (Ref.) | 1 | 1 | ||||
II (moderately differentiated) | 1.31 | (1.21, 1.42) | <0.0001 | 1.08 | (1.04, 1.19) | 0.0110 |
III | 1.39 | (1.30, 1.58) | <0.0001 | 1.14 | (1.08, 1.25) | 0.0066 |
Surgical margin | ||||||
Negative (Ref.) | 1 | 1 | ||||
Positive | 1.42 | (1.30, 1.56) | <0.0001 | 1.17 | (1.07, 1.28) | 0.0003 |
Lymphovascular invasion | ||||||
No | ||||||
Yes | 1.65 | (1.54, 1.79) | <0.0001 | 1.31 | (1.10, 1.63) | 0.0073 |
Adjuvant treatments | ||||||
No adjuvant treatments (Ref.) | ||||||
Adjuvant RT | 0.96 | (0.91, 1.02) | 0.3243 | 1.02 | (0.98, 1.13) | 0.0755 |
Adjuvant sequential CT and RT | 0.86 | (0.78, 0.91) | <0.0001 | 0.94 | (0.86, 1.04) | 0.1688 |
Adjuvant CT | 0.83 | (0.79, 0.88) | <0.0001 | 0.97 | (0.92, 1.05) | 0.3443 |
Adjuvant CCRT | 0.89 | (0.81, 0.93) | <0.0001 | 1.02 | (0.94, 1.09) | 0.3468 |
CCI ≥ 1 (Ref. CCI = 0) | 0.88 | (0.77, 1.05) | 0.1312 | 1.06 | (0.92, 1.23) | 0.2503 |
Cigarette smoking (Ref. no use) | 1.04 | (0.93, 1.20) | 0.0923 | 1.06 | (1.01, 123) | 0.0207 |
Alcohol use (Ref. no use) | 1.01 | (0.91, 1.27) | 0.0791 | 1.04 | (1.00, 1.22) | 0.0441 |
Betel nut chewing (Ref. no use) | 1.07 | (0.89, 1.33) | 0.1201 | 1.04 | (1.08, 1.31) | 0.0363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-H.; Chen, W.-M.; Chen, M.-C.; Shia, B.-C.; Wu, S.-Y.; Huang, C.-C. Effect of Pre-Existing Sarcopenia on Oncological Outcomes for Oral Cavity Squamous Cell Carcinoma Undergoing Curative Surgery: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers 2022, 14, 3246. https://doi.org/10.3390/cancers14133246
Tsai Y-H, Chen W-M, Chen M-C, Shia B-C, Wu S-Y, Huang C-C. Effect of Pre-Existing Sarcopenia on Oncological Outcomes for Oral Cavity Squamous Cell Carcinoma Undergoing Curative Surgery: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers. 2022; 14(13):3246. https://doi.org/10.3390/cancers14133246
Chicago/Turabian StyleTsai, Yu-Hsiang, Wan-Ming Chen, Ming-Chih Chen, Ben-Chang Shia, Szu-Yuan Wu, and Chun-Chi Huang. 2022. "Effect of Pre-Existing Sarcopenia on Oncological Outcomes for Oral Cavity Squamous Cell Carcinoma Undergoing Curative Surgery: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study" Cancers 14, no. 13: 3246. https://doi.org/10.3390/cancers14133246
APA StyleTsai, Y. -H., Chen, W. -M., Chen, M. -C., Shia, B. -C., Wu, S. -Y., & Huang, C. -C. (2022). Effect of Pre-Existing Sarcopenia on Oncological Outcomes for Oral Cavity Squamous Cell Carcinoma Undergoing Curative Surgery: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers, 14(13), 3246. https://doi.org/10.3390/cancers14133246