Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ninety-Two Proteins Determined using the Olink Immuno-Oncology Assay
2.3. Statistical Analyses
3. Results
3.1. Pre-Treatment Plasma-Protein Levels in PDAC Patients in Relation to Survival
3.2. Prognostic Protein Panels for Very Short vs. Very Long Survival (<90 Days vs. >2 Years)
3.3. Subgroup Analyses
3.4. Early Changes in Circulating-Protein Levels after Start of Palliative Chemotherapy and Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Froeling, F.; Casolino, R.; Pea, A.; Biankin, A.; Chang, D.; Precision-Panc, O.B.O. Molecular Subtyping and Precision Medicine for Pancreatic Cancer. J. Clin. Med. 2021, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.; Schwarz, L.; Borbath, I.; Henry, A.; Van Laethem, J.-L.; Malka, D.; Ducreux, M.; Conroy, T. An update on treatment options for pancreatic adenocarcinoma. Ther. Adv. Med Oncol. 2019, 11, 1758835919875568. [Google Scholar] [CrossRef] [Green Version]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Burris, H.A., 3rd; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 1997, 15, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, L.S.; Fristrup, C.W.; Jensen, B.V.; Pfeiffer, P.; Weber, B.; Yilmaz, M.K.; Poulsen, L.; Ladekarl, M.; Østerlind, K.; Larsen, J.S.; et al. Patterns of Palliative Chemotherapy and Survival in Patients with Pancreatic Cancer Focusing on Age: A Nationwide Real-World Danish Registry Study. Pancreas 2021, 50, 685–695. [Google Scholar] [CrossRef]
- Zambirinis, C.P.; Pushalkar, S.; Saxena, D.; Miller, G. Pancreatic Cancer, Inflammation, and Microbiome. Cancer J. 2014, 20, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic Adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019, 156, 2056–2072. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.J.; Collisson, E.A. Advances in the Genetics and Biology of Pancreatic Cancer. Cancer J. 2017, 23, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ren, D.; Jin, X.; Wu, H. The prognostic value of modified Glasgow Prognostic Score in pancreatic cancer: A meta-analysis. Cancer Cell Int. 2020, 20, 462. [Google Scholar] [CrossRef]
- Markus, M.; Abendroth, A.; Noureddine, R.; Paul, A.; Breitenbuecher, S.; Virchow, I.; Schmid, K.W.; Markus, P.; Schumacher, B.; Wiesweg, M.; et al. Combined systemic inflammation score (SIS) correlates with prognosis in patients with advanced pancreatic cancer receiving palliative chemotherapy. J. Cancer Res. Clin. Oncol. 2021, 147, 579–591. [Google Scholar] [CrossRef]
- Lebenthal, J.M.; Zheng, J.; Glare, P.A.; O’Reilly, E.M.; Yang, A.C.; Epstein, A.S. Prognostic value of the Memorial Sloan Kettering Prognostic Score in metastatic pancreatic adenocarcinoma. Cancer 2021, 127, 1568–1575. [Google Scholar] [CrossRef]
- Diaz, C.L.; Cinar, P.; Hwang, J.; Ko, A.H.; Tempero, M.A. CA 19-9 Response: A Surrogate to Predict Survival in Patients with Metastatic Pancreatic Adenocarcinoma. Am. J. Clin. Oncol. 2019, 42, 898–902. [Google Scholar] [CrossRef]
- Poruk, K.E.; Gay, D.Z.; Brown, K.; Mulvihill, J.D.; Boucher, K.M.; Scaife, C.L.; Firpo, M.A.; Mulvihill, S.J. The Clinical Utility of CA 19-9 in Pancreatic Adenocarcinoma: Diagnostic and Prognostic Updates. Curr. Mol. Med. 2013, 13, 340–351. [Google Scholar] [CrossRef]
- Azizian, A.; Rühlmann, F.; Krause, T.; Bernhardt, M.; Jo, P.; König, A.; Kleiß, M.; Leha, A.; Ghadimi, M.; Gaedcke, J. CA19-9 for detecting recurrence of pancreatic cancer. Sci. Rep. 2020, 10, 1332. [Google Scholar] [CrossRef] [Green Version]
- Enroth, S.; Berggrund, M.; Lycke, M.; Broberg, J.; Lundberg, M.; Assarsson, E.; Olovsson, M.; Stålberg, K.; Sundfeldt, K.; Gyllensten, U. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun. Biol. 2019, 2, 221. [Google Scholar] [CrossRef] [Green Version]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Dickens, E.R.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindgaard, S.C.; Sztupinszki, Z.; Maag, E.; Chen, I.M.; Johansen, A.Z.; Jensen, B.V.; Bojesen, S.E.; Nielsen, D.L.; Hansen, C.P.; Hasselby, J.P.; et al. Circulating Protein Biomarkers for Use in Pancreatic Ductal Adenocarcinoma Identification. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 2592–2603. [Google Scholar] [CrossRef]
- Yu, J.; Ploner, A.; Kordes, M.; Löhr, M.; Nilsson, M.; de Maturana, M.E.L.; Estudillo, L.; Renz, H.; Carrato, A.; Molero, X.; et al. Plasma protein biomarkers for early detection of pancreatic ductal adenocarcinoma. Int. J. Cancer 2021, 148, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; McShane, L.M.; Sauerbrei, W.; Taube, S.E. Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Med. 2012, 10, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. J. Clin. Epidemiol. 2015, 68, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Wik, L.; Nordberg, N.; Broberg, J.; Björkesten, J.; Assarsson, E.; Henriksson, S.; Grundberg, I.; Pettersson, E.; Westerberg, C.; Liljeroth, E.; et al. Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol. Cell. Proteom. 2021, 20, 100168. [Google Scholar] [CrossRef]
- Van Duijneveldt, G.; Griffin, M.; Putoczki, T.L. Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin. Sci. 2020, 134, 2091–2115. [Google Scholar] [CrossRef]
- Rupert, J.E.; Narasimhan, A.; Jengelley, D.H.; Jiang, Y.; Liu, J.; Au, E.; Silverman, L.M.; Sandusky, G.; Bonetto, A.; Cao, S.; et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 2021, 218, e20190450. [Google Scholar] [CrossRef]
- Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018, 9, 29820–29841. [Google Scholar] [CrossRef] [Green Version]
- Quatrini, L.; Mariotti, F.; Munari, E.; Tumino, N.; Vacca, P.; Moretta, L. The Immune Checkpoint PD-1 in Natural Killer Cells: Expression, Function and Targeting in Tumour Immunotherapy. Cancers 2020, 12, 3285. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Zhao, Y.; Yue, D.; Chen, C.; Li, C.; Zhang, Z.; Wang, C. Tumor-associated macrophages (TAMs)-derived osteopontin OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC). Thorac. Cancer 2021, 12, 2698–2709. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, N.; Wang, Q.; Xi, Y.; Tian, X.; Wu, H.; Xu, Y. PD-L1 Protein Expression and Gene Amplification Correlate with the Clinicopathological Characteristics and Prognosis of Lung Squamous Cell Carcinoma. Cancer Manag. Res. 2021, 13, 6365–6375. [Google Scholar] [CrossRef] [PubMed]
- Lang-Schwarz, C.; Melcher, B.; Hartmann, A.; Bertz, S.; Dregelies, T.; Lang-Schwarz, K.; Vieth, M.; Sterlacci, W. Programmed death ligand 1 (PD-L1) in colon cancer and its interaction with budding and tumor-infiltrating lymphocytes (TILs) as tumor-host antagonists. Int. J. Color. Dis. 2021, 36, 2497–2510. [Google Scholar] [CrossRef]
- Badia-Villanueva, M.; Defaus, S.; Foj, R.; Andreu, D.; Oliva, B.; Sierra, A.; Fernandez-Fuentes, N. Evaluation of Computationally Designed Peptides Against TWEAK, a Cytokine of the Tumour Necrosis Factor Ligand Family. Int. J. Mol. Sci. 2021, 22, 1066. [Google Scholar] [CrossRef]
- Yoriki, R.; Akashi, S.; Sho, M.; Nomi, T.; Yamato, I.; Hotta, K.; Takayama, T.; Matsumoto, S.; Wakatsuki, K.; Migita, K.; et al. Therapeutic potential of the TWEAK/Fn14 pathway in intractable gastrointestinal cancer. Exp. Ther. Med. 2010, 2, 103–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhu, X.-L.; Wang, Z.-Z.; Bai, H.; Zhang, J.-J.; Hao, C.-Y.; Duan, H.-B. A Novel Immune-Related Prognostic Biomarker and Target Associated with Malignant Progression of Glioma. Front. Oncol. 2021, 11, 643159. [Google Scholar] [CrossRef]
- Kwon, O.-H.; Park, S.-J.; Kang, T.-W.; Kim, M.; Kim, J.-H.; Noh, S.-M.; Song, K.-S.; Yoo, H.-S.; Wang, Y.; Pocalyko, D.; et al. Elevated fibroblast growth factor-inducible 14 expression promotes gastric cancer growth via nuclear factor-κB and is associated with poor patient outcome. Cancer Lett. 2012, 314, 73–81. [Google Scholar] [CrossRef]
- Coelho, A.L.; Gomes, M.P.; Catarino, R.J.; Rolfo, C.; Medeiros, R.; Araújo, A.M. CSF-1 and Ang-2 serum levels—prognostic and diagnostic partners in non-small cell lung cancer. ESMO Open 2018, 3, e000349. [Google Scholar] [CrossRef] [Green Version]
- Richardsen, E.; Uglehus, R.D.; Johnsen, S.H.; Busund, L.-T. Macrophage-colony stimulating factor (CSF1) predicts breast cancer progression and mortality. Anticancer Res. 2015, 35, 865–874. [Google Scholar]
- Sträter, J.; Hinz, U.; Walczak, H.; Mechtersheimer, G.; Koretz, K.; Herfarth, C.; Möller, P.; Lehnert, T. Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8, 3734–3740. [Google Scholar]
- Peng, H.; Chen, R.; Brentnall, T.A.; Eng, J.K.; Picozzi, V.J.; Pan, S. Predictive proteomic signatures for response of pancreatic cancer patients receiving chemotherapy. Clin. Proteom. 2019, 16, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartsonaki, C.; Pang, Y.; Millwood, I.; Yang, L.; Guo, Y.; Walters, R.; Lv, J.; Hill, M.; Yu, C.; Chen, Y.; et al. Circulating proteins and risk of pancreatic cancer: A case-subcohort study among Chinese adults. Int. J. Epidemiol. 2022, 51, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, M.-C.; Hussung, S.; Braun, L.M.; Klar, R.F.U.; Biesel, E.A.; Fichtner-Feigl, S.; Fritsch, R.; Wittel, U.A.; Ruess, D.A. Plasma biomarkers for prediction of early tumor recurrence after resection of pancreatic ductal adenocarcinoma. Sci. Rep. 2021, 11, 7749. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. In Series. Available online: http://www.r-project.org/index.html (accessed on 12 April 2021).
- Zhu, Y.; Knolhoff, B.L.; Meyer, M.A.; Nywening, T.M.; West, B.L.; Luo, J.; Wang-Gillam, A.; Goedegebuure, S.P.; Linehan, D.C.; DeNardo, D.G. CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-cell Checkpoint Immunotherapy in Pancreatic Cancer Models. Cancer Res. 2014, 74, 5057–5069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Qian, Y.; Ye, Z.; Chen, H.; Xie, H.; Zhou, L.; Shen, Y.; Zheng, S. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med. 2017, 6, 463–470. [Google Scholar] [CrossRef]
- Stanley, E.R.; Berg, K.L.; Einstein, D.B.; Lee, P.S.; Pixley, F.J.; Wang, Y.; Yeung, Y.-G. Biology and action of colony-stimulating factor-1. Mol. Reprod. Dev. 1997, 46, 4–10. [Google Scholar] [CrossRef]
- Rubio, A.J.; Porter, T.; Zhong, X. Duality of B Cell-CXCL13 Axis in Tumor Immunology. Front. Immunol. 2020, 11, 521110. [Google Scholar] [CrossRef]
- Kazanietz, M.G.; Durando, M.; Cooke, M. CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond. Front. Endocrinol. 2019, 10, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 11553–11572. [Google Scholar] [CrossRef] [PubMed]
- Mroczko, B.; Groblewska, M.; Gryko, M.; Kędra, B.; Szmitkowski, M. Diagnostic usefulness of serum interleukin 6 (IL-6) and C-reactive protein (CRP) in the differentiation between pancreatic cancer and chronic pancreatitis. J. Clin. Lab. Anal. 2010, 24, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Qi, Q.; Wang, P.; Chen, H.; Chen, Z.; Meng, Z.; Liu, L. Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer. J. Int. Med Res. 2018, 46, 5228–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudbrandsdottir, G.; Aarstad, H.H.; Bostad, L.; Hjelle, K.M.; Aarstad, H.J.; Bruserud, Ø.; Tvedt, T.H.A.; Beisland, C. Serum levels of the IL-6 family of cytokines predict prognosis in renal cell carcinoma (RCC). Cancer Immunol. Immunother. 2020, 70, 19–30. [Google Scholar] [CrossRef]
- Laino, A.S.; Woods, D.; Vassallo, M.; Qian, X.; Tang, H.; Wind-Rotolo, M.; Weber, J. Serum interleukin-6 and C-reactive protein are associated with survival in melanoma patients receiving immune checkpoint inhibition. J. Immunother. Cancer 2020, 8, e000842. [Google Scholar] [CrossRef]
- Peltonen, R.; Gramkow, M.H.; Dehlendorff, C.; Osterlund, P.J.; Johansen, J.S.; Isoniemi, H. Elevated serum YKL-40, IL-6, CRP, CEA, and CA19-9 combined as a prognostic biomarker panel after resection of colorectal liver metastases. PLoS ONE 2020, 15, e0236569. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Uciechowski, P.; Dempke, W.C. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020, 98, 131–137. [Google Scholar] [CrossRef]
- Qiao, X.-W.; Jiang, J.; Pang, X.; Huang, M.-C.; Tang, Y.-L.; Liang, X.-H. The Evolving Landscape of PD-1/PD-L1 Pathway in Head and Neck Cancer. Front. Immunol. 2020, 11, 1721. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, J.; Li, Q.; Quan, W.; Wang, Y.; Li, C.; Wu, J.; Mi, D. Prognostic value and immunological role of PDCD1 gene in pan-cancer. Int. Immunopharmacol. 2020, 89 Pt B, 107080. [Google Scholar] [CrossRef]
- Gao, M.; Lin, M.; Moffitt, R.A.; Salazar, M.A.; Park, J.; Vacirca, J.; Huang, C.; Shroyer, K.R.; Choi, M.; Georgakis, G.V.; et al. Direct therapeutic targeting of immune checkpoint PD-1 in pancreatic cancer. Br. J. Cancer 2019, 120, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, J.G.; Tran, N.L.; Rosenblum, M.G.; Schneider, C.S.; Connolly, N.P.; Kim, A.J.; Woodworth, G.F.; Winkles, J.A. The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2016, 35, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, B.J.; Jarman, E.J.; Gogoi-Tiwari, J.; Ferreira-Gonzalez, S.; Boulter, L.; Guest, R.V.; Kendall, T.J.; Kurian, D.; Kilpatrick, A.M.; Robson, A.J.; et al. TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J. Hepatol. 2021, 74, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Donohue, P.J.; Richards, C.M.; Brown, S.A.; Hanscom, H.N.; Buschman, J.; Thangada, S.; Hla, T.; Williams, M.S.; Winkles, J.A. TWEAK Is an Endothelial Cell Growth and Chemotactic Factor That Also Potentiates FGF-2 and VEGF-A Mitogenic Activity. Arter. Thromb. Vasc. Biol. 2003, 23, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Karstedt, S.; Conti, A.; Nobis, M.; Montinaro, A.; Hartwig, T.; Lemke, J.; Legler, K.; Annewanter, F.; Campbell, A.D.; Taraborrelli, L.; et al. Cancer Cell-Autonomous TRAIL-R Signaling Promotes KRAS-Driven Cancer Progression, Invasion, and Metastasis. Cancer Cell 2015, 27, 561–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, F.; Friess, H.; Kleeff, J.; Xu, Z.; Zimmermann, A.; Sheikh, M.; Büchler, M. Effects and expression of TRAIL and its apoptosis-promoting receptors in human pancreatic cancer. Cancer Lett. 2001, 163, 71–81. [Google Scholar] [CrossRef]
- Hoogwater, F.J.; Nijkamp, M.W.; Smakman, N.; Steller, E.J.; Emmink, B.L.; Westendorp, B.F.; Raats, D.A.; Sprick, M.R.; Schaefer, U.; van Houdt, W.J.; et al. Oncogenic K-Ras Turns Death Receptors Into Metastasis-Promoting Receptors in Human and Mouse Colorectal Cancer Cells. Gastroenterology 2010, 138, 2357–2367. [Google Scholar] [CrossRef]
- Nahacka, Z.; Svadlenka, J.; Peterka, M.; Ksandrova, M.; Benesova, S.; Neuzil, J.; Andera, L. TRAIL induces apoptosis but not necroptosis in colorectal and pancreatic cancer cells preferentially via the TRAIL-R2/DR5 receptor. Biochim. Biophys. Acta Mol. Cell. Res. 2018, 1865, 522–531. [Google Scholar] [CrossRef]
No. (%) a of Patients | |||||
---|---|---|---|---|---|
Index I | Index II | ||||
Discovery Cohort (n = 243) | Replication Cohort (n = 120) | Discovery Cohort (n = 257) | Replication Cohort (n = 106) | Total Population (n = 363) | |
Age, median (range) | 68 (42–88) | 68 (38–85) | 68 (38–88) | 68 (40–88) | 68 (38–88) |
≥70 years, n (%) | 95 (39.1) | 55 (45.8) | 100 (38.9) | 50 (47.2) | 150 (41.3) |
Sex, Male | 133 (54.7) | 65 (54.2) | 147 (57.2) | 51 (48.1) | 198 (54.5) |
Female | 110 (45.3) | 55 (45.8) | 110 (42.8) | 55 (51.9) | 165 (45.5) |
Stage III | 69 (28.4) | 25 (20.8) | 64 (24.9) | 30 (28.3) | 94 (25.9) |
IV | 174 (71.6) | 95 (79.2) | 193 (75.1) | 76 (71.7) | 269 (74.1) |
ECOG Performance Status 0 | 106 (43.6) | 53 (44.2) | 108 (42.0) | 51 (48.1) | 159 (43.8) |
1 | 121 (49.8) | 59 (49.2) | 128 (49.8) | 52 (49.1) | 180 (49.6) |
2 | 12 (4.9) | 7 (5.8) | 16 (6.2) | 3 (2.8) | 19 (5.2) |
Unknown | 4 (1.7) | 1 (0.8) | 5 (1.9) | 0 (0.0) | 5 (1.4) |
Diabetes | 65 (26.7) | 24 (20.0) | 60 (23.3) | 29 (27.4) | 89 (24.5) |
Smoking, Former | 91 (37.5) | 56 (46.7) | 106 (41.2) | 41 (38.7) | 147 (40.5) |
Current | 60 (24.7) | 27 (22.5) | 66 (25.7) | 21 (19.8) | 87 (24.0) |
Never | 80 (32.9) | 34 (28.3) | 72 (28.0) | 42 (39.6) | 114 (31.4) |
Unknown | 12 (4.9) | 3 (2.5) | 13 (5.1) | 2 (1.9) | 15 (4.1) |
Time from diagnosis to baseline sample, days b | 21 (16–29) | 20 (15–33) | 21 (16–31) | 20 (16–27) | 21 (16–31) |
Overall survival, months b | 8 (5–15) | 10 (5–17) | 8 (5–15) | 7 (4–16) | 8 (4–15) |
Baseline CA19-9, kU/L b | 1070 (165–7285) | 886 (92–5863) | 840 (128–6675) | 2180 (175–6770) | 998 (132–6770) |
Gemcitabine | 126 (51.9) | 57 (47.5) | 127 (49.4) | 56 (52.8) | 183 (50.4) |
Gemcitabine + nab-paclitaxel | 50 (20.6) | 32 (26.7) | 56 (21.8) | 26 (24.5) | 82 (22.6) |
mFOLFIRINOX | 67 (27.5) | 31 (25.8) | 74 (28.8) | 24 (22.6) | 98 (27.0) |
Protein | Comparison | |||||||
---|---|---|---|---|---|---|---|---|
≤90 Days (n = 57) vs. >90 Days (n = 306) | ≤180 Days (n = 135) vs. >180 Days (n = 183) | <90 Days (n = 57) vs. >1 Year (n = 127) | <90 Days (n = 57) vs. >2 Years (n = 30) | |||||
p Value (not Adjusted) | Test | p Value (not Adjusted) | Test | p Value (not Adjusted) | Test | p Value (not Adjusted) | Test | |
ADA | – | – | 4.1 × 10−2 | Wilcoxon | 9.8 × 10−3 | t-test | 5.4 × 10−3 | t-test |
ADGRG1 | 4.9 × 10−4 | Wilcoxon | 3.7 × 10−4 | Wilcoxon | 1.7 × 10−3 | t-test | 2.1 × 10−2 | Wilcoxon |
ANGPT2 | 3.2× 10−3 | t-test | 1.4 × 10−4 | t-test | 3.1 × 10−7 | t-test | 2.2 × 10−5 | t-test |
CA19-9 | - | - | 4.9 × 10−2 | t-test | 3.8 × 10−4 | t-test | 6.0 × 10−4 | Wilcoxon |
CAIX | 1.5 × 10−3 | Wilcoxon | 5.9 × 10−4 | Wilcoxon | 5.1 × 10−4 | t-test | 4.6 × 10−2 | Wilcoxon |
CASP-8 | - | - | 4.0 × 10−3 | Wilcoxon | 1.1 × 10−3 | t-test | 1.4 × 10−3 | t-test |
CCL3 | - | - | 3.4 × 10−3 | Wilcoxon | 6.3 × 10−3 | t-test | 1.6 × 10−3 | t-test |
CCL20 | 1.1 × 10−3 | Wilcoxon | 8.4 × 10−5 | Wilcoxon | 2.5 × 10−5 | t-test | 2.0 × 10−3 | Wilcoxon |
CCL23 | 7.4 × 10−6 | Wilcoxon | 1.1 × 10−2 | Wilcoxon | 6.4 × 10−6 | t-test | 7.8 × 10−6 | t-test |
CD4 | 1.0 × 10−2 | Wilcoxon | 1.4 × 10−2 | t-test | 5.8 × 10−4 | t-test | 1.5 × 10−2 | Wilcoxon |
CD27 | 1.2 × 10−2 | t-test | - | - | 6.3 × 10−3 | t-test | - | - |
CD40 | 1.1 × 10−2 | Wilcoxon | 4.5 × 10−3 | Wilcoxon | 2.9 × 10−3 | t-test | 1.0 × 10−2 | t-test |
CSF-1 | 7.4 × 10−6 | Wilcoxon | 3.5 × 10−7 | t-test | 2.6 × 10−10 | t-test | 1.3 × 10−6 | t-test |
CX3CL1 | 1.3 × 10−2 | Wilcoxon | 2.0 × 10−2 | Wilcoxon | 9.2 × 10−5 | t-test | 1.7 × 10−3 | Wilcoxon |
CXCL1 | 3.5 × 10−2 | Wilcoxon | 1.9 × 10−2 | t-test | 5.7 × 10−3 | t-test | 2.9 × 10−3 | Wilcoxon |
CXCL11 | - | - | - | - | - | - | 4.6 × 10−2 | t-test |
CXCL13 | - | - | 1.7 × 10−2 | Wilcoxon | 1.5 × 10−2 | t-test | 2.9 × 10−3 | t-test |
DCN | 2.1 × 10−2 | Wilcoxon | 2.4 × 10−3 | Wilcoxon | 3.2 × 10−2 | t-test | - | - |
Gal-9 | - | - | - | - | 1.1 × 10−3 | t-test | 5.8 × 10−3 | t-test |
GZMH | - | - | - | - | 3.2 × 10−2 | t-test | 1.9 × 10−2 | t-test |
HGF | 9.3 × 10−6 | Wilcoxon | 3.6 × 10−4 | Wilcoxon | 4.0 × 10−6 | t-test | 1.5 × 10−5 | Wilcoxon |
HO-1 | - | - | 2.0 × 10−2 | Wilcoxon | - | - | - | - |
ICOSLG | 3.0 × 10−2 | Wilcoxon | - | - | - | - | 4.6 × 10−2 | Wilcoxon |
IL-6 | 7.0 × 10−9 | Wilcoxon | 3.1 × 10−8 | Wilcoxon | 9.0 × 10−12 | t-test | 9.0 × 10−12 | t-test |
IL-8 | 2.2 × 10−5 | Wilcoxon | 3.4 × 10−5 | Wilcoxon | 5.2 × 10−9 | t-test | 1.3 × 10−6 | Wilcoxon |
IL-10 | - | - | 8.8 × 10−3 | Wilcoxon | 2.5 × 10−4 | t-test | 1.2 × 10−3 | Wilcoxon |
IL-12RB1 | 4.6 × 10−2 | Wilcoxon | 2.7 × 10−2 | Wilcoxon | 5.4 × 10−3 | t-test | 2.6 × 10−2 | t-test |
IL18 | - | - | - | - | 3.2 × 10−2 | t-test | - | - |
KLRD | - | - | 1.1 × 10−2 | Wilcoxon | - | - | - | - |
LAP TGF beta1 | - | - | - | - | 2.3 × 10−2 | t-test | - | - |
MCP-1 | 3.5 × 10−3 | t-test | 9.7 × 10−3 | t-test | 1.9 × 10−3 | t-test | 4.0 × 10−2 | Wilcoxon |
MCP-3 | 2.5 × 10−4 | Wilcoxon | 2.7 × 10−5 | Wilcoxon | 6.1 × 10−6 | t-test | 1.6 × 10−4 | Wilcoxon |
MIC-A/B | - | - | - | - | - | - | 5.8 × 10−3 | Wilcoxon |
MMP12 | 8.0 × 10−5 | Wilcoxon | 3.9 × 10−3 | Wilcoxon | 7.2 × 10−5 | t-test | 2.0 × 10−3 | t-test |
MMP7 | 2.8 × 10−3 | Wilcoxon | 1.5 × 10−3 | Wilcoxon | 2.5 × 10−4 | t-test | 3.6 × 10−4 | Wilcoxon |
NOS3 | 4.6 × 10−3 | Wilcoxon | 3.0 × 10−3 | Wilcoxon | 4.8 × 10−5 | t-test | 1.5 × 10−2 | t-test |
PD-L1 | 1.2 × 10−2 | Wilcoxon | 2.1 × 10−2 | Wilcoxon | 3.9 × 10−4 | t-test | 1.6 × 10−4 | t-test |
PD-L2 | - | - | 2.6 × 10−2 | Wilcoxon | - | - | - | - |
PDGF subunit-B | - | - | 4.5 × 10−2 | Wilcoxon | - | - | - | - |
PGF | 1.8 × 10−4 | Wilcoxon | 2.0 × 10−4 | Wilcoxon | 9.1 × 10−5 | t-test | 2.5 × 10−4 | Wilcoxon |
TIE2 | - | - | 1.2 × 10−2 | Wilcoxon | 3.6 × 10−4 | t-test | 1.4 × 10−3 | Wilcoxon |
TNFRSF4 | - | - | 1.7 × 10−2 | t-test | 1.7 × 10−3 | t-test | 1.4 × 10−3 | t-test |
TNFRSF9 | - | - | - | - | 4.6 × 10−2 | t-test | - | - |
TNFRSF12A | 5.3 × 10−6 | Wilcoxon | 1.2 × 10−4 | Wilcoxon | 8.0 × 10−9 | t-test | 3.1 × 10−7 | Wilcoxon |
TNFRSF21 | 3.4 × 10−3 | t-test | 2.2 × 10−2 | t-test | 1.9 × 10−6 | t-test | 2.1 × 10−4 | t-test |
TNFSF14 | 2.2 × 10−2 | t-test | 3.2 × 10−2 | t-test | 5.7 × 10−3 | t-test | 1.5 × 10−2 | t-test |
TRAIL | 6.7 × 10−4 | Wilcoxon | 3.8 × 10−2 | Wilcoxon | 2.1 × 10−4 | t-test | 1.5 × 10−3 | t-test |
TWEAK | - | - | - | - | 1.0 × 10−2 | t-test | - | - |
VEGFA | 7.7 × 10−4 | t-test | 7.1 × 10−4 | t-test | 3.5 × 10−5 | t-test | 6.2 × 10−4 | t-test |
VEGFC | - | - | - | - | - | - | 1.5 × 10−2 | t-test |
VEGFR-2 | - | - | - | - | 2.0 × 10−3 | t-test | - | - |
Signature | Discovery Cohort (n = 243) | Replication Cohort (n = 120) | Replication Cohort When Adding Age to the Model (n = 120) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | BP Sens | BP Spec | PPV | NPV | AUC | BP Sens | BP Spec | PPV | NPV | AUC | BP Sens | BP Spec | PPV | NPV | DeLong Test p Value | |
Values with 95% confidence intervals in parentheses | ||||||||||||||||
1 | 0.90( 0.75–1) | 0.90 (0.75–1) | 0.90 (0.60–1) | 0.94 (0.83–1) | 0.81 (0.66–1) | 0.72 (0.53–0.92) | 0.61 (0.33–0.88) | 0.88 (0.66–1) | 0.91 (0.81–1) | 0.53 (0.42–0.81) | 0.72 (0.53–0.92) | 0.61 (0.33–0.88) | 0.88 (0.66–1) | 0.91 (0.81–1) | 0.53 (0.42–0.81) | 1 |
2 | 0.93 (0.80–1) | 1 (1–1) | 0.90 (0.70–1) | 0.95 (0.86–1) | 1 (1–1) | 0.75 (0.56–0.94) | 0.66 (0.38–0.94) | 0.88 (0.55–1) | 0.92 (0.78–1) | 0.57 (0.42–0.87) | 0.75 (0.56–0.94) | 0.66 (0.38–0.94) | 0.88 (0.55–1) | 0.92 (0.80–1) | 0.57 (0.43–0.88) | 1 |
3 | 0.90 (0.76–1) | 1 (0.75–1) | 0.80 (0.60–1) | 0.90 (0.83–1) | 1 (0.66–1) | 0.77 (0.57–0.96) | 0.77 (0.50–0.94) | 0.77 (0.55–1) | 0.87 (0.80–1) | 0.63 (0.46–0.90) | 0.77 (0.59–0.96) | 0.77 (0.44–0.94) | 0.77 (0.66–1) | 0.87 (0.80–1) | 0.63 (0.46–0.88) | 0.692 |
4 | 0.94 (0.83–1) | 1 (1–1) | 0.90 (0.70–1) | 0.95 (0.86–1) | 1 (1–1) | 0.80 (0.62–0.98) | 0.72 (0.50–1) | 0.88 (0.55–1) | 0.92 (0.80–1) | 0.61 (0.46–1) | 0.80 (0.62–0.98) | 0.83 (0.55–1) | 0.77 (0.55–1) | 0.88 (0.80–1) | 0.70 (0.5–1) | 1 |
5 | 0.95 (0.84–1) | 1 (1–1) | 0.90 (0.70–1) | 0.95 (0.86–1) | 1 (1–1) | 0.81 (0.64–0.98) | 0.77 (0.49–1) | 0.77 (0.55–1) | 0.87 (0.78–1) | 0.63 (0.47–1) | 0.80 (0.62–0.98) | 0.83 (0.50–1) | 0.77 (0.55–1) | 0.88 (0.80–1) | 0.70 (0.47–1) | 0.624 |
6 | 0.95 (0.84–1) | 1 (1–1) | 0.90 (0.70–1) | 0.95 (0.86–1) | 1 (1–1) | 0.81 (0.64–0.98) | 0.77 (0.38–1) | 0.77 (0.44–1) | 0.87 (0.78–1) | 0.63 (0.45–1) | 0.80 (0.63–0.98) | 0.83 (0.44–1) | 0.77 (0.55–1) | 0.88 (0.78–1) | 0.70 (0.46–1) | 0.829 |
7 | 0.99 (0.98–1) | 0.95 (0.90–1) | 1 (0.90–1) | 1 (0.95–1) | 0.90 (0.83–1) | 0.89 (0.74–1) | 1 (0.72–1) | 0.77 (0.55–1) | 0.90 (0.81–1) | 1 (0.61–1) | 0.88 (0.73–1) | 0.88 (0.61–1) | 0.77 (0.55–1) | 0.88 c (0.80–1) | 0.77 (0.53–1) | 0.570 |
8 | 0.95 (0.88–1) | 1 (0.70–1) | 0.80 (0.70–1) | 0.90 (0.86–1) | 1 (0.62–1) | 0.80 (0.64–0.97) | 0.66 (0.44–1) | 0.88 (0.55–1) | 0.92 (0.80–1) | 0.57 (0.46–1) | 0.77 (0.59–0.95) | 0.72 (0.44–0.94) | 0.88 (0.66–1) | 0.92 (0.84–1) | 0.61 (0.47–0.88) | 0.533 |
9 | 0.98 (0.95–1) | 1 (0.80–1) | 0.90 (0.80–1) | 0.95 (0.90–1) | 1 (0.71–1) | 0.77 (0.60–0.95) | 0.61 (0.38–1) | 0.88 (0.55–1) | 0.91 (0.81–1) | 0.53 (0.45–1) | 0.77 (0.6–0.95) | 0.55 (0.38–0.94) | 1 (0.66–1) | 1 (0.83–1) | 0.52 (0.45–0.87) | 1 |
10 | 0.96 (0.89–1) | 0.95 (0.75–1) | 0.90 (0.80–1) | 0.95 (0.90–1) | 0.90 (0.66–1) | 0.80 (0.64–0.97) | 0.72 (0.44–1) | 0.88 (0.66–1) | 0.92 (0.84–1) | 0.61 (0.47–1) | 0.80 (0.64–0.97) | 0.72 (0.49–0.94) | 0.88 (0.66–1) | 0.92 (0.84–1) | 0.61 (0.47–0.9) | 1 |
11 | 0.93 (0.83–1) | 0.95 (0.65–1) | 0.80 (0.80–1) | 0.90 (0.90–1) | 0.88 (0.58–1) | 0.83 (0.67–1) | 1 (0.44–1) | 0.55 (0.44–1) | 0.81 (0.78–1) | 1 (0.47–1) | 0.80 (0.62–0.98) | 0.77 (0.38–1) | 0.77 (0.55–1) | 0.87 (0.78–1) | 0.63 (0.45–1) | 0.347 |
Protein | Baseline Sample | Before Second Treatment | Before First CT Scan (3 Months) | |||
---|---|---|---|---|---|---|
Univariate Analysis, HR, p Value | Multivariate Analysis, HR, p Value | Univariate Analysis, HR, p Value | Multivariate Analysis, HR, p Value | Univariate Analysis, HR, p Value | Multivariate Analysis, HR, p Value | |
CSF-1 | 1.85, p < 0.0001 | 1.79, p < 0.0001 | 1.33, p = 0.0464 | 1.35, p = 0.0502 | 1.57, p = 0.004 | 1.40, p = 0.043 |
CXCL13 | 1.44, p = 0.0007 | 1.30, p = 0.0234 | 1.42, p = 0.0148 | 1.33, p = 0.0663 | 1.66, p = 0.001 | 1.49, p = 0.02 |
IL-6 | 2.16, p < 0.0001 | 2.08, p < 0.0001 | 1.63, p = 0.0007 | 1.57, p = 0.0030 | 1.82, p = 0.0001 | 1.62, p = 0.0045 |
TNFRSF12A | 1.67, p < 0.0001 | 1.57, p < 0.0001 | 1.72, p = 0.0002 | 1.68, p = 0.0008 | 1.85, p < 0.0001 | 1.79, p = 0.0004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindgaard, S.C.; Maag, E.; Sztupinszki, Z.; Chen, I.M.; Johansen, A.Z.; Jensen, B.V.; Bojesen, S.E.; Nielsen, D.L.; Szallasi, Z.; Johansen, J.S. Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy. Cancers 2022, 14, 3250. https://doi.org/10.3390/cancers14133250
Lindgaard SC, Maag E, Sztupinszki Z, Chen IM, Johansen AZ, Jensen BV, Bojesen SE, Nielsen DL, Szallasi Z, Johansen JS. Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy. Cancers. 2022; 14(13):3250. https://doi.org/10.3390/cancers14133250
Chicago/Turabian StyleLindgaard, Sidsel C., Emil Maag, Zsófia Sztupinszki, Inna M. Chen, Astrid Z. Johansen, Benny V. Jensen, Stig E. Bojesen, Dorte L. Nielsen, Zoltan Szallasi, and Julia S. Johansen. 2022. "Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy" Cancers 14, no. 13: 3250. https://doi.org/10.3390/cancers14133250
APA StyleLindgaard, S. C., Maag, E., Sztupinszki, Z., Chen, I. M., Johansen, A. Z., Jensen, B. V., Bojesen, S. E., Nielsen, D. L., Szallasi, Z., & Johansen, J. S. (2022). Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy. Cancers, 14(13), 3250. https://doi.org/10.3390/cancers14133250