Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Vaccination
2.3. Study Procedures
2.3.1. Immunogenicity—Antibody Testing
2.3.2. T-Lymphocytes and Neutrophil Immunophenotyping
2.3.3. Safety Follow-Up
2.3.4. Statistical Analysis
3. Results
3.1. Immunogenicity/Seroconversion Results
3.2. Immunophenotype Results
3.3. Safety Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Zhao, Y.; Okwan-Duodu, D.; Basho, R.; Cui, X. COVID-19 in Cancer Patients: Risk, Clinical Features, and Management. Cancer Biol. Med. 2020, 17, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Choueiri, T.K.; Shah, D.P.; Shyr, Y.; Rubinstein, S.M.; Rivera, D.R.; Shete, S.; Hsu, C.Y.; Desai, A.; de Lima Lopes, G., Jr.; et al. Clinical Impact of COVID-19 on Patients with Cancer (Ccc19): A Cohort Study. Lancet 2020, 395, 1907–1918. [Google Scholar] [CrossRef]
- Tian, J.; Yuan, X.; Xiao, J.; Zhong, Q.; Yang, C.; Liu, B.; Cai, Y.; Lu, Z.; Wang, J.; Wang, Y.; et al. Clinical Characteristics and Risk Factors Associated with COVID-19 Disease Severity in Patients with Cancer in Wuhan, China: A Multicentre, Retrospective, Cohort Study. Lancet Oncol. 2020, 21, 893–903. [Google Scholar] [CrossRef]
- Lee, L.Y.; Cazier, J.B.; Angelis, V.; Arnold, R.; Bisht, V.; Campton, N.A.; Chackathayil, J.; Cheng, V.W.; Curley, H.M.; Fittall, M.W.; et al. COVID-19 Mortality in Patients with Cancer on Chemotherapy or Other Anticancer Treatments: A Prospective Cohort Study. Lancet 2020, 395, 1919–1926. [Google Scholar] [CrossRef]
- Pfizer and Biontech Announce Publication of Results from Landmark Phase 3 Trial of Bnt162b2 COVID-19 Vaccine Candidate in the New England Journal of Medicine. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-publication-results-landmark (accessed on 22 June 2022).
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 Vaccine Bnt162b1 Elicits Human Antibody and T(H)1 T Cell Responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- DiPiazza, A.T.; Graham, B.S.; Ruckwardt, T.J. T Cell Immunity to SARS-CoV-2 Following Natural Infection and Vaccination. Biochem. Biophys. Res. Commun. 2021, 538, 211–217. [Google Scholar] [CrossRef]
- Arashkia, A.; Jalilvand, S.; Mohajel, N.; Afchangi, A.; Azadmanesh, K.; Salehi-Vaziri, M.; Fazlalipour, M.; Pouriayevali, M.H.; Jalali, T.; Mousavi Nasab, S.D.; et al. Severe Acute Respiratory Syndrome-Coronavirus-2 Spike (S) Protein Based Vaccine Candidates: State of the Art and Future Prospects. Rev. Med. Virol. 2021, 31, e2183. [Google Scholar] [CrossRef]
- Waissengrin, B.; Agbarya, A.; Safadi, E.; Padova, H.; Wolf, I. Short-Term Safety of the Bnt162b2 Mrna COVID-19 Vaccine in Patients with Cancer Treated with Immune Checkpoint Inhibitors. Lancet Oncol. 2021, 22, 581–583. [Google Scholar] [CrossRef]
- Strobel, S.B.; Machiraju, D.; Kälber, K.A.; Hassel, J.C. Immune-Related Adverse Events of COVID-19 Vaccination in Skin Cancer Patients Receiving Immune-Checkpoint Inhibitor Treatment. Cancer Immunol. Immunother. 2022, 71, 2051–2056. [Google Scholar] [CrossRef]
- Riedhammer, C.; Halbritter, D.; Weissert, R. Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol. Biol. 2016, 1304, 53–61. [Google Scholar]
- Hoffmeister, B.; Kiecker, F.; Tesfa, L.; Volk, H.D.; Picker, L.J.; Kern, F. Mapping T Cell Epitopes by Flow Cytometry. Methods 2003, 29, 270–281. [Google Scholar] [CrossRef]
- Dickinson and Company. FlowJo™ Software; Dickinson and Company: Ashland, OH, USA, 2021. [Google Scholar]
- Fendler, A.; Shepherd, S.T.; Au, L.; Wilkinson, K.A.; Wu, M.; Byrne, F.; Cerrone, M.; Schmitt, A.M.; Joharatnam-Hogan, N.; Shum, B.; et al. Adaptive Immunity and Neutralizing Antibodies against SARS-CoV-2 Variants of Concern Following Vaccination in Patients with Cancer: The Capture Study. Nat. Cancer 2021, 2, 1305–1320. [Google Scholar] [CrossRef]
- Terpos, E.; Zagouri, F.; Liontos, M.; Sklirou, A.D.; Koutsoukos, K.; Markellos, C.; Briasoulis, A.; Papanagnou, E.D.; Trougakos, I.P.; Dimopoulos, M.A. Low Titers of SARS-CoV-2 Neutralizing Antibodies after First Vaccination Dose in Cancer Patients Receiving Checkpoint Inhibitors. J. Hematol. Oncol. 2021, 14, 86. [Google Scholar] [CrossRef]
- Lasagna, A.; Agustoni, F.; Percivalle, E.; Borgetto, S.; Paulet, A.; Comolli, G.; Sarasini, A.; Bergami, F.; Sammartino, J.C.; Ferrari, A.; et al. A Snapshot of the Immunogenicity, Efficacy and Safety of a Full Course of Bnt162b2 Anti-SARS-CoV-2 Vaccine in Cancer Patients Treated with Pd-1/Pd-L1 Inhibitors: A Longitudinal Cohort Study. ESMO Open 2021, 6, 100272. [Google Scholar] [CrossRef]
- Luo, B.; Li, J.; Hou, X.; Yang, Q.; Zhou, Y.; Ye, J.; Wu, X.; Feng, Y.; Hu, T.; Xu, Z.; et al. Indications for and Contraindications of Immune Checkpoint Inhibitors in Cancer Patients with COVID-19 Vaccination. Future Oncol. 2021, 17, 3477–3484. [Google Scholar] [CrossRef]
- Thakkar, A.; Gonzalez-Lugo, J.D.; Goradia, N.; Gali, R.; Shapiro, L.C.; Pradhan, K.; Rahman, S.; Kim, S.Y.; Ko, B.; Sica, R.A.; et al. Seroconversion Rates Following COVID-19 Vaccination among Patients with Cancer. Cancer Cell 2021, 39, 1081–1090.e2. [Google Scholar] [CrossRef]
- Buttiron Webber, T.; Provinciali, N.; Musso, M.; Ugolini, M.; Boitano, M.; Clavarezza, M.; D’Amico, M.; Defferrari, C.; Gozza, A.; Briata, I.M.; et al. Predictors of Poor Seroconversion and Adverse Events to SARS-CoV-2 Mrna Bnt162b2 Vaccine in Cancer Patients on Active Treatment. Eur. J. Cancer 2021, 159, 105–112. [Google Scholar] [CrossRef]
- Kang, C.K.; Kim, H.R.; Song, K.H.; Keam, B.; Choi, S.J.; Choe, P.G.; Kim, E.S.; Kim, N.J.; Kim, Y.J.; Park, W.B.; et al. Cell-Mediated Immunogenicity of Influenza Vaccination in Patients with Cancer Receiving Immune Checkpoint Inhibitors. J. Infect. Dis. 2020, 222, 1902–1909. [Google Scholar] [CrossRef]
- Keam, B.; Kang, C.K.; Jun, K.I.; Moon, S.M.; Suh, K.J.; Lee, D.W.; Ock, C.Y.; Kim, M.; Choi, Y.; Lim, Y.; et al. Immunogenicity of Influenza Vaccination in Patients with Cancer Receiving Immune Checkpoint Inhibitors. Clin. Infect. Dis. 2020, 71, 422–425. [Google Scholar] [CrossRef]
- Xiong, X.; Yuan, J.; Li, M.; Jiang, B.; Lu, Z.K. Age and Gender Disparities in Adverse Events Following COVID-19 Vaccination: Real-World Evidence Based on Big Data for Risk Management. Front. Med. 2021, 8, 700014. [Google Scholar] [CrossRef]
- Botwin, G.J.; Li, D.; Figueiredo, J.; Cheng, S.; Braun, J.; McGovern, D.P.B.; Melmed, G.Y. Adverse Events after SARS-CoV-2 Mrna Vaccination among Patients with Inflammatory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Bajaj, S.; Kraske, J.A.; Rösner, T.; Cussigh, C.S.; Kälber, K.A.; Müller, L.J.; Strobel, S.B.; Burghaus, J.; Kallenberger, S.M.; et al. Cytokine Release Syndrome-Like Serum Responses after COVID-19 Vaccination Are Frequent and Clinically Inapparent under Cancer Immunotherapy. Nat. Cancer 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Au, L.; Fendler, A.; Shepherd, S.T.C.; Rzeniewicz, K.; Cerrone, M.; Byrne, F.; Carlyle, E.; Edmonds, K.; del Rosario, L.; Shon, J.; et al. Cytokine Release Syndrome in a Patient with Colorectal Cancer after Vaccination with Bnt162b2. Nat. Med. 2021, 27, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Hsiehchen, D.; Naqash, A.R.; Espinoza, M.; von Itzstein, M.S.; Cortellini, A.; Ricciuti, B.; Owen, D.H.; Laharwal, M.; Toi, Y.; Burke, M.; et al. Association between Immune-Related Adverse Event Timing and Treatment Outcomes. Oncoimmunology 2022, 11, 2017162. [Google Scholar] [CrossRef]
- Benda, M.; Mutschlechner, B.; Ulmer, H.; Grabher, C.; Severgnini, L.; Volgger, A.; Reimann, P.; Lang, T.; Atzl, M.; Huynh, M.; et al. Serological SARS-CoV-2 Antibody Response, Potential Predictive Markers and Safety of Bnt162b2 Mrna Covid-19 Vaccine in Haematological and Oncological Patients. Br. J. Haematol. 2021, 195, 523–531. [Google Scholar] [CrossRef]
- Chong, C.R.; Park, V.J.; Cohen, B.; Postow, M.A.; Wolchok, J.D.; Kamboj, M. Safety of Inactivated Influenza Vaccine in Cancer Patients Receiving Immune Checkpoint Inhibitors. Clin. Infect Dis. 2020, 70, 193–199. [Google Scholar] [CrossRef]
- Läubli, H.; Balmelli, C.; Kaufmann, L.; Stanczak, M.; Syedbasha, M.; Vogt, D.; Hertig, A.; Müller, B.; Gautschi, O.; Stenner, F.; et al. Influenza Vaccination of Cancer Patients During Pd-1 Blockade Induces Serological Protection but May Raise the Risk for Immune-Related Adverse Events. J. Immunother. Cancer 2018, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-Related Adverse Events of Checkpoint Inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38. [Google Scholar] [CrossRef]
- Gotot, J.; Gottschalk, C.; Leopold, S.; Knolle, P.A.; Yagita, H.; Kurts, C.; Ludwig-Portugall, I. Regulatory T Cells Use Programmed Death 1 Ligands to Directly Suppress Autoreactive B Cells in Vivo. Proc. Natl. Acad. Sci. USA 2012, 109, 10468–10473. [Google Scholar] [CrossRef] [Green Version]
Marker | Fluorophore | Manufacturer/Cat Number | Clone |
---|---|---|---|
CD4 | BV510 | Biolegend/317444 | OKT4 |
CD8 | APC-Cy7 | Biolegend/344714 | SK1 |
CD25 | FITC | Biolegend/356106 | M-A251 |
FOXP3 | BV421 | Biolegend/320124 | 206D |
PD1 | PeCy7 | Biolegend/329918 | EH12.2H7 |
HLADR | APC | Biolegend/307610 | L243 |
CD14 | FITC | Biolegend/555397 | M5E2 |
CD16 | PeCy7 | Biolegend/302016 | 3G8 |
CD33 | PE | Biolegend/366608 | P67.6 |
PDL1 | PerCp-Cy5.5 | Biolegend/329738 | 29E.2A3 |
Characteristic | Result |
---|---|
Number of patients, N (%) | 40 (100) |
Male/female, N (%) | 25/15 (62.5/37.5) |
Age (years), Median (range) | 66.0 (40.0–84.0) |
Melanoma stage at vaccination, N (%) | |
II | 1 (2.5) |
III | 17 (42.5) |
IV | 22 (55.0) |
Disease duration (at vaccination), (months), Median (range) | 34.8 (3.1–220.1) |
Treatment lines (including current), Median (range) | |
1 | 18 (45.0) |
2 | 5 (12.5) |
3 | 7 (17.5) |
>3 | 10 (25.0) |
Immunotherapy type, N (%) | |
CTLA4-inhibitor | 0 (0) |
PD1-inhibitor | 29 (72.5) |
PDL1-inhibitor | 5 (12.5) |
Combined CTLA4 and PD1-inhibitor | 6 (15.0) |
Duration of immunotherapy (months), Median (range) | 6.6 (0.6–48.9) |
Cycles of treatment, Median (range) | 8.0 (1.0–49.0) |
Treatment with corticosteroids at vaccination, N (%) | 2 (5.0) |
Time interval (2nd dose to blood sampling) (days), Median (range) | 14 (14–17) |
Patients with adverse events (First dose), N (%) | 10 (25.0) |
Patients with adverse events (Second dose), N (%) | 15 (37.5) |
Antibody titre (pre-vaccination), Median (range) | 0.01 (0.00–30.78) |
Immunogenicity (pre-vaccination), N (%) | 3 (7.5) |
Antibody titre (post-vaccination), Median (range) | 28.47 (8.49–34.46) |
Immunogenicity (seroconversion/post-vaccination), N (%) | 36/37 (97.3) |
Cell Subpopulation | Pre-Vaccination Result (Mean ± SEM) | Post-Vaccination Result (Mean ± SEM) | Statistical Significance (2-Sided p) |
---|---|---|---|
CD4+CD25+ | 7.06% ± 0.83 | 5.66% ± 0.45 | 0.13 |
CD4+CD25hi+ * | 1.61% ± 1.41 | 1.25% ± 0.75 | 0.68 |
CD4+CD25hi+Foxp3+ | 46.08% ± 3.78 | 47.12% ± 4.74 | 0.86 |
CD8+ | 18.44% ± 2.38 | 14.78% ± 2.32 | 0.49 |
HLA-DR+CD14+CD16− * | 13.94% ± 2.74 | 13.14% ± 2.56 | 0.99 |
HLA-DR+CD14+CD16+ | 26.11% ± 2.73 | 30.48% ± 2.54 | 0.35 |
HLA-DR+CD14CD16+ | 15.6% ± 1.85 | 16.17% ± 2.19 | 0.84 |
HLA-DR+CD33+ | 49.28% ± 6.45 | 39.18% ± 3.56 | 0.83 |
CD33+ | 26.11% ± 2.73 | 30.48% ± 2.54 | 0.35 |
CD33+HLA-DRintermediate | 15.6% ± 1.85 | 16.17% ± 2.19 | 0.84 |
MFI of PD1 on CD8+ | 159.6 ± 11.4 | 166.8 ± 11.37 | 0.56 |
MFI of PD1 on CD4+CD25 | 44.45 ± 6.23 | 34.76 ± 3.41 | 0.56 |
MFI of PD1 on CD4+CD25+ | 139.2 ± 13.56 | 106 ± 4.93 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamantopoulos, P.T.; Kontandreopoulou, C.-N.; Gkoufa, A.; Solomou, E.; Anastasopoulou, A.; Palli, E.; Kouzis, P.; Bouros, S.; Samarkos, M.; Magiorkinis, G.; et al. Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy. Cancers 2022, 14, 3791. https://doi.org/10.3390/cancers14153791
Diamantopoulos PT, Kontandreopoulou C-N, Gkoufa A, Solomou E, Anastasopoulou A, Palli E, Kouzis P, Bouros S, Samarkos M, Magiorkinis G, et al. Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy. Cancers. 2022; 14(15):3791. https://doi.org/10.3390/cancers14153791
Chicago/Turabian StyleDiamantopoulos, Panagiotis T., Christina-Nefeli Kontandreopoulou, Aikaterini Gkoufa, Elena Solomou, Amalia Anastasopoulou, Eleni Palli, Panagiotis Kouzis, Spyros Bouros, Mihalis Samarkos, Gkikas Magiorkinis, and et al. 2022. "Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy" Cancers 14, no. 15: 3791. https://doi.org/10.3390/cancers14153791
APA StyleDiamantopoulos, P. T., Kontandreopoulou, C. -N., Gkoufa, A., Solomou, E., Anastasopoulou, A., Palli, E., Kouzis, P., Bouros, S., Samarkos, M., Magiorkinis, G., & Gogas, H. (2022). Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy. Cancers, 14(15), 3791. https://doi.org/10.3390/cancers14153791