Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Zebrafish Maintenance and Irradiation
2.2. Behavioral Analysis
2.2.1. Novel Tank and Social Preference Tests
2.2.2. Shoaling Test
2.3. Acetylcholinesterase Activity
2.4. Library Preparation and RNA Sequencing
2.5. Analysis of Transcriptomics Data
2.6. RNA In Situ Hybridization on Adult Brain Sections
2.7. Statistical Analysis
3. Results
3.1. Chronic Irradiation Altered mRNA Expression in Adult Zebrafish Telencephalon
3.2. Chronic Irradiation Induced Hypolocomotion
3.3. Chronic Irradiation Increases Stress Behavior in Female Zebrafish
3.4. Chronic Irradiation Reduces Sociability in Female Zebrafish
3.5. Induction of Gene Expression Involved in Stress Response or Neurogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Folley, J.H.; Borges, W.; Yamawaki, T. Incidence of Leukemia in Survivors of the Atomic Bomb in Hiroshima and Nagasaki, Japan. Am. J. Med. 1952, 13, 311–321. [Google Scholar] [CrossRef]
- Ozasa, K.; Shimizu, Y.; Suyama, A.; Kasagi, F.; Soda, M.; Grant, E.J.; Sakata, R.; Sugiyama, H.; Kodama, K. Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases. Radiat. Res. 2012, 177, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Grant, E.J.; Brenner, A.; Sugiyama, H.; Sakata, R.; Sadakane, A.; Utada, M.; Cahoon, E.K.; Milder, C.M.; Soda, M.; Cullings, H.M. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat. Res. 2017, 187, 513–537. [Google Scholar] [CrossRef] [Green Version]
- Otake, M.; Schull, W.J. Radiation-Related Brain Damage and Growth Retardation among the Prenatally Exposed Atomic Bomb Survivors. Int. J. Radiat. Biol. 1998, 74, 159–171. [Google Scholar] [CrossRef]
- Møller, A.P.; Bonisoli-Alquati, A.; Rudolfsen, G.; Mousseau, T.A. Chernobyl Birds Have Smaller Brains. PLoS ONE 2011, 6, e16862. [Google Scholar] [CrossRef]
- Hayama, S.; Tsuchiya, M.; Ochiai, K.; Nakiri, S.; Nakanishi, S.; Ishii, N.; Kato, T.; Tanaka, A.; Konno, F.; Kawamoto, Y.; et al. Small Head Size and Delayed Body Weight Growth in Wild Japanese Monkey Fetuses after the Fukushima Daiichi Nuclear Disaster. Sci. Rep. 2017, 7, 3528. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR. Report of the United Nations Scientifc Committee on the Efects of Atomic Radiation 2010: 57th Session: Summary of Low_Dose Radiation Efects on Health; UNSCEAR: New York, NY, USA, 2010. [Google Scholar]
- Beresford, N.A.; Copplestone, D. Effects of Ionizing Radiation on Wildlife: What Knowledge Have We Gained between the Chernobyl and Fukushima Accidents? Integr. Environ. Assess. Manag. 2011, 7, 371–373. [Google Scholar] [CrossRef] [Green Version]
- Cannon, G.; Kiang, J.G. A Review of the Impact on the Ecosystem after Ionizing Irradiation: Wildlife Population. Int. J. Radiat. Biol. 2022, 98, 1054–1062. [Google Scholar] [CrossRef]
- Verreet, T.; Verslegers, M.; Quintens, R.; Baatout, S.; Benotmane, M.A. Current Evidence for Developmental, Structural, and Functional Brain Defects Following Prenatal Radiation Exposure. Neural Plast. 2016, 2016, 1243527. [Google Scholar] [CrossRef] [Green Version]
- Passemard, S.; Perez, F.; Gressens, P.; El Ghouzzi, V. Endoplasmic Reticulum and Golgi Stress in Microcephaly. Cell Stress 2019, 3, 369. [Google Scholar] [CrossRef]
- Hossain, M.; Chetana, M.; Devi, P.U. Late Effect of Prenatal Irradiation on the Hippocampal Histology and Brain Weight in Adult Mice. Int. J. Dev. Neurosci. 2005, 23, 307–313. [Google Scholar] [CrossRef]
- Schmitz, C.; Born, M.; Dolezel, P.; Rutten, B.; de Saint-Georges, L.; Hof, P.; Korr, H. Prenatal Protracted Irradiation at Very Low Dose Rate induces Severe Neuronal Loss in Rat Hippocampus and Cerebellum. Neuroscience 2005, 130, 935–948. [Google Scholar] [CrossRef]
- Brizzee, K. Quantitative Histological Studies on Delayed Effects of Prenatal X-Irradiation in Rat Cerebral Cortex. J. Neuropathol. Exp. Neurol. 1967, 26, 584–600. [Google Scholar] [CrossRef] [PubMed]
- Lazarini, F.; Mouthon, M.-A.; Gheusi, G.; de Chaumont, F.; Olivo-Marin, J.-C.; Lamarque, S.; Abrous, D.N.; Boussin, F.D.; Lledo, P.-M. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice. PLoS ONE 2009, 4, e7017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskar, R.; Devi, P.U. Influence of Gestational Age to Low-Level Gamma Irradiation on Postnatal Behavior in Mice. Neurotoxicol. Teratol. 2000, 22, 593–602. [Google Scholar] [CrossRef]
- Mele, P.C.; Franz, C.G.; Harrison, J.R. Effects of Ionizing Radiation on Fixed-Ratio Escape Performance in Rats. Neurotoxicol. Teratol. 1990, 12, 367–373. [Google Scholar] [CrossRef]
- Hall, P.; Adami, H.-O.; Trichopoulos, D.; Pedersen, N.L.; Lagiou, P.; Ekbom, A.; Ingvar, M.; Lundell, M.; Granath, F. Effect of Low Doses of Ionising Radiation in Infancy on Cognitive Function in Adulthood: Swedish Population Based Cohort Study. BMJ 2004, 328, 19. [Google Scholar] [CrossRef] [Green Version]
- Almond, D.; Edlund, L.; Palme, M. Chernobyl’s Subclinical Legacy: Prenatal Exposure to Radioactive Fallout and School Outcomes in Sweden. Q. J. Econ. 2009, 124, 1729–1772. [Google Scholar] [CrossRef] [Green Version]
- Heiervang, K.S.; Mednick, S.; Sundet, K.; Rund, B.R. Effect of Low Dose Ionizing Radiation Exposure in Utero on Cognitive Function in Adolescence. Scand. J. Psychol. 2010, 51, 210–215. [Google Scholar] [CrossRef]
- Gamache, G.L.; Levinson, D.M.; Reeves, D.L.; Bidyuk, P.I.; Brantley, K.K. Longitudinal Neurocognitive Assessments of Ukrainians Exposed to Ionizing Radiation after the Chernobyl Nuclear Accident. Arch. Clin. Neuropsychol. 2005, 20, 81–93. [Google Scholar] [CrossRef]
- Loganovsky, K.; Perchuk, I.; Marazziti, D. Workers on Transformation of the Shelter Object of the Chernobyl Nuclear Power Plant into an Ecologically-Safe System Show QEEG Abnormalities and Cognitive Dysfunctions: A Follow-up Study. World J. Biol. Psychiatry 2016, 17, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Barazzuol, L.; Hopkins, S.R.; Ju, L.; Jeggo, P.A. Distinct Response of Adult Neural Stem Cells to Low Versus High Dose Ionising Radiation. Dna Repair 2019, 76, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Shinjyo, N.; Sato, M.; Osato, K.; Zhu, C.; Pekna, M.; Kuhn, H.; Blomgren, K. Grafting of Neural Stem and Progenitor Cells to the Hippocampus of Young, Irradiated Mice Causes Gliosis and Disrupts the Granule Cell Layer. Cell Death Dis. 2013, 4, e591. [Google Scholar] [CrossRef] [Green Version]
- Monje, M.L.; Mizumatsu, S.; Fike, J.R.; Palmer, T.D. Irradiation Induces Neural Precursor-Cell Dysfunction. Nat. Med. 2002, 8, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Achanta, P.; Capilla-Gonzalez, V.; Purger, D.; Reyes, J.; Sailor, K.; Song, H.; Garcia-Verdugo, J.M.; Gonzalez-Perez, O.; Ford, E.; Quinones-Hinojosa, A. Subventricular Zone Localized Irradiation Affects the Generation of Proliferating Neural Precursor Cells and the Migration of Neuroblasts. Stem Cells 2012, 30, 2548–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.; Achanta, P.; Purger, D.; Armour, M.; Reyes, J.; Fong, J.; Kleinberg, L.; Redmond, K.; Wong, J.; Jang, M. Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain. Radiat. Res. 2011, 175, 774–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, G.; Alshamy, G.; Chan, B.; Abrams, R.; Greenberg, E.; Saxena, A.; Bradbury, M.; Edgar, M.; Gutin, P.; Tabar, V. Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain. PLoS ONE 2007, 2, e588. [Google Scholar] [CrossRef] [Green Version]
- Azizova, T.V.; Bannikova, M.V.; Grigoryeva, E.S.; Rybkina, V.L.; Hamada, N. Occupational Exposure to Chronic Ionizing Radiation Increases Risk of Parkinson’s Disease Incidence in Russian Mayak Workers. Int. J. Epidemiol. 2020, 49, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Lowe, X.R.; Bhattacharya, S.; Marchetti, F.; Wyrobek, A.J. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer’s Disease. Radiat. Res. 2009, 171, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Yin, E.; Nelson, D.; Coleman, M.A.; Peterson, L.E.; Wyrobek, A. Gene Expression Changes in Mouse Brain after Exposure to Low-Dose Ionizing Radiation. Int. J. Radiat. Biol. 2003, 79, 759–775. [Google Scholar] [CrossRef]
- Gillies, M.; Richardson, D.B.; Cardis, E.; Daniels, R.D.; O’Hagan, J.A.; Haylock, R.; Laurier, D.; Leuraud, K.; Moissonnier, M.; Schubauer-Berigan, M.K.; et al. Mortality from Circulatory Diseases and Other Non-Cancer Outcomes among Nuclear Workers in France, the United Kingdom and the United States (INWORKS). Radiat. Res. 2017, 188, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Pasqual, E.; Boussin, F.; Bazyka, D.; Nordenskjold, A.; Yamada, M.; Ozasa, K.; Pazzaglia, S.; Roy, L.; Thierry-Chef, I.; de Vathaire, F.; et al. Cognitive Effects of Low Dose of Ionizing Radiation—Lessons Learned and Research Gaps from Epidemiological and Biological Studies. Environ. Int. 2021, 147, 106295. [Google Scholar] [CrossRef] [PubMed]
- Boice, J.D.; Quinn, B.; Al-Nabulsi, I.; Ansari, A.; Blake, P.K.; Blattnig, S.R.; Caffrey, E.A.; Cohen, S.S.; Golden, A.P.; Held, K.D.; et al. A Million Persons, a Million Dreams: A Vision for a National Center of Radiation Epidemiology and Biology. Int. J. Radiat. Biol. 2022, 98, 795–821. [Google Scholar] [CrossRef] [PubMed]
- Maximino, C.; van der Staay, F.J. Behavioral Models in Psychopathology: Epistemic and Semantic Considerations. Behav. Brain Funct. 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, J.; Oliveri, A.; Levin, E.D. Zebrafish Model Systems for Developmental Neurobehavioral Toxicology. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in Teleosts: Dynamics, Mechanisms of Action, and Metabolic Regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Amico, J.; Mantella, R.; Vollmer, R.; Li, X. Anxiety and Stress Responses in Female Oxytocin Deficient Mice. J. Neuroendocrinol. 2004, 16, 319–324. [Google Scholar] [CrossRef]
- Torner, L.; Plotsky, P.M.; Neumann, I.D.; de Jong, T.R. Forced Swimming-Induced Oxytocin Release into Blood and Brain: Effects of Adrenalectomy and Corticosterone Treatment. Psychoneuroendocrinology 2017, 77, 165–174. [Google Scholar] [CrossRef]
- Harvey, B.H.; Regenass, W.; Dreyer, W.; Möller, M. Social Isolation Rearing-Induced Anxiety and Response to Agomelatine in Male and Female Rats: Role of Corticosterone, Oxytocin, and Vasopressin. J. Psychopharmacol. 2019, 33, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M.; Takayanagi, Y.; Inoue, K.; Kimura, T.; Young, L.J.; Onaka, T.; Nishimori, K. Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice. J. Neurosci. 2009, 29, 2259–2271. [Google Scholar] [CrossRef]
- de la Mora, M.P.; Pérez-Carrera, D.; Crespo-Ramírez, M.; Tarakanov, A.; Fuxe, K.; Borroto-Escuela, D.O. Signaling in Dopamine D2 Receptor-Oxytocin Receptor Heterocomplexes and Its Relevance for the Anxiolytic Effects of Dopamine and Oxytocin Interactions in the Amygdala of the Rat. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2016, 1862, 2075–2085. [Google Scholar] [CrossRef] [PubMed]
- Steinman, M.Q.; Duque-Wilckens, N.; Trainor, B.C. Complementary Neural Circuits for Divergent Effects of Oxytocin: Social Approach versus Social Anxiety. Biol. Psychiatry 2019, 85, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.K.; Freels, T.G.; Prater, W.T.; Lester, D.B. Systemic Oxytocin Administration Alters Mesolimbic Dopamine Release in Mice. Neuroscience 2019, 408, 226–238. [Google Scholar] [CrossRef]
- Baskerville, T.A.; Douglas, A.J. Dopamine and Oxytocin Interactions Underlying Behaviors: Potential Contributions to Behavioral Disorders. CNS Neurosci. Ther. 2010, 16, e92–e123. [Google Scholar] [CrossRef]
- Dölen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social Reward Requires Coordinated Activity of Nucleus Accumbens Oxytocin and Serotonin. Nature 2013, 501, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottolese, R.; Redouté, J.; Costes, N.; Le Bars, D.; Sirigu, A. Switching Brain Serotonin with Oxytocin. Proc. Natl. Acad. Sci. USA 2014, 111, 8637–8642. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, H.C.; Colanesi, S.; Cooper, B.; Reichmann, F.; Young, A.M.J.; Kelsh, R.N.; Norton, W.H.J. Endothelin Neurotransmitter Signalling Controls Zebrafish Social Behaviour. Sci. Rep. 2019, 9, 3040. [Google Scholar] [CrossRef]
- Landin, J.; Hovey, D.; Xu, B.; Lagman, D.; Zettergren, A.; Larhammar, D.; Kettunen, P.; Westberg, L. Oxytocin Receptors Regulate Social Preference in Zebrafish. Sci. Rep. 2020, 10, 5435. [Google Scholar] [CrossRef]
- Chuang, H.-J.; Chang, C.-Y.; Ho, H.-P.; Chou, M.-Y. Oxytocin Signaling Acts as a Marker for Environmental Stressors in Zebrafish. Int. J. Mol. Sci. 2021, 22, 7459. [Google Scholar] [CrossRef] [PubMed]
- Gemmer, A.; Mirkes, K.; Anneser, L.; Eilers, T.; Kibat, C.; Mathuru, A.; Ryu, S.; Schuman, E. Oxytocin Receptors Influence the Development and Maintenance of Social Behavior in Zebrafish (Danio rerio). Sci. Rep. 2022, 12, 4322. [Google Scholar] [CrossRef]
- Orger, M.B.; de Polavieja, G.G. Zebrafish Behavior: Opportunities and Challenges. Annu. Rev. Neurosci. 2017, 40, 125–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, W.; Bally-Cuif, L. Adult Zebrafish as a Model Organism for Behavioural Genetics. BMC Neurosci. 2010, 11, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, P.; Garnier-Laplace, J.; Beresford, N.A.; Copplestone, D.; Howard, B.J.; Howe, P.; Oughton, D.; Whitehouse, P. Protection of the Environment from Ionising Radiation in a Regulatory Context (PROTECT): Proposed Numerical Benchmark Values. J. Environ. Radioact. 2009, 100, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Lerebours, A.; Gudkov, D.; Nagorskaya, L.; Kaglyan, A.; Rizewski, V.; Leshchenko, A.; Bailey, E.H.; Bakir, A.; Ovsyanikova, S.; Laptev, G. Impact of Environmental Radiation on the Health and Reproductive Status of Fish from Chernobyl. Environ. Sci. Technol. 2018, 52, 9442–9450. [Google Scholar] [CrossRef] [Green Version]
- Help Ethovision—Version 16XT—Noldus; Noldus Information Technology BV: Wageningen, The Netherland, 2021; p. 945.
- Fontana, B.D.; Müller, T.E.; Cleal, M.; de Abreu, M.S.; Norton, W.H.J.; Demin, K.A.; Amstislavskaya, T.G.; Petersen, E.V.; Kalueff, A.V.; Parker, M.O.; et al. Using Zebrafish (Danio rerio) Models to Understand the Critical Role of Social Interactions in Mental Health and Wellbeing. Prog. Neurobiol. 2022, 208, 101993. [Google Scholar] [CrossRef] [PubMed]
- Ogi, A.; Licitra, R.; Naef, V.; Marchese, M.; Fronte, B.; Gazzano, A.; Santorelli, F.M. Social Preference Tests in Zebrafish: A Systematic Review. Front. Vet. Sci. 2021, 7, 590057. [Google Scholar] [CrossRef]
- Stewart, A.; Gaikwad, S.; Kyzar, E.; Green, J.; Roth, A.; Kalueff, A.V. Modeling Anxiety Using Adult Zebrafish: A Conceptual Review. Neuropharmacology 2012, 62, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.; Raymond, J.; Hester, J.; Kyzar, E.; Gaikwad, S.; Bruce, I.; Fryar, C.; Chanin, S.; Enriquez, J.; Bagawandoss, S. Assessing Social Behavior Phenotypes in Adult Zebrafish: Shoaling, Social Preference, and Mirror Biting Tests. In Zebrafish Protocols for Neurobehavioral Research; Springer: Berlin/Heidelberg, Germany, 2012; pp. 231–246. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- El Houdigui, S.M.; Adam-Guillermin, C.; Loro, G.; Arcanjo, C.; Frelon, S.; Floriani, M.; Dubourg, N.; Baudelet, E.; Audebert, S.; Camoin, L. A Systems Biology Approach Reveals Neuronal and Muscle Developmental Defects after Chronic Exposure to Ionising Radiation in Zebrafish. Sci. Rep. 2019, 9, 20241. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping Identifiers for the Integration of Genomic Datasets with the R/Bioconductor Package Biomart. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armant, O.; Gombeau, K.; El Houdigui, S.M.; Floriani, M.; Camilleri, V.; Cavalie, I.; Adam-Guillermin, C. Zebrafish Exposure to Environmentally Relevant Concentration of Depleted Uranium Impairs Progeny Development at the Molecular and Histological Levels. PLoS ONE 2017, 12, e0177932. [Google Scholar] [CrossRef] [PubMed]
- El Houdigui, S.M.; Adam-Guillermin, C.; Armant, O. Ionising Radiation Induces Promoter DNA Hypomethylation and Perturbs Transcriptional Activity of Genes Involved in Morphogenesis during Gastrulation in Zebrafish. Int. J. Mol. Sci. 2020, 21, 4014. [Google Scholar] [CrossRef] [PubMed]
- Thisse, B.; Thisse, C. Protocol for In Situ Hybridization on whole Mount Zebrafish Embryos. ZFIN Database. Available online: https://zfin.org/ZFIN/Methods/ThisseProtocol.html (accessed on 29 July 2022).
- Genario, R.; Giacomini, A.C.V.V.; de Abreu, M.S.; Marcon, L.; Demin, K.A.; Kalueff, A.V. Sex Differences in Adult Zebrafish Anxiolytic-Like Responses to Diazepam and Melatonin. Neurosci. Lett. 2020, 714, 134548. [Google Scholar] [CrossRef] [PubMed]
- Volgin, A.D.; Yakovlev, O.A.; Demin, K.A.; de Abreu, M.S.; Alekseeva, P.A.; Friend, A.J.; Lakstygal, A.M.; Amstislavskaya, T.G.; Bao, W.; Song, C.; et al. Zebrafish Models for Personalized Psychiatry: Insights from Individual, Strain and Sex Differences, and Modeling Gene X Environment Interactions. J. Neurosci. Res. 2019, 97, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Mineur, Y.S.; Obayemi, A.; Wigestrand, M.B.; Fote, G.M.; Calarco, C.A.; Li, A.M.; Picciotto, M.R. Cholinergic Signaling in the Hippocampus Regulates Social Stress Resilience and Anxiety-and Depression-Like Behavior. Proc. Natl. Acad. Sci. USA 2013, 110, 3573–3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidel, A.J.; Assmann, K.L.; Werlang, C.C.; Bertoncello, K.T.; Francescon, F.; Rambo, C.L.; Beltrame, G.M.; Calegari, D.; Batista, C.B.; Blaser, R.E. Subchronic Atrazine Exposure Changes Defensive Behaviour Profile and Disrupts Brain Acetylcholinesterase Activity of Zebrafish. Neurotoxicol. Teratol. 2014, 44, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Aponte, A.; Petrunich-Rutherford, M.L. Acute Net Stress of Young Adult Zebrafish (Danio rerio) Is Not Sufficient to Increase Anxiety-Like Behavior and Whole-Body Cortisol. PeerJ 2019, 7, e7469. [Google Scholar] [CrossRef] [Green Version]
- Shainer, I.; Michel, M.; Marquart, G.D.; Bhandiwad, A.A.; Zmora, N.; Livne, Z.B.-M.; Zohar, Y.; Hazak, A.; Mazon, Y.; Förster, D. Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response System. Curr. Biol. 2019, 29, 2009–2019. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, D.; Wang, H.; Wang, Y.; Hu, W.; Sun, Y. Zebrafish Cyp11c1 Knockout Reveals the Roles of 11-Ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology 2020, 161, bqaa048. [Google Scholar] [CrossRef]
- Jeanneteau, F.; Barrère, C.; Vos, M.; De Vries, C.J.; Rouillard, C.; Levesque, D.; Dromard, Y.; Moisan, M.-P.; Duric, V.; Franklin, T.C. The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. J. Neurosci. 2018, 38, 1335–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Raymond, P.A. Zebrafish Cone-Rod (Crx) Homeobox Gene Promotes Retinogenesis. Dev. Biol. 2004, 269, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braida, D.; Donzelli, A.; Martucci, R.; Capurro, V.; Busnelli, M.; Chini, B.; Sala, M. Neurohypophyseal Hormones Manipulation Modulate Social and Anxiety-Related Behavior in Zebrafish. Psychopharmacology 2012, 220, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Strähle, U.; Scholpp, S. Neurogenesis in Zebrafish—From Embryo to Adult. Neural. Dev. 2013, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Christoffel, D.J.; Golden, S.A.; Russo, S.J. Structural and Synaptic Plasticity in Stress-Related Disorders. Rev. Neurosci. 2011, 22, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Krȩżel, W.; Dupont, S.; Krust, A.; Chambon, P.; Chapman, P.F. Increased Anxiety and Synaptic Plasticity in Estrogen Receptor β-Deficient Mice. Proc. Natl. Acad. Sci. USA 2001, 98, 12278–12282. [Google Scholar] [CrossRef] [Green Version]
- Kempf, S.J.; Casciati, A.; Buratovic, S.; Janik, D.; von Toerne, C.; Ueffing, M.; Neff, F.; Moertl, S.; Stenerlöw, B.; Saran, A.; et al. The Cognitive Defects of Neonatally Irradiated Mice Are Accompanied by Changed Synaptic Plasticity, Adult Neurogenesis and Neuroinflammation. Mol. Neurodegener. 2014, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Hladik, D.; Tapio, S. Effects of Ionizing Radiation on the Mammalian Brain. Mutat. Res. Rev. Mutat. Res. 2016, 770, 219–230. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, K.; Xia, Y.; Li, Y.; Hou, Y.; Wang, L.; Li, L.; Chang, L.; Li, W. Cellular Senescence in Ionizing Radiation. Oncol. Rep. 2019, 42, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lee, H.-J.; Kim, J.C.; Kang, S.S.; Bae, C.-S.; Shin, T.; Jin, J.-K.; Kim, S.H.; Wang, H.; Moon, C. Transient Impairment of Hippocampus-Dependent Learning and Memory in Relatively Low-Dose of Acute Radiation Syndrome Is Associated with Inhibition of Hippocampal Neurogenesis. J. Radiat. Res. 2008, 49, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Foray, N.; Bourguignon, M.; Hamada, N. Individual Response to Ionizing Radiation. Mutat. Res. Rev. Mutat. Res. 2016, 770, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Manda, K.; Anzai, K.; Kumari, S.; Bhatia, A. Melatonin Attenuates Radiation-Induced Learning Deficit and Brain Oxidative Stress in Mice. Acta Neurobiol. Exp. 2007, 67, 63. [Google Scholar]
- Koc, U.; Cam, I. Chapter 24—Radiation and Oxidative Stress. In Toxicology; Patel, V.B., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 233–241. ISBN 978-0-12-819092-0. [Google Scholar]
- Barbosa, J.S.; Ninkovic, J. Adult Neural Stem Cell Behavior Underlying Constitutive and Restorative Neurogenesis in Zebrafish. Neurogenesis 2016, 3, e1148101. [Google Scholar] [CrossRef] [Green Version]
- Kizil, C.; Kaslin, J.; Kroehne, V.; Brand, M. Adult Neurogenesis and Brain Regeneration in Zebrafish. Dev. Neurobiol. 2012, 72, 429–461. [Google Scholar] [CrossRef]
- Than-Trong, E.; Bally-Cuif, L. Radial Glia and Neural Progenitors in the Adult Zebrafish Central Nervous System. Glia 2015, 63, 1406–1428. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, Q.-L.; Nie, Z.; Sun, H.; Lennon, G.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Zack, D.J. Crx, a Novel Otx-like Paired-Homeodomain Protein, Binds to and Transactivates Photoreceptor Cell-Specific Genes. Neuron 1997, 19, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- York, J.M.; Blevins, N.A.; Meling, D.D.; Peterlin, M.B.; Gridley, D.S.; Cengel, K.A.; Freund, G.G. The Biobehavioral and Neuroimmune Impact of Low-Dose Ionizing Radiation. Brain Behav. Immun. 2012, 26, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ung, M.-C.; Garrett, L.; Dalke, C.; Leitner, V.; Dragosa, D.; Hladik, D.; Neff, F.; Wagner, F.; Zitzelsberger, H.; Miller, G.; et al. Dose-Dependent Long-Term Effects of a Single Radiation Event on Behaviour and Glial Cells. Int. J. Radiat. Biol. 2021, 97, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Gagnaire, B.; Cavalié, I.; Pereira, S.; Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C. External Gamma Irradiation-Induced Effects in Early-Life Stages of Zebrafish, Danio rerio. Aquat. Toxicol. 2015, 169, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Cachat, J.; Stewart, A.; Grossman, L.; Gaikwad, S.; Kadri, F.; Chung, K.M.; Wu, N.; Wong, K.; Roy, S.; Suciu, C. Measuring Behavioral and Endocrine Responses to Novelty Stress in Adult Zebrafish. Nat. Protoc. 2010, 5, 1786–1799. [Google Scholar] [CrossRef]
- Moisan, M.-P.; Castanon, N. Emerging Role of Corticosteroid-Binding Globulin in Glucocorticoid-Driven Metabolic Disorders. Front. Endocrinol. 2016, 7, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, S.A.; Chao, P.-L.; Hwang, P.-P. Cortisol Promotes Differentiation of Epidermal Ionocytes through Foxi3 Transcription Factors in Zebrafish (Danio rerio). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 164, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Yang, E.; Neelkantan, N.; Mikhaylova, A.; Arnold, R.; Poudel, M.K.; Stewart, A.M.; Kalueff, A.V. Developing ‘Integrative’ Zebrafish Models of Behavioral and Metabolic Disorders. Behav. Brain Res. 2013, 256, 172–187. [Google Scholar] [CrossRef]
- Nozari, A.; Do, S.; Trudeau, V.L. Applications of the SR4G Transgenic Zebrafish Line for Biomonitoring of Stress-Disrupting Compounds: A Proof-of-Concept Study. Front. Endocrinol. 2021, 12, 727777. [Google Scholar] [CrossRef] [PubMed]
- Weger, M.; Diotel, N.; Weger, B.D.; Beil, T.; Zaucker, A.; Eachus, H.L.; Oakes, J.A.; do Rego, J.L.; Storbeck, K.; Gut, P. Expression and Activity Profiling of the Steroidogenic Enzymes of Glucocorticoid Biosynthesis and the Fdx1 Co—Factors in Zebrafish. J. Neuroendocrinol. 2018, 30, e12586. [Google Scholar] [CrossRef] [PubMed]
- Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.-H.; Liang, S.-T.; Chen, J.-R.; Chen, K.H.-C.; Hsiao, C.-D. Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure. Int. J. Mol. Sci. 2020, 21, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonstra, R.; Manzon, R.G.; Mihok, S.; Helson, J.E. Hormetic Effects of Gamma Radiation on the Stress Axis of Natural Populations of Meadow Voles (Microtus pennsylvanicus). Environ. Toxicol. Chem. 2005, 24, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, J.; Herget, U.; Choi, M.K.; Ryu, S. Anatomy, Development, and Plasticity of the Neurosecretory Hypothalamus in Zebrafish. Cell Tissue Res. 2019, 375, 5–22. [Google Scholar] [CrossRef]
- Amer, S.; Brown, J.A. Glomerular Actions of Arginine Vasotocin in the In Situ Perfused Trout Kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995, 269, R775–R780. [Google Scholar] [CrossRef]
- Chan, D.K. Comparative Physiology of the Vasomotor Effects of Neurohypophysial Peptides in the Vertebrates. Am. Zool. 1977, 17, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.; Monakhov, M.; Pratt, M.; Ebstein, R.P. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. Biol. Psychiatry 2016, 79, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Steinman, M.Q.; Duque-Wilckens, N.; Greenberg, G.D.; Hao, R.; Campi, K.L.; Laredo, S.A.; Laman-Maharg, A.; Manning, C.E.; Doig, I.E.; Lopez, E.M. Sex-Specific Effects of Stress on Oxytocin Neurons Correspond with Responses to Intranasal Oxytocin. Biol. Psychiatry 2016, 80, 406–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Babygirija, R.; Bülbül, M.; Cerjak, D.; Ludwig, K.; Takahashi, T. Hypothalamic Oxytocin Mediates Adaptation Mechanism against Chronic Stress in Rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G946–G953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, J.N.; Aldag, J.M.; Insel, T.R.; Young, L.J. Oxytocin in the Medial Amygdala Is Essential for Social Recognition in the Mouse. J. Neurosci. 2001, 21, 8278–8285. [Google Scholar] [CrossRef]
- Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin Modulates Neural Circuitry for Social Cognition and Fear in Humans. J. Neurosci. 2005, 25, 11489–11493. [Google Scholar] [CrossRef] [Green Version]
- Goodson, J.L.; Schrock, S.E.; Klatt, J.D.; Kabelik, D.; Kingsbury, M.A. Mesotocin and Nonapeptide Receptors Promote Estrildid Flocking Behavior. Science 2009, 325, 862–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonnis, S.; Angiulli, E.; Maffioli, E.; Frabetti, F.; Negri, A.; Cioni, C.; Alleva, E.; Romeo, V.; Tedeschi, G.; Toni, M. Acute Environmental Temperature Variation Affects Brain Protein Expression, Anxiety and Explorative Behaviour in Adult Zebrafish. Sci. Rep. 2021, 11, 2521. [Google Scholar] [CrossRef]
- Nunes, A.R.; Gliksberg, M.; Varela, S.A.; Teles, M.; Wircer, E.; Blechman, J.; Petri, G.; Levkowitz, G.; Oliveira, R.F. Developmental Effects of Oxytocin Neurons on Social Affiliation and Processing of Social Information. J. Neurosci. 2021, 41, 8742–8760. [Google Scholar] [CrossRef]
- Onaka, T.; Takayanagi, Y. Role of Oxytocin in the Control of Stress and Food Intake. J. Neuroendocrinol. 2019, 31, e12700. [Google Scholar] [CrossRef]
- Gilchriest, B.; Tipping, D.; Hake, L.; Levy, A.; Baker, B. The Effects of Acute and Chronic Stresses on Vasotocin Gene Transcripts in the Brain of the Rainbow Trout (Oncorhynchus mykiss). J. Neuroendocrinol. 2000, 12, 795–801. [Google Scholar] [CrossRef]
- Kulczykowska, E. Responses of Circulating Arginine Vasotocin, Isotocin, and Melatonin to Osmotic and Disturbance Stress in Rainbow Trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2001, 24, 201–206. [Google Scholar] [CrossRef]
- Smith, C.J.; DiBenedictis, B.T.; Veenema, A.H. Comparing Vasopressin and Oxytocin Fiber and Receptor Density Patterns in the Social Behavior Neural Network: Implications for Cross-System Signaling. Front. Neuroendocrinol. 2019, 53, 100737. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Albers, H.E. Cross-Talk among Oxytocin and Arginine-Vasopressin Receptors: Relevance for Basic and Clinical Studies of the Brain and Periphery. Front. Neuroendocrinol. 2018, 51, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Nunes, A.R.; Gliksberg, M.; Anbalagan, S.; Levkowitz, G.; Oliveira, R.F. Oxytocin Receptor Signalling Modulates Novelty Recognition but Not Social Preference in Zebrafish. J. Neuroendocrinol. 2020, 32, e12834. [Google Scholar] [CrossRef] [PubMed]
- Buske, C.; Gerlai, R. Maturation of Shoaling Behavior Is Accompanied by Changes in the Dopaminergic and Serotoninergic Systems in Zebrafish. Dev. Psychobiol. 2012, 54, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanfumey, L.; Mongeau, R.; Cohen-Salmon, C.; Hamon, M. Corticosteroid–Serotonin Interactions in the Neurobiological Mechanisms of Stress-Related Disorders. Neurosci. Biobehav. Rev. 2008, 32, 1174–1184. [Google Scholar] [CrossRef]
- Maximino, C.; Puty, B.; Benzecry, R.; Araújo, J.; Lima, M.G.; Batista, E.; de, J.O.; de Matos Oliveira, K.R.; Crespo-Lopez, M.E.; Herculano, A.M. Role of Serotonin in Zebrafish (Danio rerio) Anxiety: Relationship with Serotonin Levels and Effect of Buspirone, WAY 100635, SB 224289, Fluoxetine and Para-Chlorophenylalanine (pCPA) in Two Behavioral Models. Neuropharmacology 2013, 71, 83–97. [Google Scholar] [CrossRef]
- Kacprzak, V.; Patel, N.A.; Riley, E.; Yu, L.; Yeh, J.-R.J.; Zhdanova, I.V. Dopaminergic Control of Anxiety in Young and Aged Zebrafish. Pharmacol. Biochem. Behav. 2017, 157, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantabella, E.; Camilleri, V.; Cavalie, I.; Dubourg, N.; Gagnaire, B.; Charlier, T.D.; Adam-Guillermin, C.; Cousin, X.; Armant, O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers 2022, 14, 3793. https://doi.org/10.3390/cancers14153793
Cantabella E, Camilleri V, Cavalie I, Dubourg N, Gagnaire B, Charlier TD, Adam-Guillermin C, Cousin X, Armant O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers. 2022; 14(15):3793. https://doi.org/10.3390/cancers14153793
Chicago/Turabian StyleCantabella, Elsa, Virginie Camilleri, Isabelle Cavalie, Nicolas Dubourg, Béatrice Gagnaire, Thierry D. Charlier, Christelle Adam-Guillermin, Xavier Cousin, and Oliver Armant. 2022. "Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation" Cancers 14, no. 15: 3793. https://doi.org/10.3390/cancers14153793
APA StyleCantabella, E., Camilleri, V., Cavalie, I., Dubourg, N., Gagnaire, B., Charlier, T. D., Adam-Guillermin, C., Cousin, X., & Armant, O. (2022). Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers, 14(15), 3793. https://doi.org/10.3390/cancers14153793