Adjuvant BRAF-MEK Inhibitors versus Anti PD-1 Therapy in Stage III Melanoma: A Propensity-Matched Outcome Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
2.3. Propensity Score Matching
3. Results
3.1. Patient and Tumor Characteristics
3.2. Predictors for Receiving BRAF-MEK Inhibitors
3.3. Toxicity Rates of Adjuvant BRAF/MEK-Inhibition Therapy in Daily Clinical Practice
3.4. Premature Discontinuation of Adjuvant BRAF/MEK-Inhibition Therapy in Daily Clinical Practice
3.5. Recurrence-Free Survival (RFS) and Overall Survival (OS)
3.6. Propensity Score Matching
3.6.1. Nearest Neighbor with Caliper Matching
Matched BRAF/MEK- and Anti-PD-1-Treated Patients Using Nearest Neighbor with Caliper Propensity Score Matching
3.6.2. Optimal Matching
4. Discussion
4.1. Predictors for BRAF/MEK-Inhibition Therapy as First-Line Adjuvant Treatment
4.2. BRAF/MEK-Inhibition Therapy Toxicity, Premature Treatment Cessation, and Subsequent Treatment
4.3. Recurrence-Free Survival in BRAF/MEK-Treated Patients and Matched Anti-PD-1-Treated Patients
4.4. BRAF/MEK-Inhibitor or Anti-PD-1 Therapy?
4.5. Strengths, Limitations, and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Sileni, V.C.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Adjuvant Dabrafenib plus Trametinib in Stage IIIBRAF-Mutated Melanoma. N. Engl. J. Med. 2017, 377, 1813–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dummer, R.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Kirkwood, J.M.; Sileni, V.C.; Larkin, J.; Nyakas, M.; Dutriaux, C.; et al. Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N. Engl. J. Med. 2020, 383, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- van Ark, T. Regeling van de Minister voor Medische Zorg van 12 oktober 2020, kenmerk 1759148-212399-Z, houdende wijziging van de Regeling zorgverzekering in verband met de opname van het geneesmiddel dabrafenib in combinatie met trametinib in het basispakket. Staatscourant 2020, 53893, 1–3. [Google Scholar]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- NVMO-Commissie BOM. Adjuvant dabrafenib in combinatie met trametinib bij stadium III melanoom. Med. Oncol. 2018, 9, 47–50. [Google Scholar]
- Eskens, F.; Wymenga, A.; Beerepoot, L.; NVMO-Commissie BOM. Adjuvant nivolumab bij stadium IIIb, IIIc of IV melanoom na volledige chirurgische resectie. Med. Oncol. 2018, 9, 53–56. [Google Scholar]
- Van Den Eertwegh, F. Adjuvante behandeling van het hoogrisicomelanoom. Med. Oncol. 2018, 21, 57. [Google Scholar]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2013, 33, 1242–1258. [Google Scholar] [CrossRef] [Green Version]
- Klungel, O.H.; Martens, E.P.; Psaty, B.M.; Grobbee, D.E.; Sullivan, S.D.; Stricker, B.H.; Leufkens, H.G.; de Boer, A. Methods to assess intended effects of drug treatment in observational studies are reviewed. J. Clin. Epidemiol. 2004, 57, 1223–1231. [Google Scholar] [CrossRef]
- Olmos, A.; Govindasamy, P. Propensity Scores: A Practical Introduction Using R. J. Multidiscip. Eval. 2015, 11, 68–88. [Google Scholar]
- Jochems, A.; Schouwenburg, M.G.; Leeneman, B.; Franken, M.G.; van den Eertwegh, A.J.; Haanen, J.B.; Gelderblom, H.; Uyl-de Groot, C.A.; Aarts, M.J.; van den Berkmortel, F.W.; et al. Dutch Melanoma Treatment Registry: Quality assurance in the care of patients with metastatic melanoma in the Netherlands. Eur. J. Cancer 2017, 72, 156–165. [Google Scholar] [CrossRef]
- de Meza, M.M.; Ismail, R.K.; Rauwerdink, D.; van Not, O.J.; van Breeschoten, J.; Blokx, W.A.; de Boer, A.; van Dartel, M.; Hilarius, D.L.; Ellebaek, E.; et al. Adjuvant treatment for melanoma in clinical practice—Trial versus reality. Eur. J. Cancer 2021, 158, 234–245. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [Green Version]
- Manola, J.; Atkins, M.; Ibrahim, J.; Kirkwood, J. Prognostic Factors in Metastatic Melanoma: A Pooled Analysis of Eastern Cooperative Oncology Group Trials. J. Clin. Oncol. 2000, 18, 3782–3793. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Grob, J.-J.; Nathan, P.; Ribas, A.; Robert, C.; Schadendorf, D.; Lane, S.R.; Mak, C.; Legenne, P.; Flaherty, K.T.; et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: A pooled analysis of individual patient data from randomised trials. Lancet Oncol. 2016, 17, 1743–1754. [Google Scholar] [CrossRef]
- Austin, P.C. A comparison of 12 algorithms for matching on the propensity score. Stat. Med. 2013, 33, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.Y.; Wei, L.J. The Robust Inference for the Cox Proportional Hazards Model. J. Am. Stat. Assoc. 1989, 84, 1074–1078. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag New York Inc.: New York, NY, USA, 2016. [Google Scholar]
- Bednarski, T.; Borowicz, F. coxrobust: Fit Robustly Proprtional Hazards Regression Model, version 1.0.1, R Studio Package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Dunkler, D.; Ploner, M.; Schemper, M.; Heinze, G. Weighted Cox Regression Using the R Package coxphw. J. Stat. Softw. 2018, 84, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. J. Stat. Softw. 2011, 40, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Bache, S.M.; Wickham, H. magrittr: A Forward-Pipe Operator for R, version 2.0.3, R Studio Package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes, version 1.1-3, R Studio Package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Millard, S.P. EnvStats: An R Package for Environmental Statistics; Springer New York Inc.: New York, NY, USA, 2013. [Google Scholar]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with Lubridate. J. Stat. Softw. 2011, 40, 125. [Google Scholar] [CrossRef]
- Ho, D.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Gray, B. cmprsk: Subdistribution Analysis of Competing Risks, version 2.2-11, R Studio Package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Muller, K. dplyr: A Grammar of Data Manipulation, R Studio package version 0.7.6; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Kennedy, N. forestmodel: Forest Plots from Regression Models, version 0.6.2, R Studio package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Kassambara, A.; Kosinski, M.; Biecek, P. survminer: Drawing Survival Curves using “ggplot2”, version 0.4.9, R Studio package; RStudio, Inc.: Vienna, Austria, 2021. [Google Scholar]
- Yoshida, K.; Bartel, A. tableone: Create “Table 1” to Describe Baseline Characteristics with or without Propensity Score Weights, version 0.13.2, R Studio package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Therneau, T. A Package for Survival Analysis in R, version 3.4-0, R Studio package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations, version 1.5.0, R Studio package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H. tidyr: Tidy Messy Data; R Package Version 1.1.2; R Studio package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; Bryan, J. readxl: Read Excel Files, version 1.4.1, R Studio package; RStudio, Inc.: Vienna, Austria, 2022. [Google Scholar]
- Ascierto, P.A.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Arance, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.-J.; Chiarion-Sileni, V.; et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB–C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2020, 21, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Longer Follow-Up Confirms Recurrence-Free Survival Benefit of Adjuvant Pembrolizumab in High-Risk Stage III Melanoma: Updated Results from the EORTC 1325-MG/KEYNOTE-054 Trial. J. Clin. Oncol. 2020, 38, 3925–3936. [Google Scholar] [CrossRef] [PubMed]
- Lodde, G.; Forschner, A.; Hassel, J.; Wulfken, L.; Meier, F.; Mohr, P.; Kähler, K.; Schilling, B.; Loquai, C.; Berking, C.; et al. Factors Influencing the Adjuvant Therapy Decision: Results of a Real-World Multicenter Data Analysis of 904 Melanoma Patients. Cancers 2021, 13, 2319. [Google Scholar] [CrossRef]
- Livingstone, E.; Forschner, A.; Hassel, J.C.; Wulfken, L.M.; Meier, F.E.; Mohr, P.; Kähler, K.C.; Schilling, B.; Loquai, C.; Berking, C.; et al. Multicenter real-world data of adjuvant treatment and disease outcome of patients with melanoma with high-risk of recurrence. J. Clin. Oncol. 2022, 40, 9570. [Google Scholar] [CrossRef]
- Tong, J.; Kartolo, A.; Yeung, C.; Hopman, W.; Baetz, T. Long-Term Toxicities of Immune Checkpoint Inhibitor (ICI) in Melanoma Patients. Curr. Oncol. 2022, 29, 7953–7963. [Google Scholar] [CrossRef]
- van der Kooij, M.K.; Suijkerbuijk, K.P.; Aarts, M.J.; Berkmortel, F.W.v.D.; Blank, C.U.; Boers-Sonderen, M.J.; van Breeschoten, M.J.; Eertwegh, A.J.v.D.; de Groot, J.W.B.; Haanen, J.B.; et al. Safety and Efficacy of Checkpoint Inhibition in Patients with Melanoma and Preexisting Autoimmune Disease: A Cohort Study. Ann. Intern. Med. 2021, 174, 641–648. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Robert, C.; Ribas, A. The new era of adjuvant therapies for melanoma. Nat. Rev. Clin. Oncol. 2018, 15, 535–536. [Google Scholar] [CrossRef]
- Atkins, M.B.; Lee, S.J.; Chmielowski, B.; Tarhini, A.A.; Cohen, G.I.; Truong, T.-G.; Moon, H.H.; Davar, D.; O’Rourke, M.; Stephenson, J.J.; et al. Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients with Advanced BRAF-Mutant Melanoma: The DREAMseq Trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 2022, 41, 186–197. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Mandalà, M.; Ferrucci, P.F.; Guidoboni, M.; Rutkowski, P.; Ferraresi, V.; Arance, A.; Guida, M.; Maiello, E.; Gogas, H.; et al. Sequencing of Ipilimumab Plus Nivolumab and Encorafenib Plus Binimetinib for Untreated BRAF-Mutated Metastatic Melanoma (SECOMBIT): A Randomized, Three-Arm, Open-Label Phase II Trial. J. Clin. Oncol. 2022, 41, 212–221. [Google Scholar] [CrossRef] [PubMed]
Original Sample | Nearest Neighbor Matching | ||||||||
---|---|---|---|---|---|---|---|---|---|
BRAF/MEK-Inhibition Therapy | Anti-PD-1 Therapy | p-Value | SMD | BRAF/MEK-Inhibition Therapy | Anti-PD-1 Therapy | p-Value | SMD | ||
n (%) | 114 (17.6) | 532 (82.4) | <0.01 | 112 | 112 | 1.000 | <0.01 | ||
Age | <65 | 76 (66.7) | 345 (64.8) | 0.80 | 0.04 | 76 (67.9) | 75 (67.0) | 1.000 | 0.02 |
≥65 | 38 (33.3) | 187 (35.2) | 36 (32.1) | 37 (33.0) | |||||
Sex | 1 | 63 (55.3) | 313 (58.8) | 0.55 | 0.07 | 63 (56.2) | 63 (56.2) | 1.000 | <0.01 |
2 | 51 (44.7) | 219 (41.2) | 49 (43.8) | 49 (43.8) | |||||
ECOG PS | 0 | 82 (71.9) | 399 (75.0) | 0.57 | 0.07 | 80 (71.4) | 81 (72.3) | 1.000 | 0.02 |
≥1 | 32 (28.1) | 133 (25.0) | 32 (28.6) | 31 (27.7) | |||||
Comorbidities | No | 29 (25.4) | 194 (36.5) | 0.03 | 0.24 | 27 (24.1) | 26 (23.2) | 1.000 | 0.02 |
Yes | 85 (74.6) | 338 (63.5) | 85 (75.9) | 86 (76.8) | |||||
AJCC Tumor Stage | IIIA | 18 (15.8) | 53 (10.0) | 0.09 | 0.26 | 18 (16.1) | 17 (15.2) | 1.000 | 0.03 |
IIIB | 31 (27.2) | 200 (37.6) | 31 (27.7) | 31 (27.7) | |||||
IIIC/D | 51 (44.7) | 227 (42.7) | 49 (43.8) | 49 (43.8) | |||||
Unknown | 14 (12.3) | 52 (9.8) | 14 (12.5) | 15 (13.4) |
OR | 95% CI | p-Value | |
---|---|---|---|
(Intercept) | 0.09 | 0.05–0.18 | <0.01 |
Age | |||
<65 | Ref. | ||
≥65 | 0.73 | 0.45–1.16 | 0.19 |
Sex | |||
Male | Ref. | ||
Female | 1.26 | 0.82–1.92 | 0.29 |
ECOG PS | |||
0 | Ref. | ||
>=1 | 1.2 | 0.73–1.93 | 0.46 |
Comorbidities | |||
No | Ref. | ||
Yes | 1.67 | 1.03–2.76 | 0.04 |
AJCC 8th edition tumor stage | |||
IIIC/IID | Ref. | ||
IIIA | 1.46 | 0.76–2.72 | 0.24 |
IIIB | 0.70 | 0.43–1.15 | 0.17 |
Unknown | 1.05 | 0.52–2.04 | 0.88 |
Geographical region | |||
Middle region | Ref. | ||
Northern region | 3.05 | 1.68–5.63 | <0.01 |
Southern region | 1.6 | 0.95–2.75 | 0.08 |
Toxicity Type | Toxicity Rates (%) |
---|---|
Abnormal laboratory values | 1.9 |
Arthralgia | 1.0 |
Liver failure | 1.0 |
Malaise/dizziness | 1.0 |
Neuropathy | 1.0 |
Pyrexia | 4.8 |
Skin toxicities | 3.8 |
Visual changes/retinopathy/occlusion of retinal vein | 1.0 |
Other/unknown | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Meza, M.M.; Blokx, W.A.M.; Bonenkamp, J.J.; Blank, C.U.; Aarts, M.J.B.; van den Berkmortel, F.W.P.J.; Boers-Sonderen, M.J.; De Groot, J.W.B.; Haanen, J.B.A.G.; Hospers, G.A.P.; et al. Adjuvant BRAF-MEK Inhibitors versus Anti PD-1 Therapy in Stage III Melanoma: A Propensity-Matched Outcome Analysis. Cancers 2023, 15, 409. https://doi.org/10.3390/cancers15020409
De Meza MM, Blokx WAM, Bonenkamp JJ, Blank CU, Aarts MJB, van den Berkmortel FWPJ, Boers-Sonderen MJ, De Groot JWB, Haanen JBAG, Hospers GAP, et al. Adjuvant BRAF-MEK Inhibitors versus Anti PD-1 Therapy in Stage III Melanoma: A Propensity-Matched Outcome Analysis. Cancers. 2023; 15(2):409. https://doi.org/10.3390/cancers15020409
Chicago/Turabian StyleDe Meza, Melissa M., Willeke A. M. Blokx, Johannes J. Bonenkamp, Christian U. Blank, Maureen J. B. Aarts, Franchette W. P. J. van den Berkmortel, Marye J. Boers-Sonderen, Jan Willem B. De Groot, John B. A. G. Haanen, Geke A. P. Hospers, and et al. 2023. "Adjuvant BRAF-MEK Inhibitors versus Anti PD-1 Therapy in Stage III Melanoma: A Propensity-Matched Outcome Analysis" Cancers 15, no. 2: 409. https://doi.org/10.3390/cancers15020409
APA StyleDe Meza, M. M., Blokx, W. A. M., Bonenkamp, J. J., Blank, C. U., Aarts, M. J. B., van den Berkmortel, F. W. P. J., Boers-Sonderen, M. J., De Groot, J. W. B., Haanen, J. B. A. G., Hospers, G. A. P., Kapiteijn, E., Van Not, O. J., Piersma, D., Van Rijn, R. S., Stevense-den Boer, M., Van der Veldt, A. A. M., Vreugdenhil, G., Van den Eertwegh, A. J. M., Suijkerbuijk, K. P. M., & Wouters, M. W. J. M. (2023). Adjuvant BRAF-MEK Inhibitors versus Anti PD-1 Therapy in Stage III Melanoma: A Propensity-Matched Outcome Analysis. Cancers, 15(2), 409. https://doi.org/10.3390/cancers15020409