Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Procedural Treatments
2.1. Standard Excision with Postoperative Margin Assessment
2.2. Mohs Micrographic Surgery
2.3. Electrodesiccation and Curettage
2.4. Cryotherapy
2.5. Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Laser Ablation
2.6. Carbon Dioxide Laser Ablation
3. Topical, Intralesional, and Field Treatments
3.1. Topical 5-Fluorouracil
3.2. Topical Imiquimod
3.3. Topical Hedgehog Inhibitors
3.4. Histone Deacetylase Inhibitors (Vorinostat, Remetinostat)
3.5. Radiation Therapy
3.6. Photodynamic Therapy
4. Systemic Therapies
4.1. Vismodegib
4.2. Sonidegib
4.3. Cemiplimab
5. Investigational Drugs
5.1. Taladegib (LY2940680)
5.2. Patidegib (TAK-441)
5.3. LEQ506
5.4. ZSP 1602
5.5. CK2 Inhibitors (CX-4945)
5.6. Itraconazole
5.7. GLI Antagonists (GANTS)
5.8. Anti VEGFR (AIV001)
5.9. Anti COX-2 TGFB SiRNA
5.10. Anti LAG3 Ab
5.11. Intralesional Talimogene Laherparepvec (T-VEC)
5.12. IL2/TNFa
5.13. IFN Gamma Adenovirus
6. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatol. 2015, 151, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.S.; Morgan, F.C.; Zigler, C.M.; Besaw, R.J.; Schmults, C.D. Analysis of national skin cancer expenditures in the United States Medicare population, 2013. J. Am. Acad. Dermatol. 2019, 80, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roewert-Huber, J.; Lange-Asschenfeldt, B.; Stockfleth, E.; Kerl, H. Epidemiology and aetiology of basal cell carcinoma. Br. J. Dermatol. 2007, 157, 47–51. [Google Scholar] [CrossRef]
- Migden, M.R.; Chang, A.L.S.; Dirix, L.; Stratigos, A.J.; Lear, J.T. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat. Rev. 2018, 64, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Madan, V.; Lear, J.T.; Szeimies, R.M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Bacchetti, T.; Salvolini, E.; Pompei, V.; Campagna, R.; Molinelli, E.; Brisigotti, V.; Togni, L.; Lucarini, G.; Sartini, D.; Campanati, A.; et al. Paraoxonase-2: A potential biomarker for skin cancer aggressiveness. Eur. J. Clin. Investig. 2020, 51, e13452. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, H.J.; Pau, G.; Dijkgraaf, G.J.; Basset-Seguin, N.; Modrusan, Z.; Januario, T.; Tsui, V.; Durham, A.B.; Dlugosz, A.A.; Haverty, P.M.; et al. Genomic Analysis of Smoothened Inhibitor Resistance in Basal Cell Carcinoma. Cancer Cell 2015, 27, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.J.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef]
- Gualdi, G.; Monari, P.; Apalla, Z.; Lallas, A. Surgical treatment of basal cell carcinoma and squamous cell carcinoma. G. Ital. Dermatol. Venereol. 2015, 150, 435–447. [Google Scholar]
- Wolf, D.J.; Zitelli, J.A. Surgical margins for basal cell carcinoma. Arch. Dermatol. 1987, 123, 340–344. [Google Scholar] [CrossRef]
- Rhodes, L.E.; De Rie, M.A.; Leifsdottir, R.; Yu, R.C.; Bachmann, I.; Goulden, V.; Wong, G.A.E.; Richard, M.-A.; Anstey, A.; Wolf, P. Five-Year Follow-up of a Randomized, Prospective Trial of Topical Methyl Aminolevulinate Photodynamic Therapy vs Surgery for Nodular Basal Cell Carcinoma. Arch. Dermatol. 2007, 143, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.E.; Carroll, R.J.; Day, C.L.J. Long-Term Recurrence Rates in Previously Untreated (Primary) Basal Cell Carcinoma: Implications for Patient Follow-Up. J. Dermatol. Surg. Oncol. 1989, 15, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Thissen, M.R.T.M.; Neumann, M.H.A.; Schouten, L. A Systematic Review of Treatment Modalities for Primary Basal Cell Carcinomas. Arch. Dermatol. 1999, 135, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, D.I.M.; Thissen, M.R.T.M.; Berretty, P.J.M.; Ideler, F.H.L.B.; Nelemans, P.J.; Neumann, M.H.A.M. Surgical Excision versus Curettage plus Cryosurgery in the Treatment of Basal Cell Carcinoma. Dermatol. Surg. 2007, 33, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Quazi, S.J.; Aslam, N.; Saleem, H.; Rahman, J.; Khan, S. Surgical Margin of Excision in Basal Cell Carcinoma: A Systematic Review of Literature. Cureus 2020, 12, e9211. [Google Scholar] [CrossRef] [PubMed]
- Bichakjian, C.K.; Olencki, T.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Berg, D.; Bowen, G.M.; Cheney, R.T.; Daniels, G.A.; Glass, L.F.; et al. Basal Cell Skin Cancer, Version 1.2016, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2016, 14, 574–597. [Google Scholar] [CrossRef] [PubMed]
- Nisticò, S.P.; Bennardo, L.; Sannino, M.; Negosanti, F.; Tamburi, F.; Del Duca, E.; Giudice, A.; Cannarozzo, G. Combined CO 2 and dye laser technique in the treatment of outcomes due to flap necrosis after surgery for basal cell carcinoma on the nose. Lasers Surg. Med. 2021, 54, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Pozzi, V.; Sartini, D.; Salvolini, E.; Brisigotti, V.; Molinelli, E.; Campanati, A.; Offidani, A.; Emanuelli, M. Beyond Nicotinamide Metabolism: Potential Role of Nicotinamide N-Methyltransferase as a Biomarker in Skin Cancers. Cancers 2021, 13, 4943. [Google Scholar] [CrossRef]
- Lawrence, C.M. Mohs’ micrographic surgery for basal cell carcinoma. Clin. Exp. Dermatol. 1999, 24, 130–133. [Google Scholar] [CrossRef]
- Rowe, D.E.; Carroll, R.J.; Day, C.L. Mohs Surgery Is the Treatment of Choice for Recurrent (Previously Treated) Basal Cell Carcinoma. J. Dermatol. Surg. Oncol. 1989, 15, 424–431. [Google Scholar] [CrossRef]
- van Loo, E.; Mosterd, K.; Krekels, G.A.; Roozeboom, M.H.; Ostertag, J.U.; Dirksen, C.D.; Steijlen, P.M.; Neumann, H.M.; Nelemans, P.J.; Kelleners-Smeets, N.W. Surgical excision versus Mohs’ micrographic surgery for basal cell carcinoma of the face: A randomised clinical trial with 10year follow-up. Eur. J. Cancer 2014, 50, 3011–3020. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.; Hogan, S.; Leonardi-Bee, J.; Williams, H.C.; Bath-Hextall, F.J. Interventions for basal cell carcinoma of the skin. Cochrane Database Syst. Rev. 2020, 2020, CD003412. [Google Scholar] [CrossRef]
- Connolly, S.M.; Baker, D.R.; Coldiron, B.M.; Fazio, M.J.; Storrs, P.A.; Vidimos, A.T.; Zalla, M.J.; Brewer, J.D.; Begolka, W.S.; Berger, T.G.; et al. AAD/ACMS/ASDSA/ASMS 2012 appropriate use criteria for Mohs micrographic surgery: A report of the American Academy of Dermatology, American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and the American Society for Mohs Surgery. J. Am. Acad. Dermatol. 2012, 67, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Kopf, A.W.; Bart, R.S.; Schrager, D.; Lazar, M.; Popkin, G.L. Curettage-electrodesiccation treatment of basal cell carcinomas. Arch. Dermatol. 1977, 113, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Galles, E.; Parvataneni, R.; Stuart, S.E.; Linos, E.; Grewal, S.; Chren, M.-M. Patient-reported outcomes of electrodessication and curettage for treatment of nonmelanoma skin cancer. J. Am. Acad. Dermatol. 2014, 71, 1026–1028. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.O.; Zalla, M.J.; Kyle, A.; DiCaudo, D.J.; Lim, K.K.; Yiannias, J.A. Treatment of basal cell carcinoma with curettage alone. J. Am. Acad. Dermatol. 2006, 54, 1039–1045. [Google Scholar] [CrossRef]
- Julian, C.; Bowers, P.; Pritchard, C. A comparative study of the effects of disposable and Volkmann spoon curettes in the treatment of basal cell carcinoma. Br. J. Dermatol. 2009, 161, 1407–1409. [Google Scholar] [CrossRef]
- Rodriguez-Vigil, T.; Vázquez-López, F.; Perez-Oliva, N. Recurrence rates of primary basal cell carcinoma in facial risk areas treated with curettage and electrodesiccation. J. Am. Acad. Dermatol. 2007, 56, 91–95. [Google Scholar] [CrossRef]
- Blixt, E.; Nelsen, D.; Stratman, E. Recurrence Rates of Aggressive Histologic Types of Basal Cell Carcinoma After Treatment with Electrodesiccation and Curettage Alone. Dermatol. Surg. 2013, 39, 719–725. [Google Scholar] [CrossRef]
- Spiller, W.F.; Spiller, R.F. Treatment of basal cell epithelioma by curettage and electrodesiccation. J. Am. Acad. Dermatol. 1984, 11, 808–814. [Google Scholar] [CrossRef]
- Silverman, M.K.; Kopf, A.W.; Grin, C.M.; Bart, R.S.; Levenstein, M.J. Recurrence Rates of Treated Basal Cell Carcinomas: Part 2: Curettage-Electrodesiccation. J. Dermatol. Surg. Oncol. 1991, 17, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Goldman, G. The current status of curettage and electrodesiccation. Dermatol. Clin. 2002, 20, 569–578. [Google Scholar] [CrossRef]
- Lewin, J.M.; Carucci, J. Advances in the management of basal cell carcinoma. F1000Prime Rep. 2015, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backman, E.; Polesie, S.; Berglund, S.; Gillstedt, M.; Sjöholm, A.; Modin, M.; Paoli, J. Curettage vs. cryosurgery for superficial basal cell carcinoma: A prospective, randomised and controlled trial. J. Eur. Acad. Dermatol. Venereol. 2022. [Google Scholar] [CrossRef]
- Wang, I.; Bendsoe, N.; Klinteberg, C.A.; Enejder, A.M.; Andersson-Engels, S.; Svanberg, S.; Svanberg, K. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: Results of a phase III clinical trial. Br. J. Dermatol. 2001, 144, 832–840. [Google Scholar] [CrossRef]
- Ortiz, A.E.; Anderson, R.R.; Avram, M.M. 1064 nm long-pulsed Nd:YAG laser treatment of basal cell carcinoma. Lasers Surg. Med. 2015, 47, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.E.; Anderson, R.R.; DiGiorgio, C.; Jiang, S.I.B.; Shafiq, F.; Avram, M.M. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma. Lasers Surg. Med. 2018, 50, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, O.; Bressler, M.Y. Combining Nd:YAG laser with optical coherence tomography for nonsurgical treatment of basal cell carcinoma. Lasers Surg. Med. 2021, 54, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sharon, E.; Snast, I.; Lapidoth, M.; Kaftory, R.; Mimouni, D.; Hodak, E.; Levi, A. Laser Treatment for Non-Melanoma Skin Cancer: A Systematic Review and Meta-Analysis. Am. J. Clin. Dermatol. 2020, 22, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, J.; Avram, M.M.; Ortiz, A.E. Outcomes of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma: A retrospective review. Lasers Surg. Med. 2018, 51, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, J.; Avram, M.M.; Ortiz, A.E. The Evolving Story of Laser Therapeutics for Basal Cell Carcinoma. Dermatol. Surg. 2020, 46, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, T.R.; Malhotra, R.; Scharf, M.J.; Marcus, S.M.; Starkus, L.; Calegari, K. Treatment of Superficial Basal Cell Carcinoma and Squamous Cell Carcinoma In Situ With a High-Energy Pulsed Carbon Dioxide Laser. Arch. Dermatol. 1998, 134, 1247–1252. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.; Bowes, L.; Kricorian, G.; Friedli, A.; Fitzpatrick, R.E. Treatment of Basal Cell Carcinoma with the Pulsed Carbon Dioxide Laser: A Retrospective Analysis. Dermatol. Surg. 2004, 30, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Hibler, B.; Sierra, H.; Cordova, M.; Phillips, W.; Rajadhyaksha, M.; Nehal, K.; Rossi, A. Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: A proof-of-principle pilot study. Br. J. Dermatol. 2016, 174, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Dechent, C.; Cordova, M.; Liopyris, K.; Yélamos, O.; Aleissa, S.; Hibler, B.; Sierra, H.; Sahu, A.; Blank, N.; Rajadhyaksha, M.; et al. Reflectance confocal microscopy-guided carbon dioxide laser ablation of low-risk basal cell carcinomas: A prospective study. J. Am. Acad. Dermatol. 2019, 81, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, S.R.; Brianti, P.; Dattola, A.; Bennardo, L.; Silvestri, M.; Schipani, G.; Nisticò, S.P. CO2 laser and photodynamic therapy: Study of efficacy in periocular BCC. Dermatol. Ther. 2018, 31, e12616. [Google Scholar] [CrossRef] [PubMed]
- Bausch Health. Efudex (5-fluorouracil) [Package Insert]. U.S. Food and Drug Administration, 14 October 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/016831Orig1s063lbl.pdf (accessed on 30 April 2022).
- Gross, K.; Kircik, L.; Kricorian, G. 5% 5-Fluorouracil Cream for the Treatment of Small Superficial Basal Cell Carcinoma: Efficacy, Tolerability, Cosmetic Outcome, and Patient Satisfaction. Dermatol. Surg. 2007, 33, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.H.E.; Mosterd, K.; Arits, A.H.; Roozeboom, M.H.; Sommer, A.; Essers, B.A.; van Pelt, H.P.; Quaedvlieg, P.J.; Steijlen, P.M.; Nelemans, P.J.; et al. Five-Year Results of a Randomized Controlled Trial Comparing Effectiveness of Photodynamic Therapy, Topical Imiquimod, and Topical 5-Fluorouracil in Patients with Superficial Basal Cell Carcinoma. J. Investig. Dermatol. 2018, 138, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roozeboom, M.H.; Arits, A.H.M.M.; Mosterd, K.; Sommer, A.; Essers, B.A.B.; De Rooij, M.J.M.; Quaedvlieg, P.J.F.; Steijlen, P.M.; Nelemans, P.J.; Kelleners-Smeets, N.W.J. Three-Year Follow-Up Results of Photodynamic Therapy vs. Imiquimod vs. Fluorouracil for Treatment of Superficial Basal Cell Carcinoma: A Single-Blind, Noninferiority, Randomized Controlled Trial. J. Investig. Dermatol. 2016, 136, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Desai, T.; Chen, C.L.; Desai, A.; Kirby, W. Basic Pharmacology of Topical Imiquimod, 5-Fluorouracil, and Diclofenac for the Dermatologic Surgeon. Dermatol. Surg. 2012, 38, 97–103. [Google Scholar] [CrossRef]
- Bubna, A. Imiquimod—Its role in the treatment of cutaneous malignancies. Indian J. Pharmacol. 2015, 47, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Gruber, W.; Frischauf, A.-M.; Aberger, F. An old friend with new skills: Imiquimod as novel inhibitor of Hedgehog signaling in basal cell carcinoma. Oncoscience 2014, 1, 567–573. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Aldara® (Imiquimod) Cream, 5%. Silver Springs: US Food and Drug Administration, 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020723s022lbl.pdf (accessed on 4 April 2021).
- Quirk, C.; Gebauer, K.; De’Ambrosis, B.; Slade, H.B.; Meng, T.-C. Sustained clearance of superficial basal cell carcinomas treated with imiquimod cream 5%: Results of a prospective 5-year study. Cutis 2010, 85, 318–324. [Google Scholar] [PubMed]
- Arits, A.H.; Mosterd, K.; AB Essers, B.; Spoorenberg, E.; Sommer, A.; De Rooij, M.J.; van Pelt, H.P.; Quaedvlieg, P.J.; Krekels, G.A.; van Neer, P.A.; et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: A single blind, non-inferiority, randomised controlled trial. Lancet Oncol. 2013, 14, 647–654. [Google Scholar] [CrossRef]
- Love, W.E.; Bernhard, J.D.; Bordeaux, J.S. Topical Imiquimod or Fluorouracil Therapy for Basal and Squamous Cell Carcinoma: A systematic review. Arch. Dermatol. 2009, 145, 1431–1438. [Google Scholar] [CrossRef]
- Bath-Hextall, F.; Bong, J.; Perkins, W.; Williams, H. Interventions for basal cell carcinoma of the skin: Systematic review. BMJ 2004, 329, 705. [Google Scholar] [CrossRef] [Green Version]
- Williams, H.C.; Bath-Hextall, F.; Ozolins, M.; Armstrong, S.J.; Colver, G.B.; Perkins, W.; Miller, P.S. Surgery Versus 5% Imiquimod for Nodular and Superficial Basal Cell Carcinoma: 5-Year Results of the SINS Randomized Controlled Trial. J. Investig. Dermatol. 2016, 137, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migden, M.; Farberg, A.; Dummer, R.; Squittieri, N.; Hanke, C.W. A Review of Hedgehog Inhibitors Sonidegib and Vismodegib for Treatment of Advanced Basal Cell Carcinoma. J. Drugs Dermatol. 2021, 20, 156–165. [Google Scholar] [CrossRef]
- Skvara, H.; Kalthoff, F.; Meingassner, J.G.; Wolff-Winiski, B.; Aschauer, H.; Kelleher, J.F.; Wu, X.; Pan, S.; Mickel, L.; Schuster, C.; et al. Topical Treatment of Basal Cell Carcinomas in Nevoid Basal Cell Carcinoma Syndrome with a Smoothened Inhibitor. J. Investig. Dermatol. 2011, 131, 1735–1744. [Google Scholar] [CrossRef] [Green Version]
- Novartis Pharmaceuticals. To Evaluate the Safety, Local Tolerability, PK and PD of LDE225 on Sporadic Superficial and Nodular Skin Basal Cell Carcinomas (sBCC). ClinicalTrials.gov, 30 October 2015. Available online: https://clinicaltrials.gov/ct2/show/record/NCT01033019?term=LDE225&rank=24 (accessed on 30 May 2022).
- Tang, T.; Tang, J.Y.; Li, D.; Reich, M.; Callahan, C.A.; Fu, L.; Yauch, R.L.; Wang, F.; Kotkow, K.; Chang, K.S.; et al. Targeting Superficial or Nodular Basal Cell Carcinoma with Topically Formulated Small Molecule Inhibitor of Smoothened. Clin. Cancer Res. 2011, 17, 3378–3387. [Google Scholar] [CrossRef] [Green Version]
- Calienni, M.N.; Febres-Molina, C.; Llovera, R.E.; Zevallos-Delgado, C.; Tuttolomondo, M.E.; Paolino, D.; Fresta, M.; Barazorda-Ccahuana, H.L.; Gómez, B.; Alonso, S.D.V.; et al. Nanoformulation for potential topical delivery of Vismodegib in skin cancer treatment. Int. J. Pharm. 2019, 565, 108–122. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Clinical Trial of Patidegib Gel 2%, 4%, and Vehicle Applied Once or Twice Daily to Decrease the GLI1 Bi-omarker in Sporadic Nodular Basal Cell Carcinomas—Full Text View. Available online: https://clinicaltrials.gov/ct2/show/NCT02828111 (accessed on 11 July 2021).
- ClinicalTrials.gov. Trial of Patidegib Gel 2%, 4%, and Vehicle to Decrease the Number of Surgically Eligible Basal Cell Carcinomas in Gorlin Syn-drome Patients—Full Text View. Available online: https://clinicaltrials.gov/ct2/show/NCT02762084 (accessed on 11 July 2021).
- ClinicalTrials.gov. Study of Patidegib Topical Gel, 2%, for the Reduction of Disease Burden of Persistently Developing Basal Cell Carcinomas (BCCs) in Subjects with Basal Cell Nevus Syndrome (Gorlin Syndrome)—Full Text View. Available online: https://clinicaltrials.gov/ct2/show/NCT03703310 (accessed on 11 July 2021).
- Bakshi, A.; Chaudhary, S.C.; Rana, M.; Elmets, C.A.; Athar, M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol. Carcinog. 2017, 56, 2543–2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilgour, J.M.; Shah, A.; Urman, N.M.; Eichstadt, S.; Do, H.N.; Bailey, I.; Mirza, A.; Li, S.; Oro, A.E.; Aasi, S.Z.; et al. Phase II Open-Label, Single-Arm Trial to Investigate the Efficacy and Safety of Topical Remetinostat Gel in Patients with Basal Cell Carcinoma. Clin. Cancer Res. 2021, 27, 4717–4725. [Google Scholar] [CrossRef] [PubMed]
- Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell Lymphoma. Oncologist 2007, 12, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Quan, H.; Xie, C.; Lou, L. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations. Pharmacol. Res. Perspect. 2014, 2, e00043. [Google Scholar] [CrossRef]
- Kim, Y.H.; Bagot, M.; Pinter-Brown, L.; Rook, A.H.; Porcu, P.; Horwitz, S.M.; Whittaker, S.; Tokura, Y.; Vermeer, M.; Zinzani, P.L.; et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): An international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018, 19, 1192–1204. [Google Scholar] [CrossRef]
- Zagrodnik, B.; Kempf, W.; Seifert, B.; Müller, B.; Burg, G.; Urosevic, M.; Dummer, R. Superficial radiotherapy for patients with basal cell carcinoma. Cancer 2003, 98, 2708–2714. [Google Scholar] [CrossRef]
- Silverman, M.K.; Kopf, A.W.; Gladstein, A.H.; Bart, R.S.; Grin, C.M.; Levenstein, M.J. Recurrence Rates of Treated Basal Cell Carcinomas: Part 4: X-Ray Therapy. J. Dermatol. Surg. Oncol. 1992, 18, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Avril, M.F.; Auperin, A.; Margulis, A.; Gerbaulet, A.; Duvillard, P.; Benhamou, E.; Guillaume, J.C.; Chalon, R.; Petit, J.Y.; Sancho-Garnier, H.; et al. Basal cell carcinoma of the face: Surgery or radiotherapy? Results of a randomized study. Br. J. Cancer 1997, 76, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, J.; Karimpour, S.; Young, G.; Lockett, M.A.; Perez, C.A. Radiotherapy for epithelial skin cancer. Int. J. Radiat. Oncol. 2001, 51, 748–755. [Google Scholar] [CrossRef]
- Drucker, A.M.; Adam, G.P.; Rofeberg, V.; Gazula, A.; Smith, B.; Moustafa, F.; Weinstock, M.A.; Trikalinos, T.A. Treatments of Primary Basal Cell Carcinoma of the Skin. Ann. Intern. Med. 2018, 169, 456–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cognetta, A.B.; Howard, B.M.; Heaton, H.P.; Stoddard, E.R.; Hong, H.G.; Green, W.H. Superficial x-ray in the treatment of basal and squamous cell carcinomas: A viable option in select patients. J. Am. Acad. Dermatol. 2012, 67, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Likhacheva, A.; Awan, M.; Barker, C.A.; Bhatnagar, A.; Bradfield, L.; Brady, M.S.; Buzurovic, I.; Geiger, J.L.; Parvathaneni, U.; Zaky, S.; et al. Definitive and Postoperative Radiation Therapy for Basal and Squamous Cell Cancers of the Skin: Executive Summary of an American Society for Radiation Oncology Clinical Practice Guideline. Pract. Radiat. Oncol. 2020, 10, 8–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Tripcony, L.; Keller, J.; Poulsen, M.; Martin, J.; Jackson, J.; Dickie, G. Perineural Infiltration of Cutaneous Squamous Cell Carcinoma and Basal Cell Carcinoma Without Clinical Features. Int. J. Radiat. Oncol. 2012, 82, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Neville, J.A.; Welch, E.; Leffell, D.J. Management of nonmelanoma skin cancer in 2007. Nat. Clin. Pract. Oncol. 2007, 4, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Lehrer, E.J.; Aphale, A.; Lango, M.; Galloway, T.J.; Zaorsky, N.G. Surgical excision, Mohs micrographic surgery, external-beam radiotherapy, or brachytherapy for indolent skin cancer: An international meta-analysis of 58 studies with 21,000 patients. Cancer 2019, 125, 3582–3594. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.Y.; Avril, M.F.; Margulis, A.; Chassagne, D.; Gerbaulet, A.; Duvillard, P.; Auperin, A.; Rietjens, M. Evaluation of Cosmetic Results of a Randomized Trial Comparing Surgery and Radiotherapy in the Treatment of Basal Cell Carcinoma of the Face. Plast. Reconstr. Surg. 2000, 105, 2544–2551. [Google Scholar] [CrossRef]
- Peris, K.; Fargnoli, M.C.; Garbe, C.; Kaufmann, R.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Marmol, V.D.; Dummer, R.; Harwood, C.A.; et al. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur. J. Cancer 2019, 118, 10–34. [Google Scholar] [CrossRef] [Green Version]
- Morton, C.; Dominicus, R.; Radny, P.; Dirschka, T.; Hauschild, A.; Reinhold, U.; Aschoff, R.; Ulrich, M.; Keohane, S.; Ekanayake-Bohlig, S.; et al. A randomized, multinational, noninferiority, phase III trial to evaluate the safety and efficacy of BF-200 aminolaevulinic acid gel vs. methyl aminolaevulinate cream in the treatment of nonaggressive basal cell carcinoma with photodynamic therapy. Br. J. Dermatol. 2018, 179, 309–319. [Google Scholar] [CrossRef]
- Fantini, F.; Greco, A.; Del Giovane, C.; Cesinaro, A.M.; Venturini, M.; Zane, C.; Surrenti, T.; Peris, K.; Calzavara-Pinton, P. Photodynamic therapy for basal cell carcinoma: Clinical and pathological determinants of response. J. Eur. Acad. Dermatol. Venereol. 2010, 25, 896–901. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Shi, J.; Gao, X.; Geng, L. Photodynamic therapy in the treatment of basal cell carcinoma: A systematic review and meta-analysis. Photodermatol. Photoimmunol. Photomed. 2014, 31, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Roozeboom, M.H.; Arits, A.H.H.M.; Nelemans, P.J.; Kelleners-Smeets, N.W.J. Overall treatment success after treatment of primary superficial basal cell carcinoma: A systematic review and meta-analysis of randomized and nonrandomized trials. Br. J. Dermatol. 2012, 167, 733–756. [Google Scholar] [CrossRef]
- Basset-Séguin, N.; Bissonnette, R.; Girard, C.; Haedersdal, M.; Lear, J.; Paul, C.; Piaserico, S. Consensus recommendations for the treatment of basal cell carcinomas in Gorlin syndrome with topical methylaminolaevulinate-photodynamic therapy. J. Eur. Acad. Dermatol. Venereol. 2013, 28, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Valladares, M.S.; Vega, J.; Prieto, M.R. Comparison of treatment of basal cell carcinoma between surgery and intralesional photodynamic therapy: A cross-sectional study. Photodiagnosis Photodyn. Ther. 2018, 21, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; et al. Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. N. Engl. J. Med. 2012, 366, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genentech Inc. Erivedge (vismodegib) [package insert]. U.S. Food and Drug Administration, 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203388lbl.pdf (accessed on 30 May 2022).
- Von Hoff, D.D.; LoRusso, P.M.; Rudin, C.M.; Reddy, J.C.; Yauch, R.L.; Tibes, R.; Weiss, G.J.; Borad, M.J.; Hann, C.L.; Brahmer, J.R.; et al. Inhibition of the Hedgehog Pathway in Advanced Basal-Cell Carcinoma. N. Engl. J. Med. 2009, 361, 1164–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LoRusso, P.M.; Jimeno, A.; Dy, G.; Adjei, A.; Berlin, J.; Leichman, L.; Low, J.A.; Colburn, D.; Chang, I.; Cheeti, S.; et al. Pharmacokinetic Dose-Scheduling Study of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Locally Advanced or Metastatic Solid Tumors. Clin. Cancer Res. 2011, 17, 5774–5782. [Google Scholar] [CrossRef] [Green Version]
- Sekulic, A.; Migden, M.R.; Lewis, K.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; Marmur, E.; Rudin, C.M.; et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J. Am. Acad. Dermatol. 2015, 72, 1021–1026.e8. [Google Scholar] [CrossRef]
- Dreno, B.; Basset-Seguin, N.; Caro, I.; Yue, H.; Schadendorf, D. Clinical Benefit Assessment of Vismodegib Therapy in Patients With Advanced Basal Cell Carcinoma. Oncologist 2014, 19, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.Y.; Mackay-Wiggan, J.M.; Aszterbaum, M.; Yauch, R.L.; Lindgren, J.; Chang, K.; Coppola, C.; Chanana, A.M.; Marji, J.; Bickers, D.R.; et al. Inhibiting the Hedgehog Pathway in Patients with the Basal-Cell Nevus Syndrome. N. Engl. J. Med. 2012, 366, 2180–2188. [Google Scholar] [CrossRef] [Green Version]
- Ally, M.S.; Aasi, S.; Wysong, A.; Teng, C.; Anderson, E.; Bailey-Healy, I.; Oro, A.; Kim, J.; Chang, A.L.; Tang, J.Y. An investigator-initiated open-label clinical trial of vismodegib as a neoadjuvant to surgery for high-risk basal cell carcinoma. J. Am. Acad. Dermatol. 2014, 71, 904–911.e1. [Google Scholar] [CrossRef]
- Novartis Pharmaceuticals. Odomzo (Sonidegib) [Package Insert]. U.S. Food and Drug Administration, 24 July 2015. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205266Orig1s000lbl.pdf (accessed on 30 May 2022).
- Pan, S.; Wu, X.; Jiang, J.; Gao, W.; Wan, Y.; Cheng, D.; Han, D.; Liu, J.; Englund, N.P.; Wang, Y.; et al. Discovery of NVP-LDE225, a Potent and Selective Smoothened Antagonist. ACS Med. Chem. Lett. 2010, 1, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, H.Q.; Silapunt, S.; Migden, M.R. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma. OncoTargets Ther. 2016, ume 9, 5671–5678. [Google Scholar] [CrossRef] [Green Version]
- Rodon, J.; Tawbi, H.A.; Thomas, A.L.; Stoller, R.G.; Turtschi, C.P.; Baselga, J.; Sarantopoulos, J.; Mahalingam, D.; Shou, Y.; Moles, M.A.; et al. A Phase I, Multicenter, Open-Label, First-in-Human, Dose-Escalation Study of the Oral Smoothened Inhibitor Sonidegib (LDE225) in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014, 20, 1900–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migden, M.R.; Guminski, A.; Gutzmer, R.; Dirix, L.; Lewis, K.D.; Combemale, P.; Herd, R.M.; Kudchadkar, R.; Trefzer, U.; Gogov, S.; et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): A multicentre, randomised, double-blind phase 2 trial. Lancet Oncol. 2015, 16, 716–728. [Google Scholar] [CrossRef]
- Dummer, R.; Guminksi, A.; Gutzmer, R.; Lear, J.; Lewis, K.; Chang, A.; Combemale, P.; Dirix, L.; Kaatz, M.; Kudchadkar, R.; et al. Long-term efficacy and safety of sonidegib in patients with advanced basal cell carcinoma: 42-month analysis of the phase II randomized, double-blind BOLT study. Br. J. Dermatol. 2019, 182, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Danial, C.; Sarin, K.Y.; Oro, A.E.; Chang, A.L.S. An Investigator-Initiated Open-Label Trial of Sonidegib in Advanced Basal Cell Carcinoma Patients Resistant to Vismodegib. Clin. Cancer Res. 2016, 22, 1325–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratigos, A.J.; Sekulic, A.; Peris, K.; Bechter, O.; Prey, S.; Kaatz, M.; Lewis, K.D.; Basset-Seguin, N.; Chang, A.L.S.; Dalle, S.; et al. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: An open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 848–857. [Google Scholar] [CrossRef]
- Damsin, T.; Lebas, E.; Marchal, N.; Rorive, A.; Nikkels, A.F. Cemiplimab for locally advanced and metastatic basal cell carcinoma. Expert Rev. Anticancer Ther. 2022, 22, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.M.; Lewis, K.D. Brief overview: Cemiplimab for the treatment of advanced basal cell carcinoma: PD-1 strikes again. Ther. Adv. Med Oncol. 2022, 14, 17588359211066147. [Google Scholar] [CrossRef]
- Jin, G.; Sivaraman, A.; Lee, K. Development of taladegib as a sonic hedgehog signaling pathway inhibitor. Arch. Pharmacal Res. 2017, 40, 1390–1393. [Google Scholar] [CrossRef] [PubMed]
- Bendell, J.; Andre, V.; Ho, A.; Kudchadkar, R.; Migden, M.; Infante, J.; Tiu, R.V.; Pitou, C.; Tucker, T.; Brail, L.; et al. Phase I Study of LY2940680, a Smo Antagonist, in Patients with Advanced Cancer Including Treatment-Naïve and Previously Treated Basal Cell Carcinoma. Clin. Cancer Res. 2018, 24, 2082–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimeno, A.; Weiss, G.J.; Miller, W.H.; Gettinger, S.; Eigl, B.J.; Chang, A.L.S.; Dunbar, J.; Devens, S.; Faia, K.; Skliris, G.; et al. Phase I Study of the Hedgehog Pathway Inhibitor IPI-926 in Adult Patients with Solid Tumors. Clin. Cancer Res. 2013, 19, 2766–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov. Extension Study of Patidegib Topical Gel, 2% in Subjects with Gorlin Syndrome (Basal Cell Nevus Syn-drome)—Full Text View. Available online: https://clinicaltrials.gov/ct2/show/NCT04308395 (accessed on 11 July 2021).
- Novartis Pharmaceuticals. A Phase I, Multi-Center, Open Label, Dose Escalation Study of LEQ506, an Oral Smoothened Inhibitor, in Patients with Advanced Solid Tumors. clinicaltrials.gov; Clinical Trial Registration NCT01106508; December 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT01106508 (accessed on 26 May 2022).
- Peukert, S.; He, F.; Dai, M.; Zhang, R.; Sun, Y.; Miller-Moslin, K.; McEwan, M.; Lagu, B.; Wang, K.; Yusuff, N.; et al. Discovery of NVP-LEQ506, a Second-Generation Inhibitor of Smoothened. ChemMedChem 2013, 8, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Lauressergues, E.; Heusler, P.; Lestienne, F.; Troulier, D.; Rauly-Lestienne, I.; Tourette, A.; Ailhaud, M.; Cathala, C.; Tardif, S.; Denais-Laliève, D.; et al. Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model. Pharmacol. Res. Perspect. 2016, 4, e00214. [Google Scholar] [CrossRef]
- Guangdong Zhongsheng Pharmaceutical Co., Ltd. A Phase 1, Open-Label, Dose-Escalation and Expansion, Safety and Tolerability Study of ZSP1602 in Participants with Advanced Solid Tumors. clinicaltrials.gov; Clinical Trial Registration NCT03734913; July 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT03734913 (accessed on 26 May 2022).
- Jia, J. Decoding the Hedgehog signal in animal development. Experientia 2006, 63, 1249–1265. [Google Scholar] [CrossRef]
- Jia, H.; Liu, Y.; Xia, R.; Tong, C.; Yue, T.; Jiang, J.; Jia, J. Casein Kinase 2 Promotes Hedgehog Signaling by Regulating both Smoothened and Cubitus Interruptus. J. Biol. Chem. 2010, 285, 37218–37226. [Google Scholar] [CrossRef] [Green Version]
- Giroux-Leprieur, E.; Costantini, A.; Ding, V.W.; He, B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int. J. Mol. Sci. 2018, 19, 2835. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, Y.; Mao, J.-H.; Hsieh, D.; Kim, I.-J.; Hu, L.-M.; Xu, Z.; Long, H.; Jablons, D.M.; You, L. Inhibition of CK2α Down-Regulates Hedgehog/Gli Signaling Leading to a Reduction of a Stem-Like Side Population in Human Lung Cancer Cells. PLoS ONE 2012, 7, e38996. [Google Scholar] [CrossRef] [Green Version]
- Purzner, T.; Purzner, J.; Buckstaff, T.; Cozza, G.; Gholamin, S.; Rusert, J.M.; Hartl, T.A.; Sanders, J.; Conley, N.; Ge, X.; et al. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci. Signal. 2018, 11, eaau5147. [Google Scholar] [CrossRef] [Green Version]
- Senhwa Biosciences, Inc. A Phase I, Multi-Center, Open-Label, Treatment Duration Increment, Expansion, Safety, and Pharmacodynamic Study of CX-4945 Administered Orally Twice Daily to Patients with Advanced Basal Cell Carcinoma. clinicaltrials.gov; Clinical Trial Registration NCT03897036; March 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03897036 (accessed on 26 May 2022).
- Kim, J.; Tang, J.Y.; Gong, R.; Kim, J.; Lee, J.J.; Clemons, K.V.; Chong, C.R.; Chang, K.S.; Fereshteh, M.; Gardner, D.; et al. Itraconazole, a Commonly Used Antifungal that Inhibits Hedgehog Pathway Activity and Cancer Growth. Cancer Cell 2010, 17, 388–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, M.; Teng, C.; Lee, A.; Sun, W.; Parekh, M.; Rajadas, J.; Beachy, P.; Epstein, E.; Tang, J. LB783 Topical Itraconazole inhibits the Hedgehog signaling pathway and reduces tumor development and size in murine models. J. Investig. Dermatol. 2016, 136, B6. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, J.; Spaunhurst, K.; Montoya, J.; Khodosh, R.; Chandra, K.; Fu, T.; Gilliam, A.; Molgo, M.; Beachy, P.A.; et al. Open-Label, Exploratory Phase II Trial of Oral Itraconazole for the Treatment of Basal Cell Carcinoma. J. Clin. Oncol. 2014, 32, 745–751. [Google Scholar] [CrossRef]
- Sohn, G.K.; Kwon, G.P.; Bailey-Healy, I.; Mirza, A.; Sarin, K.; Oro, A.; Tang, J.Y. Topical Itraconazole for the Treatment of Basal Cell Carcinoma in Patients With Basal Cell Nevus Syndrome or High-Frequency Basal Cell Carcinomas. JAMA Dermatol. 2019, 155, 1078–1080. [Google Scholar] [CrossRef]
- Ally, M.S.; Ransohoff, K.J.; Sarin, K.; Atwood, S.; Rezaee, M.; Bailey-Healy, I.; Kim, J.; Beachy, P.A.; Chang, A.L.S.; Oro, A.E.; et al. Effects of Combined Treatment With Arsenic Trioxide and Itraconazole in Patients With Refractory Metastatic Basal Cell Carcinoma. JAMA Dermatol. 2016, 152, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Kasper, M.; Regl, G.; Frischauf, A.-M.; Aberger, F. GLI transcription factors: Mediators of oncogenic Hedgehog signalling. Eur. J. Cancer 2006, 42, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ingham, P.W.; Nakano, Y.; Seger, C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat. Rev. Genet. 2011, 12, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.-C.; Angers, S. Gli Proteins in Development and Disease. Annu. Rev. Cell Dev. Biol. 2011, 27, 513–537. [Google Scholar] [CrossRef] [Green Version]
- Lauth, M.; Bergström, Å.; Shimokawa, T.; Toftgård, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. USA 2007, 104, 8455–8460. [Google Scholar] [CrossRef] [Green Version]
- Wickström, M.; Dyberg, C.; Shimokawa, T.; Milosevic, J.; Baryawno, N.; Fuskevåg, O.M.; Larsson, R.; Kogner, P.; Zaphiropoulos, P.G.; Johnsen, J.I. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int. J. Cancer 2012, 132, 1516–1524. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, R.; Zeng, C.; Lu, Q.; Huang, D.; Shi, C.; Zhang, W.; Deng, L.; Yan, R.; Rao, H.; et al. Down-Regulation of Gli Transcription Factor Leads to the Inhibition of Migration and Invasion of Ovarian Cancer Cells via Integrin β4-Mediated FAK Signaling. PLoS ONE 2014, 9, e88386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faniku, C.; Kong, W.; He, L.; Zhang, M.; Lilly, G.; Pepper, J. Hedgehog signaling promotes endoneurial fibroblast migration and Vegf-A expression following facial nerve injury. Brain Res. 2020, 1751, 147204. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Wilgus, T.A. Multiple Roles for VEGF in Non-Melanoma Skin Cancer: Angiogenesis and Beyond. J. Ski. Cancer 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed]
- AiViva BioPharma, Inc. An Exploratory Study to Evaluate the Safety and Efficacy of AIV001 Intradermally Administered in Subjects with Biopsy-Confirmed Basal Cell Carcinoma. clinicaltrials.gov; Clinical Trial Registration NCT04470726; May 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04470726 (accessed on 26 May 2022).
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Kuonen, F.; Surbeck, I.; Sarin, K.Y.; Dontenwill, M.; Rüegg, C.; Gilliet, M.; Oro, A.E.; Gaide, O. TGFβ, Fibronectin and Integrin α5β1 Promote Invasion in Basal Cell Carcinoma. J. Investig. Dermatol. 2018, 138, 2432–2442. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, J. The prognostic roles of cyclooxygenase-2 for patients with basal cell carcinoma. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3053–3057. [Google Scholar] [CrossRef] [Green Version]
- El-Khalawany, M.A.; Abou-Bakr, A.A. Role of Cyclooxygenase-2, Ezrin and Matrix metalloproteinase-9 as predictive markers for recurrence of basal cell carcinoma. J. Cancer Res. Ther. 2013, 9, 613–617. [Google Scholar] [CrossRef]
- Sirnaomics. An Open Label, Dose Escalation Study to Evaluate the Safety and Efficacy of Localized Injection of STP705 in Adult Patients with Basal Cell Carcinoma. clinicaltrials.gov; Clinical Trial Registration NCT04669808; January 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04669808 (accessed on 30 May 2022).
- Grosso, J.F.; Goldberg, M.V.; Getnet, D.; Bruno, T.C.; Yen, H.-R.; Pyle, K.J.; Hipkiss, E.; Vignali, D.A.A.; Pardoll, D.M.; Drake, C.G. Functionally Distinct LAG-3 and PD-1 Subsets on Activated and Chronically Stimulated CD8 T Cells. J. Immunol. 2009, 182, 6659–6669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.-Z.; Kim, H.J.; Villasboas, J.C.; Chen, Y.-P.; Price-Troska, T.; Jalali, S.; Wilson, M.; Novak, A.J.; Ansell, S.M. Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget 2017, 8, 61425–61439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Gutiérrez, E.C.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. Nivolumab Alone or Plus Relatlimab or Ipilimumab for Patients with Locally-Advanced Unresectable or Metastatic Basal Cell Carcinoma. clinicaltrials.gov; Clinical Trial Registration NCT03521830; March 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03521830 (accessed on 26 May 2022).
- Ferrucci, P.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef] [PubMed]
- Blackmon, J.T.; Dhawan, R.; Viator, T.M.; Terry, N.L.; Conry, R.M. Talimogene laherparepvec for regionally advanced Merkel cell carcinoma: A report of 2 cases. JAAD Case Rep. 2017, 3, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Ramelyte, E.; Tastanova, A.; Balázs, Z.; Ignatova, D.; Turko, P.; Menzel, U.; Guenova, E.; Beisel, C.; Krauthammer, M.; Levesque, M.P.; et al. Oncolytic virotherapy-mediated anti-tumor response: A single-cell perspective. Cancer Cell 2021, 39, 394–406.e4. [Google Scholar] [CrossRef]
- University of Zurich. A Phase I, Open Label, Single Arm, Single Centre Study to Evaluate Mechanism of Action of Talimogene Laherparepvec (T-VEC) in Locally Advanced Non-Melanoma Skin Cancer. clinicaltrials.gov; Clinical Trial Registration NCT03458117; March 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03458117 (accessed on 26 May 2022).
- National Cancer Institute (NCI). A Phase II Study of Talimogene Laherparepvec Followed by Talimogene Laherparepvec + Nivolumab in Refractory T Cell and NK Cell Lymphomas, Cutaneous Squamous Cell Carcinoma, Merkel Cell Carcinoma, and Other Rare Skin Tumors. clinicaltrials.gov; Clinical Trial Registration NCT02978625; April 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT02978625 (accessed on 26 May 2022).
- Miura, J.T.; Zager, J.S. Intralesional therapy as a treatment for locoregionally metastatic melanoma. Expert Rev. Anticancer Ther. 2018, 18, 399–408. [Google Scholar] [CrossRef]
- Wilmas, K.M.; Nguyen, Q.-B.; Patel, J.; Silapunt, S.; Migden, M.R. Treatment of advanced cutaneous squamous cell carcinoma: A Mohs surgery and dermatologic oncology perspective. Futur. Oncol. 2021, 17, 4971–4982. [Google Scholar] [CrossRef]
- Zawit, M.; Swami, U.; Awada, H.; Arnouk, J.; Milhem, M.; Zakharia, Y. Current status of intralesional agents in treatment of malignant melanoma. Ann. Transl. Med. 2021, 9, 1038. [Google Scholar] [CrossRef]
- Van Horssen, R.; Hagen, T.L.M.T.; Eggermont, A.M.M. TNF-α in Cancer Treatment: Molecular Insights, Antitumor Effects, and Clinical Utility. Oncologist 2006, 11, 397–408. [Google Scholar] [CrossRef]
- Malek, T.R. The main function of IL-2 is to promote the development of T regulatory cells. J. Leukoc. Biol. 2003, 74, 961–965. [Google Scholar] [CrossRef]
- Philogen, S.p.A. A Phase II Study of Intratumoral Administration of L19IL2/L19TNF in Non-melanoma Skin Cancer Patients with Presence of Injectable Lesions. clinicaltrials.gov; Clinical Trial Registration NCT04362722; April 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04362722 (accessed on 26 May 2022).
- Danielli, R.; Patuzzo, R.I.; Di Giacomo, A.M.; Gallino, G.; Maurichi, A.; Di Florio, A.; Cutaia, O.; Lazzeri, A.; Fazio, C.; Miracco, C.; et al. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: Results of a phase II study. Cancer Immunol. Immunother. 2015, 64, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Lu, J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018, 7, 4509–4516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-S.; Shen, S.-Q.; Sun, H.-W.; Xing, Z.-X.; Yang, H.-L. Interferon-gamma induces autophagy-associated apoptosis through induction of cPLA2-dependent mitochondrial ROS generation in colorectal cancer cells. Biochem. Biophys. Res. Commun. 2018, 498, 1058–1065. [Google Scholar] [CrossRef]
- Kammertoens, T.; Friese, C.; Arina, A.; Idel, C.; Briesemeister, D.; Rothe, M.; Ivanov, A.; Szymborska-Mell, A.; Patone, G.; Kunz, S.; et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 2017, 545, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Aqbi, H.F.; Wallace, M.; Sappal, S.; Payne, K.K.; Manjili, M.H. IFN-γ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. J. Leukoc. Biol. 2018, 103, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Ascend Biopharmaceuticals Ltd. A Phase 2A Study to Assess the Safety and Efficacy of ASN-002 Combined With a Hedgehog Pathway Inhibitor in the Treatment of Multiple Low Risk Basal Cell Carcinomas in Sporadic or Basal Cell Nevus Syndrome Patients. clinicaltrials.gov; Clinical Trial Registration NCT04416516; February 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04416516 (accessed on 26 May 2022).
Treatments for Consideration by Category 1 | BCCs with Lower-Risk Features | BCCs with Higher-Risk Features |
---|---|---|
Procedural treatments |
|
|
Topical, Intralesional, and Field Treatments |
|
|
Systemic Treatments |
| |
Investigational Treatments 2 |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, O.M.; Kim, K.; Steele, C.; Wilmas, K.M.; Aboul-Fettouh, N.; Burns, C.; Doan, H.Q.; Silapunt, S.; Migden, M.R. Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers 2022, 14, 3720. https://doi.org/10.3390/cancers14153720
Chen OM, Kim K, Steele C, Wilmas KM, Aboul-Fettouh N, Burns C, Doan HQ, Silapunt S, Migden MR. Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers. 2022; 14(15):3720. https://doi.org/10.3390/cancers14153720
Chicago/Turabian StyleChen, Olivia M., Keemberly Kim, Chelsea Steele, Kelly M. Wilmas, Nader Aboul-Fettouh, Carrick Burns, Hung Quoc Doan, Sirunya Silapunt, and Michael R. Migden. 2022. "Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma" Cancers 14, no. 15: 3720. https://doi.org/10.3390/cancers14153720
APA StyleChen, O. M., Kim, K., Steele, C., Wilmas, K. M., Aboul-Fettouh, N., Burns, C., Doan, H. Q., Silapunt, S., & Migden, M. R. (2022). Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers, 14(15), 3720. https://doi.org/10.3390/cancers14153720