Integrated MRI–Immune–Genomic Features Enclose a Risk Stratification Model in Patients Affected by Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
- Availability of tissue specimens as a result of surgical resection or biopsy;
- Histopathological diagnosis of glioblastoma made by an expert pathologist;
- Molecular and immunophenotypic characterization of pathologic specimens;
- Data derived from MRI pre-surgical images (either on 1.5T or 3T);
- Availability of complete clinical records;
- Set date of last follow-up if the patient(s) was still alive on 30 September 2021.
2.2. Genetic-Molecular Analysis (MGMT, IDH1, p53, EGFR, ATRX)
2.3. Immunohistochemical Analysis of TIME
- -
- TILs were analyzed by the immunohistochemical detection of CD3, CD8 and CD4. Immunoperoxidase was performed by an automated staining system (OptiView DAB IHC Detection Kit—Ventana Medical Systems) using antibodies against CD3 (clone 2GV6), CD8 (clone SP16) and CD4 (clone SP35). We adopted the basic morphometric principle by counting the number of positive cells in the microscopic fields of the defined area. Only small, mostly round shaped, nucleated cells with intense surface immunoperoxidase labelling were considered, while cells with elongated cytoplasm or faint staining were excluded. Thus, the density (n/mm2) of CD3+, CD8+, and CD4+ cells was computed analyzing a tissue area of a minimum of 6.83 mm2 to a maximum of 254.99 mm2 according to the size and quality of samples. The incidence of TILs phenotypes was evaluated according to their localization in direct contact with neoplastic cells (intratumoral, IT) or in perivascular (PV) or intravascular (IV) location. TILs localized within 20 μm linear distance from vascular profiles were defined as PV while IV when lymphocytes were endowed within the vessel wall. The cut off distance of 20 µm was selected according to the conventional view that it represents a minimal distance allowing a bio-humoral cross talk. Vascular profiles were morphologically identified, however, to better define their interaction with TILs, sections were stained automatically (OptiView DAB IHC Detection Kit—Ventana Medical Systems) with anti-CD31 (mouse, Ventana) and -CD34 (mouse, Ventana) antibodies or manually with α-smooth muscle actin (SMA) (mouse, Abcam, 1.5 h at 37 °C) antibodies. In addition, to ascertain TILs localization with respect to vascular profiles, CD4 and α-SMA were simultaneously detected by double immunofluorescence in a subset of samples. To this purpose, following incubation for 1 h at 37 °C with respective primary antibodies, FITC- and TRITC-conjugated secondary antibodies were applied for 1 h at 37 °C and nuclei were visualized following 20 min exposure to 4′,6-Diamidino-2-phenylindole (DAPI; D8417, Merck, NJ, USA). Examples of the immunohistochemical detection of each investigated phenotype and its spatial distribution within the tissue are provided in Supplementary Figure S2.
- -
- TAMs were detected by immunoperoxidase through an antibody directed against CD163 (clone MRQ-26). Due to the irregular and wavy profile of macrophages hampering the precise definition of individual cells, we measured the fractional area occupied by CD163 immunolabeling using a software dedicated to image analysis (Image Pro Plus 4.0, Media Cybernetics, Rockville, MD 20852, USA).
- -
- PD-L1 was assessed by a specific antibody (clone SP263) and quantified using an algorithm to obtain the tumor PD-L1 score (H-score; 0–300) on the basis of both extent and intensity of PD-L1 staining [34]. PD-L1 expression was also measured in stromal compartments by a semi-quantitative approach using a grading score from 0 to up to 3+ according to staining intensity.
- -
- Controls for each investigated antigen were represented by sections undergoing the same staining protocol but omitting the primary antibody or using an indifferent antibody.
2.4. MRI-Based Texture Analysis
2.5. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Correlations between Genetic, MRI and TIME Characteristics
3.3. Impact of Genetic, MRI and TIME Features on Survival Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.; Barnholtz-Sloan, J.S. Epidemiology of Intracranial Gliomas. Prog. Neurol. Surg. 2018, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Weller, M.; Lee, E.Q.; Alexander, B.M.; Barnholtz-Sloan, J.S.; Barthel, F.P.; Batchelor, T.T.; Bindra, R.S.; Chang, S.M.; Chiocca, E.A.; et al. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020, 22, 1073–1113. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- IARC Publications Website—Central Nervous System Tumours. Available online: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Central-Nervous-System-Tumours-2021 (accessed on 15 May 2022).
- Han, S.; Liu, Y.; Cai, S.J.; Qian, M.; Ding, J.; Larion, M.; Gilbert, M.R.; Yang, C. IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets. Br. J. Cancer 2020, 122, 1580–1589. [Google Scholar] [CrossRef]
- Christians, A.; Adel-Horowski, A.; Banan, R.; Lehmann, U.; Bartels, S.; Behling, F.; Barrantes-Freer, A.; Stadelmann, C.; Rohde, V.; Stockhammer, F.; et al. The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas. Acta Neuropathol. Commun. 2019, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Smrdel, U.; Popovic, M.; Zwitter, M.; Bostjancic, E.; Zupan, A.; Kovac, V.; Glavac, D.; Bokal, D.; Jerebic, J. Long-term survival in glioblastoma: Methyl guanine methyl transferase (MGMT) promoter methylation as independent favourable prognostic factor. Radiol. Oncol. 2016, 50, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Li, J.; Liang, R.; Song, C.; Xiang, Y.; Liu, Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. OncoTargets Ther. 2018, 11, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dube, C.; Gibert, M.; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; et al. The p53 Pathway in Glioblastoma. Cancers 2018, 10, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, X.; Yan, X.; Sun, M.; Fan, Y.; Huang, Y. Significance of TERT and ATRX mutations in glioma. Oncol. Lett. 2019, 17, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Dapash, M.; Castro, B.; Hou, D.; Lee-Chang, C. Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers 2021, 13, 4548–4597. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Deng, Q.; Ma, L.; Li, Q.; Chen, Y.; Liao, Y.; Zhou, F.; Zhang, C.; Shao, L.; Feng, J.; et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020, 30, 229–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Quail, D.F.; Joyce, J.A. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 2017, 31, 326–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, M.; Prins, R.M.; Heimberger, A.B. The immune landscape of common CNS malignancies: Implications for immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 729–744. [Google Scholar] [CrossRef]
- Antunes, A.R.P.; Scheyltjens, I.; Duerinck, J.; Neyns, B.; Movahedi, K.; Van Ginderachter, J.A. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife 2020, 9, 2345–2390, e52176. [Google Scholar] [CrossRef]
- Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 2017, 32, 253–267.e5. [Google Scholar] [CrossRef] [Green Version]
- Pinton, L.; Masetto, E.; Vettore, M.; Solito, S.; Magri, S.; D’Andolfi, M.; Del Bianco, P.; Lollo, G.; Benoit, J.-P.; Okada, H.; et al. The immune suppressive microenvironment of human gliomas depends on the accumulation of bone marrow-derived macrophages in the center of the lesion. J. Immunother. Cancer 2019, 7, 58–114. [Google Scholar] [CrossRef]
- Mu, L.; Yang, C.; Gao, Q.; Long, Y.; Ge, H.; DeLeon, G.; Jin, L.; Chang, Y.; Sayour, E.J.; Ji, J.H.; et al. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression. Front. Immunol. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, R.; Ohara, K.; Sasaki, H.; Morimoto, Y.; Kosugi, K.; Yoshida, K.; Toda, M. Difference in Immunosuppressive Cells Between Peritumoral Area and Tumor Core in Glioblastoma. World Neurosurg. 2018, 120, e601–e610. [Google Scholar] [CrossRef] [PubMed]
- Lundy, P.; Domino, J.; Ryken, T.; Fouke, S.; McCracken, D.J.; Ormond, D.R.; Olson, J.J. The role of imaging for the management of newly diagnosed glioblastoma in adults: A systematic review and evidence-based clinical practice guideline update. J. Neuro-Oncology 2020, 150, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Akbari, H.; Rozycki, M.; Abdullah, K.G.; Nasrallah, M.P.; Binder, Z.A.; Davuluri, R.V.; Lustig, R.A.; Dahmane, N.; Bilello, M.; et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Suh, C.H.; Kim, H.S.; Jung, S.C.; Choi, C.G.; Kim, S.J. Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: A systematic review and meta-analysis. Eur. Radiol. 2018, 28, 2628–2638. [Google Scholar] [CrossRef]
- Abd-Elghany, A.A.; Naji, A.A.; Alonazi, B.; Aldosary, H.; Alsufayan, M.A.; Alnasser, M.; Mohammad, E.A.; Mahmoud, M.Z. Radiological characteristics of glioblastoma multiforme using CT and MRI examination. J. Radiat. Res. Appl. Sci. 2019, 12, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Chow, D.; Chang, P.; Weinberg, B.D.; Bota, D.A.; Grinband, J.; Filippi, C.G. Imaging Genetic Heterogeneity in Glioblastoma and Other Glial Tumors: Review of Current Methods and Future Directions. Am. J. Roentgenol. 2018, 210, 30–38. [Google Scholar] [CrossRef]
- Bakas, S.; Shukla, G.; Akbari, H.; Erus, G.; Sotiras, A.; Rathore, S.; Sako, C.; Ha, S.M.; Rozycki, M.; Shinohara, R.T.; et al. Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): Advanced radiomic features may compensate for lack of advanced MRI modalities. J. Med. Imaging 2020, 7, 031505. [Google Scholar] [CrossRef]
- Darbar, A.; Waqas, M.; Enam, S.F.; Mahmood, S.D. Use of Preoperative Apparent Diffusion Coefficients to Predict Brain Tumor Grade. Cureus 2018, 10, 1120–1176, e2284. [Google Scholar] [CrossRef] [Green Version]
- Durand-Muñoz, C.; Flores-Alvarez, E.; Moreno-Jimenez, S.; Roldan-Valadez, E. Pre-operative apparent diffusion coefficient values and tumour region volumes as prognostic biomarkers in glioblastoma: Correlation and progression-free survival analyses. Insights Imaging 2019, 10, 36–87. [Google Scholar] [CrossRef] [Green Version]
- Karimian-Jazi, K.; Münch, P.; Alexander, A.; Fischer, M.; Pfleiderer, K.; Piechutta, M.; Karreman, M.A.; Solecki, G.M.; Berghoff, A.S.; Friedrich, M.; et al. Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM). Theranostics 2020, 10, 1873–1883. [Google Scholar] [CrossRef]
- Ly, K.I.; Vakulenko-Lagun, B.; Emblem, K.E.; Ou, Y.; Da, X.; Betensky, R.A.; Kalpathy-Cramer, J.; Duda, D.G.; Jain, R.K.; Chi, A.S.; et al. Probing tumor microenvironment in patients with newly diagnosed glioblastoma during chemoradiation and adjuvant temozolomide with functional MRI. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Baborie, A.; Alam, F.; Joyce, K.; Moxham, M.; Sibson, R.; Crooks, D.; Husband, D.; Shenoy, A.; Brodbelt, A.; et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br. J. Cancer 2009, 101, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, T.; Teramoto, K.; Ishida, M.; Hanaoka, J.; Daigo, Y. Scoring of PD-L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open 2016, 1, e000083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, A.D.; Pattany, P.M.; Fayad, L.M.; Tresley, J.; Subhawong, T.K. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors. Clin. Imaging 2016, 40, 386–391. [Google Scholar] [CrossRef]
- Schemper, M.; Smith, T.L. A note on quantifying follow-up in studies of failure time. Control. Clin. Trials 1996, 17, 343–346. [Google Scholar] [CrossRef]
- Franco, R.; Fernández-Suárez, D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 2015, 131, 65–86. [Google Scholar] [CrossRef]
- Lisi, L.; Ciotti, G.M.P.; Braun, D.; Kalinin, S.; Currò, D.; Dello Russo, C.; Coli, A.; Mangiola, A.; Anile, C.; Feinstein, D.L.; et al. Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 2017, 645, 106–112. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, C.; Maimela, N.R.; Yang, L.; Zhang, Z.; Ping, Y.; Huang, L.; Zhang, Y. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma. OncoImmunology 2019, 8, e1601478. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Ho, H.-L.; Lin, S.-C.; Ho, T.D.-H.; Ho, D.M.-T. The MGMT promoter single-nucleotide polymorphism rs1625649 had prognostic impact on patients with MGMT methylated glioblastoma. PLoS ONE 2017, 12, e0186430. [Google Scholar] [CrossRef] [Green Version]
- Binabaj, M.M.; Bahrami, A.; ShahidSales, S.; Joodi, M.; Joudi Mashhad, M.; Hassanian, S.M.; Anvari, K.; Avan, A. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell. Physiol. 2018, 233, 378–386. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, S.; Song, C.; Zha, Y.; Li, L. The prognostic value of MGMT promoter status by pyrosequencing assay for glioblastoma patients’ survival: A meta-analysis. World J. Surg. Oncol. 2016, 14, 261–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Z.; Yang, X.; She, D.; Lin, Y.; Zhang, Y.; Cao, D. Noninvasive Assessment of IDH Mutational Status in World Health Organization Grade II and III Astrocytomas Using DWI and DSC-PWI Combined with Conventional MR Imaging. AJNR. Am. J. Neuroradiol. 2017, 38, 1134–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leu, K.; Ott, G.A.; Lai, A.; Nghiemphu, P.L.; Pope, W.B.; Yong, W.H.; Liau, L.M.; Cloughesy, T.F.; Ellingson, B.M. Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II–III diffuse gliomas. J. Neuro-Oncology 2017, 134, 177–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thust, S.C.; Hassanein, S.; Bisdas, S.; Rees, J.H.; Hyare, H.; Maynard, J.A.; Brandner, S.; Tur, C.; Jäger, H.R.; Yousry, T.A.; et al. Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: Volumetric segmentation versus two-dimensional region of interest analysis. Eur. Radiol. 2018, 28, 3779–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard, J.; Okuchi, S.; Wastling, S.; Al Busaidi, A.; Almossawi, O.; Mbatha, W.; Brandner, S.; Jaunmuktane, Z.; Koc, A.M.; Mancini, L.; et al. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient. Radiology 2020, 296, 111–121. [Google Scholar] [CrossRef]
- John, F.; Bosnyák, E.; Robinette, N.L.; Amit-Yousif, A.J.; Barger, G.R.; Shah, K.D.; Michelhaugh, S.K.; Klinger, N.V.; Mittal, S.; Juhász, C. Multimodal imaging-defined subregions in newly diagnosed glioblastoma: Impact on overall survival. Neuro-Oncology 2019, 21, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elson, A.; Bovi, J.; Siker, M.; Schultz, C.; Paulson, E. Evaluation of absolute and normalized apparent diffusion coefficient (ADC) values within the post-operative T2/FLAIR volume as adverse prognostic indicators in glioblastoma. J. Neurooncol. 2015, 122, 549–558. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Kiesel, B.; Widhalm, G.; Wilhelm, D.; Rajky, O.; Kurscheid, S.; Kresl, P.; Wöhrer, A.; Marosi, C.; Hegi, M.E.; et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-Oncology 2017, 19, 1460–1468. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Zhang, C.; Li, Q.; Dong, J.; Liu, Y.; Huang, Y.; Jiang, T.; Wu, A. Tumour-infiltrating CD4+ and CD8+ lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer 2014, 110, 2560–2568. [Google Scholar] [CrossRef]
- Orrego, E.; Castaneda, C.A.; Castillo, M.; Bernabe, L.A.; Casavilca, S.; Chakravarti, A.; Meng, W.; Garcia-Corrochano, P.; Villa-Robles, M.R.; Zevallos, R.; et al. Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol. 2018, 7, CNS21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, J.; Xuan, S.; Liu, Z.; Wang, Y.; Zhao, P. Molecular and Clinicopathological Characterization of a Prognostic Immune Gene Signature Associated With MGMT Methylation in Glioblastoma. Front. Cell Dev. Biol. 2021, 9, 600506. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Pan, Z.; Li, B.; Zhao, S.; Zhang, S.; Qi, Y.; Qiu, J.; Gao, Z.; Fan, Y.; Guo, Q.; et al. Comprehensive Analysis of the Tumor Immune Microenvironment Landscape in Glioblastoma Reveals Tumor Heterogeneity and Implications for Prognosis and Immunotherapy. Front. Immunol. 2022, 13, 112–167, 820673. [Google Scholar] [CrossRef] [PubMed]
- Khasraw, M.; Reardon, D.A.; Weller, M.; Sampson, J.H. PD-1 Inhibitors: Do they have a Future in the Treatment of Glioblastoma? Clin. Cancer Res. 2020, 26, 5287–5296. [Google Scholar] [CrossRef]
- Ahlén Bergman, E.; Hartana, C.A.; Johansson, M.; Linton, L.B.; Berglund, S.; Hyllienmark, M.; Lundgren, C.; Holmström, B.; Palmqvist, K.; Hansson, J.; et al. Increased CD4+ T cell lineage commitment determined by CpG methylation correlates with better prognosis in urinary bladder cancer patients. Clin. Epigenetics 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Park, S.-M.; Ha, H.C.; Lee, A.R.; Won, H.; Cha, H.; Cho, S.; Cho, J.M. HDAC Inhibitor, CG-745, Enhances the Anti-Cancer Effect of Anti-PD-1 Immune Checkpoint Inhibitor by Modulation of the Immune Microenvironment. J. Cancer 2020, 11, 4059–4072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bam, M.; Chintala, S.; Fetcko, K.; Williamsen, B.C.; Siraj, S.; Liu, S.; Wan, J.; Xuei, X.; Liu, Y.; Leibold, A.T.; et al. Genome wide DNA methylation landscape reveals glioblastoma’s influence on epigenetic changes in tumor infiltrating CD4+ T cells. Oncotarget 2021, 12, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Klemm, F.; Maas, R.R.; Bowman, R.L.; Kornete, M.; Soukup, K.; Nassiri, S.; Brouland, J.-P.; Iacobuzio-Donahue, C.A.; Brennan, C.; Tabar, V.; et al. Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020, 181, 1643–1660.e17. [Google Scholar] [CrossRef]
- Friebel, E.; Kapolou, K.; Unger, S.; Núñez, N.G.; Utz, S.; Rushing, E.J.; Regli, L.; Weller, M.; Greter, M.; Tugues, S.; et al. Single-Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction of Tissue-Invading Leukocytes. Cell 2020, 181, 1626–1642.e20. [Google Scholar] [CrossRef] [PubMed]
- Gabrusiewicz, K.; Rodriguez, B.; Wei, J.; Hashimoto, Y.; Healy, L.M.; Maiti, S.N.; Thomas, G.; Zhou, S.; Wang, Q.; Elakkad, A.; et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 2016, 1, 15–63, e85841. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, X.; Yu, J.; Yuan, S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front. Oncol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Holash, J.; Wiegand, S.J.; Yancopoulos, G.D. New model of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999, 18, 5356–5362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Chadalavada, K.; Wilshire, J.; Kowalik, U.; Hovinga, K.E.; Geber, A.; Fligelman, B.; Leversha, M.; Brennan, C.; Tabar, V. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010, 468, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Kim, B.Y.S.; Chan, C.K.; Hahn, S.M.; Weissman, I.L.; Jiang, W. Improving immune–vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Wong, A.H.-K.; Jain, R.K. Vascular Normalization as a Therapeutic Strategy for Malignant and Nonmalignant Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006486. [Google Scholar] [CrossRef]
- Hamzah, J.; Jugold, M.; Kiessling, F.; Rigby, P.J.; Manzur, M.; Marti, H.H.; Rabie, T.; Kaden, S.; Gröne, H.-J.; Hämmerling, G.J.; et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 2008, 453, 410–414. [Google Scholar] [CrossRef]
- Tian, L.; Goldstein, A.; Wang, H.; Lo, H.C.; Kim, I.S.; Welte, T.; Sheng, K.; Dobrolecki, L.E.; Zhang, X.; Putluri, N.; et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 2017, 544, 250–254. [Google Scholar] [CrossRef]
- White, K.; Connor, K.; Clerkin, J.; Murphy, B.M.; Salvucci, M.; O’Farrell, A.C.; Rehm, M.; O’Brien, D.; Prehn, J.H.M.; Niclou, S.P.; et al. New hints towards a precision medicine strategy for IDH wild-type glioblastoma. Ann. Oncol. 2020, 31, 1679–1692. [Google Scholar] [CrossRef]
- Yuan, Y.; Qi, P.; Xiang, W.; Yanhui, L.; Yu, L.; Qing, M. Multi-Omics Analysis Reveals Novel Subtypes and Driver Genes in Glioblastoma. Front. Genet. 2020, 11, 1449. [Google Scholar] [CrossRef]
Total (n = 57) | ||
---|---|---|
Age, years (Median, range) | 63 (41–82) | |
Overall Survival (OS, median, range) | 15 (1–87) | |
n (%) | ||
Sex | Male | 33 (58) |
Female | 24 (42) | |
ECOG PS | 0–1 | 53 (93) |
2 | 4 (7) | |
Site of primary lesions | Frontal lobe | 26 (45) |
Temporal lobe | 50 (35) | |
Parietal | 5 (9) | |
Occipital | 4 (7) | |
Cerebellar | 1 (2) | |
Deep | 1 (2) | |
Number of lesions at diagnosis | Single | 45 (79) |
Multiple | 12 (21) | |
Genetic-molecular status | ||
IDH1-2 * | WT | 53 (88) |
Mutant | 3 (5) | |
EGFR | Not overexpressed | 32 (56) |
Overexpressed | 25 (44) | |
p53 | WT | 22 (44) |
Mutant | 35 (56) | |
MGMT | Not methylated | 31 (54) |
Methylated | 26 (46) | |
First-line treatment | STUPP protocol | 49 (86) |
Other protocols (RT alone; RT → CT) | 8 (14) | |
Second-line treatment | Yes | 12 (21) |
No | 45 (79) |
MRI Systems | n (%) | |
---|---|---|
- 1.5 T | 21 (37) | |
- 3 T | 36 (63) | |
Median | Range | |
Max area of tumor enhancement, mm2 | 1183.95 | 229.7–3030.20 |
Mean ADC, mm2/s | 1.2 × 10−3 | 0.65–3.43 × 10−3 |
SD ADC, mm2/s | 2.95 × 10−4 | 0.32–9.15 × 10−4 |
SD FLAIR, n | 111.80 | 12.20–738.10 |
Median | Range | |
---|---|---|
CD3+ TILs, n/mm2 | ||
Total | 37.45 | 9.46–360.49 |
IT | 18.04 | 1.28–326.03 |
PV | 4.88 | 0.29–118.65 |
IV | 1.26 | 0–15.91 |
CD4+ TILs,n/mm2 | ||
Total | 17.35 | 1.63–481.16 |
IT | 10.05 | 0.53–301.58 |
PV | 2.88 | 0–318.02 |
IV | 0.30 | 0–69.6 |
CD8+ TILs, n/mm2 | ||
Total | 16.38 | 3.45–265.91 |
IT | 8.02 | 0.88–230.33 |
PV | 2.64 | 0–62.11 |
IV | 0.53 | 0–11.05 |
CD163 area, % | 1.86 | 0.03–6.15 |
PD-L1 tumor score | 12 | 0–270 |
OS, Univariate Analysis a | Overall | |||
---|---|---|---|---|
HR | CI (95%) | χ2 | p Value | |
Age | 1.033 | 1.002–1.065 | 4.435 | 0.065 |
Sex | 1.168 | 0.658–2.073 | 0.282 | 0.595 |
Location of primary lesions | 1.156 | 0.923–1.447 | 1.600 | 0.206 |
Number of lesions at diagnosis | 1.364 | 0.710–2.621 | 0.868 | 0.351 |
IDH1-2 | 6.179 | 0.841–45.409 | 3.203 | 0.074 |
EGFR | 1.230 | 0.698–2.167 | 0.513 | 0.474 |
p53 | 0.757 | 0.422–1.359 | 0.871 | 0.351 |
MGMT | 2.363 | 1.249–4.470 | 6.995 | 0.008 |
CD3+ TILs, n/mm2 | ||||
Total | 0.995 | 0.988–1.002 | 2.003 | 0.157 |
IT | 0.998 | 0.992–1.004 | 0.430 | 0.512 |
PV | 0.968 | 0.935–1.001 | 3.645 | 0.056 |
IV | 0.895 | 0.804–0.996 | 4.131 | 0.042 |
CD4+ TILs, n/mm2 | ||||
Total | 0.994 | 0.988–1.000 | 3.582 | 0.058 |
IT | 0.994 | 0.986–1.003 | 1.658 | 0.198 |
PV | 0.806 | 0.746–1.007 | 2.317 | 0.048 |
IV | 0.810 | 0.759–1.015 | 2.848 | 0.042 |
CD8+ TILs, n/mm2 | ||||
Total | 0.996 | 0.988–1.003 | 1.233 | 0.267 |
IT | 0.998 | 0.991–1.005 | 0.354 | 0.552 |
PV | 0.949 | 0.899–1.002 | 3.598 | 0.078 |
IV | 0.958 | 0.895–0.977 | 4.838 | 0.128 |
CD163 area, % | 0.966 | 0.761–1.228 | 0.078 | 0.780 |
PD-L1 tumor score | 0.997 | 0.992–1.002 | 1.297 | 0.255 |
Max Area of Tumor Enhancement, mm2 | 1 | 0.999–1.000 | 1.283 | 0.257 |
Mean ADC, mm2/s | 0.688 | 0.598–1.000 | 8.741 | 0.003 |
SD ADC, mm2/s | 0.998 | 0.996–0.999 | 9.131 | 0.113 |
SD FLAIR | 0.999 | 0.996–1.001 | 1.294 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzaschi, G.; Olivari, A.; Pavarani, A.; Lagrasta, C.A.M.; Frati, C.; Madeddu, D.; Lorusso, B.; Dallasta, S.; Tommasi, C.; Musolino, A.; et al. Integrated MRI–Immune–Genomic Features Enclose a Risk Stratification Model in Patients Affected by Glioblastoma. Cancers 2022, 14, 3249. https://doi.org/10.3390/cancers14133249
Mazzaschi G, Olivari A, Pavarani A, Lagrasta CAM, Frati C, Madeddu D, Lorusso B, Dallasta S, Tommasi C, Musolino A, et al. Integrated MRI–Immune–Genomic Features Enclose a Risk Stratification Model in Patients Affected by Glioblastoma. Cancers. 2022; 14(13):3249. https://doi.org/10.3390/cancers14133249
Chicago/Turabian StyleMazzaschi, Giulia, Alessandro Olivari, Antonio Pavarani, Costanza Anna Maria Lagrasta, Caterina Frati, Denise Madeddu, Bruno Lorusso, Silvia Dallasta, Chiara Tommasi, Antonino Musolino, and et al. 2022. "Integrated MRI–Immune–Genomic Features Enclose a Risk Stratification Model in Patients Affected by Glioblastoma" Cancers 14, no. 13: 3249. https://doi.org/10.3390/cancers14133249
APA StyleMazzaschi, G., Olivari, A., Pavarani, A., Lagrasta, C. A. M., Frati, C., Madeddu, D., Lorusso, B., Dallasta, S., Tommasi, C., Musolino, A., Tiseo, M., Michiara, M., Quaini, F., & Crafa, P. (2022). Integrated MRI–Immune–Genomic Features Enclose a Risk Stratification Model in Patients Affected by Glioblastoma. Cancers, 14(13), 3249. https://doi.org/10.3390/cancers14133249