Establishment of a Prediction Model for Overall Survival after Stereotactic Body Radiation Therapy for Primary Non-Small Cell Lung Cancer Using Radiomics Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Radiotherapy
2.3. Clinical Endpoints
2.4. CT Image and Tumor Contouring
2.5. Radiomic Feature Extraction
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Univariate Analysis
3.3. Multivariate Analysis
3.4. Prediction Score
3.5. Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; Anderson, B.O.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016. JAMA Oncol. 2018, 4, 1553. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.-W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta -Rev. Cancer 2015, 1856, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.Y.; Senan, S.; Paul, M.A.; Mehran, R.J.; Louie, A.V.; Balter, P.; Groen, H.J.M.; McRae, S.E.; Widder, J.; Feng, L.; et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Oncol. 2015, 16, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Chi, A.; Fang, W.; Sun, Y.; Wen, S. Comparison of Long-term Survival of Patients with Early-Stage Non–Small Cell Lung Cancer after Surgery vs Stereotactic Body Radiotherapy. JAMA Netw. Open 2019, 2, e1915724. [Google Scholar] [CrossRef] [PubMed]
- Razi, S.S.; Kodia, K.; Alnajar, A.; Block, M.I.; Tarrazzi, F.; Nguyen, D.; Villamizar, N. Lobectomy Versus Stereotactic Body Radiotherapy in Healthy Octogenarians with Stage I Lung Cancer. Ann. Thorac. Surg. 2021, 111, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Daly, M.E.; Kennedy, E.B.; Antonoff, M.B.; Broderick, S.; Feldman, J.; Jolly, S.; Meyers, B.; Rocco, G.; Rusthoven, C.; et al. Stereotactic Body Radiotherapy for Early-Stage Non–Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American Society for Radiation Oncology Evidence-Based Guideline. J. Clin. Oncol. 2018, 36, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, R.D.; Paulus, R.; Pass, H.I.; Gore, E.M.; Edelman, M.J.; Galvin, J.; Straube, W.L.; Nedzi, L.A.; McGarry, R.C.; Robinson, C.G.; et al. Stereotactic Body Radiation Therapy for Operable Early-Stage Lung Cancer. JAMA Oncol. 2018, 4, 1263. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Liu, H.; Balter, P.; Komaki, R.; Liao, Z.; Welsh, J.; Mehran, R.J.; Roth, J.A.; Swisher, S.G. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. Radiat. Oncol. 2012, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Onishi, H.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Fujino, M.; Gomi, K.; Karasawa, K.; Hayakawa, K.; Niibe, Y.; Takai, Y.; et al. Stereotactic body radiotherapy (SBRT) for operable stage I non-small-cell lung cancer: Can SBRT be comparable to surgery? Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1352–1358. [Google Scholar] [CrossRef]
- Timmerman, R. Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer. JAMA 2010, 303, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.; Zhu, X.; Shu, Z.; Ji, Y.; Lu, F.; Wang, J.; Chen, M. Video-Assisted Thoracoscopic Lobectomy Versus Stereotactic Body Radiotherapy Treatment for Early-Stage Non-Small Cell Lung Cancer: A Propensity Score-Matching Analysis. Front. Oncol. 2020, 10, 585709. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Mehran, R.J.; Feng, L.; Verma, V.; Liao, Z.; Welsh, J.W.; Lin, S.H.; O’Reilly, M.S.; Jeter, M.D.; Balter, P.A.; et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): Long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncol. 2021, 22, 1448–1457. [Google Scholar] [CrossRef]
- Chi, A.; Liao, Z.; Nguyen, N.P.; Xu, J.; Stea, B.; Komaki, R. Systemic review of the patterns of failure following stereotactic body radiation therapy in early-stage non-small-cell lung cancer: Clinical implications. Radiother. Oncol. 2010, 94, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Senthi, S.; Lagerwaard, F.J.; Haasbeek, C.J.A.; Slotman, B.J.; Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: A retrospective analysis. Lancet Oncol. 2012, 13, 802–809. [Google Scholar] [CrossRef]
- Shultz, D.B.; Trakul, N.; Abelson, J.A.; Murphy, J.D.; Maxim, P.G.; Le, Q.T.; Loo, B.W., Jr.; Diehn, M. Imaging features associated with disease progression after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer. Clin. Lung Cancer 2014, 15, 294–301. [Google Scholar] [CrossRef]
- Palma, D.; Senan, S. Stereotactic radiation therapy: Changing treatment paradigms for stage I nonsmall cell lung cancer. Curr. Opin. Oncol. 2011, 23, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samper Ots, P.M.; Vallejo Ocaña, C.; Martin Martin, M.; Celada Álvarez, F.J.; Farga Albiol, D.; Almendros Blanco, P.; Hernandez Machancoses, A.; Rico Oses, M.; Flamarique Andueza, S.; Romero Ruperto, F.; et al. Stereotactic body radiotherapy for early-stage non-small cell lung cancer: A multicentre study by the Oncologic Group for the Study of Lung Cancer (Spanish Radiation Oncology Society). Clin. Transl. Oncol. 2022, 24, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Ryuno, Y.; Abe, T.; Iino, M.; Saito, S.; Aoshika, T.; Oota, T.; Igari, M.; Hirai, R.; Kumazaki, Y.; Kaira, K.; et al. High-dose stereotactic body radiotherapy using CyberKnife® for stage I peripheral lung cancer: A single-center retrospective study. Radiat. Oncol. 2022, 17, 128. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehn, M.; Nardini, C.; Wang, D.S.; McGovern, S.; Jayaraman, M.; Liang, Y.; Aldape, K.; Cha, S.; Kuo, M.D. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA 2008, 105, 5213–5218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, E.; Sirlin, C.B.; Ooi, C.; Adler, A.S.; Gollub, J.; Chen, X.; Chan, B.K.; Matcuk, G.R.; Barry, C.T.; Chang, H.Y.; et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 2007, 25, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Zambirinis, C.P.; Midya, A.; Chakraborty, J.; Chou, J.F.; Zheng, J.; McIntyre, C.A.; Koszalka, M.A.; Wang, T.; Do, R.K.; Balachandran, V.P.; et al. Recurrence after Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis? Ann. Surg. Oncol. 2022, 29, 4962–4974. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Qi, Q.; Wu, Z.; Min, X.; Zhou, A.; Xu, P. Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients. J. Oncol. 2022, 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bortolotto, C.; Lancia, A.; Stelitano, C.; Montesano, M.; Merizzoli, E.; Agustoni, F.; Stella, G.; Preda, L.; Filippi, A.R. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev. Anticancer Ther. 2021, 21, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Dissaux, G.; Visvikis, D.; Da-Ano, R.; Pradier, O.; Chajon, E.; Barillot, I.; Duvergé, L.; Masson, I.; Abgral, R.; Santiago Ribeiro, M.-J.; et al. Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy for Early-Stage Non–Small Cell Lung Cancer: A Multicentric Study. J. Nucl. Med. 2020, 61, 814–820. [Google Scholar] [CrossRef]
- Franceschini, D.; Cozzi, L.; De Rose, F.; Navarria, P.; Fogliata, A.; Franzese, C.; Pezzulla, D.; Tomatis, S.; Reggiori, G.; Scorsetti, M. A radiomic approach to predicting nodal relapse and disease-specific survival in patients treated with stereotactic body radiation therapy for early-stage non-small cell lung cancer. Strahlenther. Und Onkol. 2020, 196, 922–931. [Google Scholar] [CrossRef]
- Huynh, E.; Coroller, T.P.; Narayan, V.; Agrawal, V.; Hou, Y.; Romano, J.; Franco, I.; Mak, R.H.; Aerts, H.J. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother. Oncol. 2016, 120, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Mattonen, S.A.; Palma, D.A.; Haasbeek, C.J.A.; Senan, S.; Ward, A.D. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med. Phys. 2014, 41, 033502. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, A.; Khalvati, F.; Tyrrell, P.N.; Haider, M.A.; Tarique, U.; Jimenez-Juan, L.; Tjong, M.C.; Poon, I.; Eilaghi, A.; Ehrlich, L.; et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci. Rep. 2018, 8, 4003. [Google Scholar] [CrossRef] [PubMed]
- Starkov, P.; Aguilera, T.A.; Golden, D.I.; Shultz, D.B.; Trakul, N.; Maxim, P.G.; Le, Q.T.; Loo, B.W.; Diehn, M.; Depeursinge, A.; et al. The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. Br. J. Radiol. 2019, 92, 20180228. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Ernani, V.; Appiah, A.K.; Marr, A.; Zhang, C.; Zhen, W.; Smith, L.M.; Ganti, A.K. Adjuvant Systemic Therapy in Patients with Early-Stage NSCLC Treated With Stereotactic Body Radiation Therapy. J. Thorac. Oncol. 2019, 14, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Chi, A.; Nguyen, N.P. Rationale for Combing Stereotactic Body Radiation Therapy with Immune Checkpoint Inhibitors in Medically Inoperable Early-Stage Non-Small Cell Lung Cancer. Cancers 2022, 14, 3144. [Google Scholar] [CrossRef]
- Yu, W.; Tang, C.; Hobbs, B.P.; Li, X.; Koay, E.J.; Wistuba, I.I.; Sepesi, B.; Behrens, C.; Rodriguez Canales, J.; Parra Cuentas, E.R.; et al. Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1090–1097. [Google Scholar] [CrossRef]
Factor | Training | Validation | p Value | ||
---|---|---|---|---|---|
N | Rate | N | Rate | ||
N | 250 | 108 | |||
Histology | |||||
Adenocarcinoma | 47 | 18.8% | 18 | 16.7% | 0.98 |
Squamous cell carcinoma | 10 | 4.0% | 4 | 3.7% | |
Others | 15 | 6.0% | 7 | 6.5% | |
None | 178 | 71.2% | 79 | 73.1% | |
Location | |||||
Central | 39 | 15.6% | 12 | 11.1% | 0.26 |
Peripheral | 211 | 84.4% | 96 | 88.9% | |
Site | |||||
Right upper lobe | 72 | 28.8% | 40 | 37.0% | 0.31 |
Right middle lobe | 20 | 8.0% | 7 | 6.5% | |
Right lower lobe | 57 | 22.8% | 21 | 19.4% | |
Left upper lobe | 65 | 26.0% | 20 | 18.5% | |
Left lower lobe | 36 | 14.4% | 20 | 18.5% | |
C/T ratio | |||||
≥50% | 200 | 80.0% | 89 | 82.4% | 0.66 |
<50% | 50 | 20.0% | 19 | 17.6% | |
Maximum tumor diameter | |||||
Mean (mm) | 20.5 | 20.8 | 0.85 | ||
SD | 10.5 | 9.3 | |||
Age | |||||
Mean (y.o.) | 77.1 | 77.8 | 0.47 | ||
SD | 8.9 | 8.1 | |||
KPS | |||||
Mean (%) | 89.0 | 88.5 | 0.52 | ||
SD | 5.8 | 6.4 | |||
SUV-max | |||||
Mean | 5.9 | 5.5 | 0.59 | ||
SD | 5.1 | 4.2 | |||
Total radiation dose | |||||
Mean (Gy) | 52.5 | 51.5 | 0.11 | ||
SD | 4.6 | 7.6 | |||
Sex | |||||
Male | 169 | 67.6% | 76 | 70.4% | 0.60 |
Female | 81 | 32.4% | 32 | 29.6% | |
RT technique | |||||
VMAT | 171 | 68.4% | 70 | 64.8% | 0.23 |
Fixed multi-port | 75 | 30.0% | 33 | 30.6% | |
Both | 4 | 1.6% | 5 | 4.6% | |
Salvage treatment | |||||
Systemic therapy | 15 | 6.0% | 9 | 8.3% | 0.45 |
Radiotherapy | 9 | 3.6% | 3 | 2.8% | |
Chemoradiotherapy | 3 | 1.2% | 0 | 0.0% | |
Surgery | 3 | 1.2% | 0 | 0.0% | |
Other treatment | 2 | 0.8% | 0 | 0.0% | |
None | 29 | 11.6% | 11 | 10.2% | |
Unknown | 1 | 0.4% | 3 | 2.8% | |
No recurrence | 188 | 75.20% | 82 | 75.9% |
Factor | OS | LRFS | PFS | ||||||
---|---|---|---|---|---|---|---|---|---|
5-Year OS (%) | 95%CI | p Value | 5-Year LRFS (%) | 95%CI | p Value | 5-Year PFS (%) | 95%CI | p Value | |
KPS | |||||||||
Low value | 35.5 | 16.2–55.5 | 0.0028 | 63.6 | 40.4–79.8 | 0.0012 | 50.1 | 30.1–67.1 | 0.00053 |
High value | 61.5 | 51.5–70.0 | 79.9 | 71.6–85.9 | 65.9 | 56.4–73.8 | |||
SUV-max | |||||||||
Low value | 61.6 | 43.8–75.3 | 0.11 | 79.7 | 64.7–88.9 | 0.0090 | 53.1 | 35.9–67.6 | 0.11 |
High value | 41.7 | 23.9–58.6 | 60.1 | 42.8–73.8 | 47.0 | 31.5–61.0 | |||
RT technique | |||||||||
VMAT | 60.5 | 48.3–70.6 | 0.52 | 77.3 | 66.9–84.8 | 0.72 | 58.8 | 47.5–68.5 | 0.26 |
Fixed multi-port | 57.0 | 42.5–69.1 | 76.2 | 62.7–85.3 | 70.2 | 55.8–80.7 | |||
Total radiation dose | |||||||||
Low value | 53.9 | 40.8–65.3 | 0.80 | 70.3 | 57.6–79.9 | 0.074 | 58.1 | 45.0–69.1 | 0.28 |
High value | 64.4 | 52.4–74.0 | 82.5 | 72.2–89.3 | 68.3 | 57.4–77.0 | |||
Age | |||||||||
Low value | 63.4 | 51.8–73.0 | 0.33 | 79.1 | 68.7–86.3 | 0.70 | 63.8 | 51.9–73.4 | 0.60 |
High value | 48.7 | 33.5–62.4 | 75.1 | 62.0–84.2 | 63.6 | 51.0–73.8 | |||
Histology | |||||||||
Adenocarcinoma | 64.6 | 39.4–81.4 | 0.25 | 69.9 | 48.1–83.9 | 0.87 | 68.7 | 47.5–82.7 | 0.73 |
Squamous cell carcinoma | 90.0 | 47.3–98.5 | 85.7 | 33.4–97.9 | 77.1 | 34.5–93.9 | |||
Others | 43.8 | 15.7–69.1 | 82.1 | 44.4–95.3 | 65.0 | 31.0–85.4 | |||
None | 54.9 | 43.8–64.7 | 78.7 | 69.7–85.3 | 60.8 | 50.1–69.9 | |||
Maximum tumor diameter | |||||||||
Low value | 66.6 | 54.2–76.4 | 0.042 | 88.3 | 79.5–93.5 | 0.0017 | 68.6 | 56.3–78.1 | 0.12 |
High value | 48.0 | 34.6–60.1 | 64.8 | 51.7–75.1 | 56.9 | 44.3–67.7 | |||
Sex | |||||||||
Male | 52.1 | 40.8–62.1 | 0.030 | 70.4 | 59.9–78.6 | 0.011 | 59.9 | 48.9–69.2 | 0.26 |
Female | 68.2 | 51.5–80.1 | 90.3 | 79.0–95.6 | 69.4 | 54.7–80.2 | |||
Location | |||||||||
Central | 22.1 | 5.9–44.6 | 0.00040 | 58.1 | 34.0–76.1 | 0.00063 | 26.2 | 5.8–53.2 | 0.0011 |
Peripheral | 63.9 | 54.4–72.0 | 80.6 | 72.4–86.6 | 69.0 | 60.5–76.1 | |||
Site | |||||||||
Right upper lobe | 66.6 | 46.0–80.9 | 0.88 | 74.2 | 57.5–85.1 | 0.48 | 55.7 | 40.0–68.7 | 0.49 |
Right middle lobe | 48.2 | 17.5–73.7 | 76.6 | 48.8–90.5 | 64.5 | 30.4–85.1 | |||
Right lower lobe | 51.5 | 33.1–67.2 | 74.6 | 55.4–86.5 | 68.2 | 49.7–81.1 | |||
Left upper lobe | 62.4 | 45.3–75.5 | 85.3 | 67.9–93.7 | 70.2 | 52.2–82.6 | |||
Left lower lobe | 53.5 | 30.4–72.0 | 75.4 | 54.1–87.8 | 60.7 | 35.8–78.5 | |||
C/T ratio | |||||||||
≥50% | 57.8 | 47.6–66.6 | 0.62 | 65.6 | 46.2–79.4 | 0.042 | 52.6 | 34.1–68.1 | 0.11 |
<50% | 58.2 | 35.9–75.0 | 80.6 | 72.1–86.7 | 66.3 | 56.6–74.4 | |||
Salvage treatment | |||||||||
Systemic therapy | 40.4 | 10.6–69.4 | 0.0054 | 11.3 | 0.7–38.8 | <0.0001 | N/A | N/A | <0.0001 |
Radiotherapy | 23.7 | 1.0–63.8 | N/A | N/A | N/A | N/A | |||
Chemoradiotherapy | N/A | N/A | N/A | N/A | N/A | N/A | |||
Surgery | 66.7 | 5.4–94.5 | 66.7 | 5.4–94.5 | N/A | N/A | |||
Other treatment | N/A | N/A | N/A | N/A | N/A | N/A | |||
None | N/A | N/A | N/A | N/A | N/A | N/A | |||
Unknown | N/A | N/A | N/A | N/A | N/A | N/A | |||
No recurrence | 65.9 | 55.6–74.3 | 99,2 | 94.7–99.9 | 100.0 | 100.0–100.0 |
Factor | Hazard Ratio | Lower 95%CI | Upper 95%CI | p Value | Coefficient |
---|---|---|---|---|---|
OS | |||||
90 Percentile_HHH | 0.5197 | 0.3223 | 0.8381 | 0.007267 | −0.6545 |
LargeAreaEmphasis_LHH | 1.7990 | 1.1260 | 2.8750 | 0.014120 | 0.5871 |
Mean_HHH | 1.9730 | 1.2240 | 3.1790 | 0.005255 | 0.6795 |
Median_HLL | 1.9840 | 1.2400 | 3.1740 | 0.004262 | 0.6852 |
LRFS | |||||
InverseVariance_HLL | 3.5450 | 1.64500 | 7.638 | 0.0012310 | 1.2655 |
SmallDependenceHighGrayLevelEmphasis_HHH | 0.2133 | 0.09202 | 0.4942 | 0.0003138 | −1.5453 |
PFS | |||||
SmallDependenceHighGrayLevelEmphasis_HHH | 0.3715 | 0.2065 | 0.6686 | 0.0009571 | −0.9901 |
TotalEnergy_HHL | 2.4610 | 1.3910 | 4.3550 | 0.0019840 | 0.9006 |
JointEntropy_HLL | 0.4969 | 0.2943 | 0.8388 | 0.0088420 | −0.6994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawayanagi, S.; Yamashita, H.; Nozawa, Y.; Takenaka, R.; Miki, Y.; Morishima, K.; Ueno, H.; Ohta, T.; Katano, A. Establishment of a Prediction Model for Overall Survival after Stereotactic Body Radiation Therapy for Primary Non-Small Cell Lung Cancer Using Radiomics Analysis. Cancers 2022, 14, 3859. https://doi.org/10.3390/cancers14163859
Sawayanagi S, Yamashita H, Nozawa Y, Takenaka R, Miki Y, Morishima K, Ueno H, Ohta T, Katano A. Establishment of a Prediction Model for Overall Survival after Stereotactic Body Radiation Therapy for Primary Non-Small Cell Lung Cancer Using Radiomics Analysis. Cancers. 2022; 14(16):3859. https://doi.org/10.3390/cancers14163859
Chicago/Turabian StyleSawayanagi, Subaru, Hideomi Yamashita, Yuki Nozawa, Ryosuke Takenaka, Yosuke Miki, Kosuke Morishima, Hiroyuki Ueno, Takeshi Ohta, and Atsuto Katano. 2022. "Establishment of a Prediction Model for Overall Survival after Stereotactic Body Radiation Therapy for Primary Non-Small Cell Lung Cancer Using Radiomics Analysis" Cancers 14, no. 16: 3859. https://doi.org/10.3390/cancers14163859
APA StyleSawayanagi, S., Yamashita, H., Nozawa, Y., Takenaka, R., Miki, Y., Morishima, K., Ueno, H., Ohta, T., & Katano, A. (2022). Establishment of a Prediction Model for Overall Survival after Stereotactic Body Radiation Therapy for Primary Non-Small Cell Lung Cancer Using Radiomics Analysis. Cancers, 14(16), 3859. https://doi.org/10.3390/cancers14163859