Evidence-Based Interventions for Reducing Breast Cancer Disparities: What Works and Where the Gaps Are?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Risk Factors
2.2. Quantitative Analysis of EBCCPs
- (1)
- Independent score of ≥3 for research integrity, intervention impact, and dissemination capability.
- (2)
- Independent score of ≥50% for reach, effectiveness, adoption, and implementation.
3. Results
Risk Factor | Evidence from National Cancer Institute (NCI) [21] Recommendations for Breast Cancer Prevention | Evidence from American Institute for Cancer Research Continuous Update Project Findings [8] | Number (#) of High-Quality a, Multilevel EBCCPs in a Population Facing Breast Cancer Disparities b/# of EBCCPs Meeting the Quality Criteria/# of NCI EBCCPs |
---|---|---|---|
Physical Activity | Decreases risk | Strong evidence of decreased pre and postmenopausal risk. | 2/10/41 |
Higher Body Fatness in Young Adulthood | Not discussed | Probable evidence of decreased pre and postmenopausal risk. | 1/4/16 |
Adult Body Fatness (marked by BMI, waist circumference, and waist-hip ratio) and Weight Gain in Adulthood | Increases risk | Strong evidence of increased postmenopausal breast cancer risk. | 0/1/13 |
Alcohol | Increases risk | Strong evidence that alcohol increases pre and postmenopausal breast cancer, no strong evidence for other dietary factors. | 0 |
Tobacco Exposure in Early Life | Not discussed | Not discussed in report. | 0/13/16 |
Breastfeeding | Reduces risk | Probable evidence of decreased pre and postmenopausal risk. | 0 |
Environmental Chemical Exposures | Not clear | Not discussed. | 0 |
Risk Factor | Program Title | Age Group | Delivery Location | Program Description | Research Integrity | Intervention Impact | Dissemination Capability | Reach | Effectiveness | Adoption | Implementation |
---|---|---|---|---|---|---|---|---|---|---|---|
Physical activity | New Moves [16] | 11–18 years (adolescents) | Schools | All-girls physical education classes combined with individual coaching sessions and personal goal setting. | 4.3 | 3.0 | 5.0 | 100% | 66.7% | 100% | 62.5% |
Physical activity | Alberta Project Promoting active Living and healthy Eating (APPLE Schools) [17] | 0–10 years (children) | Schools | Full-time school health facilitator implemented healthy eating and active living strategies while addressing the unique needs and barriers to health promotion in the school environment by engaging all stakeholders, including parents, staff, and the community. | 4.2 | 3.0 | 4.0 | 80.0% | 66.7% | 66.7% | 57.1% |
Obesity | 5-a-Day Power Plus [20] | 0–10 years (children) | Schools | School-based, multi-component intervention aimed at increasing fruit and vegetable consumption among fourth- and fifth-grade students through four intervention components: (1) behavioral curricula for fourth and fifth grade students, (2) parental involvement/education, (3) school food service changes, and (4) industry involvement and support. | 4.1 | 3.9 | 4.5 | 80% | 66.7% | 100% | 71.4% |
4. Discussion
4.1. Absence of EBCCPs for Key Risk Factors
4.2. Lack of Multilevel Interventions and Other Gaps
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kehm, R.D.; Yang, W.; Tehranifar, P.; Terry, M.B. 40 Years of Change in Age- and Stage-Specific Cancer Incidence Rates in US Women and Men. JNCI Cancer Spectr. 2019, 3, pkz038. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Malone, K.E.; Daling, J.R. Differences in breast cancer stage, treatment, and survival by race and ethnicity. Arch. Intern. Med. 2003, 163, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.L.; White, M.C.; Wu, M.; Weir, H.K.; Romieu, I. Differences in breast cancer incidence among young women aged 20–49 years by stage and tumor characteristics, age, race, and ethnicity, 2004–2013. Breast Cancer Res. Treat. 2018, 169, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, T.; Kehm, R.D.; Terry, M.B.; Argov, E.L.; Tehranifar, P. Incidence trends of breast cancer molecular subtypes by age and race/ethnicity in the US from 2010 to 2016. JAMA Netw. Open 2020, 3, e2013226. [Google Scholar] [CrossRef]
- Cloud, A.J.; Thai, A.; Liao, Y.; Terry, M.B. The impact of cancer prevention guideline adherence on overall mortality in a high-risk cohort of women from the New York site of the Breast Cancer Family Registry. Breast Cancer Res. Treat. 2015, 149, 537–546. [Google Scholar] [CrossRef]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Strebel, J.; Terry, M.B. Alcohol, binge drinking, and cancer risk: Accelerating public health messaging through countermarketing. Am. J. Public Health 2021, 111, 812–814. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018. Available online: https://www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf (accessed on 15 July 2022).
- World Cancer Research Fund International. Lactation (Breastfeeding) and Cancer Risk. Available online: https://www.wcrf.org/diet-activity-and-cancer/risk-factors/lactation-breastfeeding-and-cancer-risk/ (accessed on 15 July 2022).
- Daly, A.A.; Rolph, R.; Cutress, R.I.; Copson, E.R. A review of modifiable risk factors in young women for the prevention of breast cancer. Breast Cancer Targets Ther. 2021, 13, 241–257. [Google Scholar] [CrossRef]
- Hiatt, R.A.; Brody, J.G. Environmental determinants of breast cancer. Annu. Rev. Public Health 2018, 39, 113–133. [Google Scholar] [CrossRef]
- Terry, M.B.; Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.C.; Martin, M.B.; Miller, R.L.; Neuhausen, S.L.; et al. Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res. 2019, 21, 96. [Google Scholar] [CrossRef] [Green Version]
- Zeinomar, N.; Oskar, S.; Kehm, R.D.; Sahebzeda, S.; Terry, M.B. Environmental exposures and breast cancer risk in the context of underlying susceptibility: A systematic review of the epidemiological literature. Environ. Res. 2020, 187, 109346. [Google Scholar] [CrossRef] [PubMed]
- National Institute on Minority Health and Health Disparities. Minority Health and Health Disparities: Definitions and Parameters. Available online: https://www.nimhd.nih.gov/about/strategic-plan/nih-strategic-plan-definitions-and-parameters.html (accessed on 15 July 2022).
- National Institute of Cancer. Evidence-Based Cancer Control Programs (EBCCP) Submission and Review Process: A Guide for Program Developers. Available online: https://ebccp.cancercontrol.cancer.gov/reviewProcess.do (accessed on 15 July 2022).
- Neumark-Sztainer, D.R.; Friend, S.E.; Flattum, C.F.; Hannan, P.J.; Story, M.T.; Bauer, K.W.; Feldman, S.B.; Petrich, C.A. New moves-preventing weight-related problems in adolescent girls a group-randomized study. Am. J. Prev. Med. 2010, 39, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Vander Ploeg, K.A.; McGavock, J.; Maximova, K.; Veugelers, P.J. School-based health promotion and physical activity during and after school hours. Pediatrics 2014, 133, e371–e378. [Google Scholar] [CrossRef]
- Rock, C.L.; Flatt, S.W.; Byers, T.E.; Colditz, G.A.; Demark-Wahnefried, W.; Ganz, P.A.; Wolin, K.Y.; Elias, A.; Krontiras, H.; Liu, J.; et al. Results of the Exercise and Nutrition to Enhance Recovery and Good Health for You (ENERGY) Trial: A behavioral weight loss intervention in overweight or obese breast cancer survivors. J. Clin. Oncol. 2015, 33, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Sidahmed, E.; Cornellier, M.L.; Ren, J.; Askew, L.M.; Li, Y.; Talaat, N.; Rapai, M.S.; Ruffin, M.T.; Turgeon, D.K.; Brenner, D.; et al. Development of exchange lists for Mediterranean and Healthy Eating diets: Implementation in an intervention trial. J. Hum. Nutr. Diet. 2014, 27, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.L.; Bishop, D.B.; Taylor, G.; Murray, D.M.; Mays, R.W.; Dudovitz, B.S.; Smyth, M.; Story, M. Changing fruit and vegetable consumption among children: The 5-a-Day Power Plus program in St. Paul, Minnesota. Am. J. Public Health 1998, 88, 603–609. [Google Scholar] [CrossRef]
- National Cancer Institute. Breast Cancer Prevention (PDQ(R)): Patient Version. In PDQ Cancer Information Summaries; Bethesda: Rockville, MD, USA, 2021; Available online: https://www.cancer.gov/types/breast/patient/breast-prevention-pdq (accessed on 15 July 2022).
- Alcohol and Tobacco Tax and Trade Bureau, Treasury. Modernization of the labeling and advertising regulations for wine, distilled spirits, and malt beverages. Fed. Regist. 2020, 85, 18704–18726. [Google Scholar]
- LoConte, N.K.; Brewster, A.M.; Kaur, J.S.; Merrill, J.K.; Alberg, A.J. Alcohol and cancer: A statement of the American Society of Clinical Oncology. J. Clin. Oncol. 2018, 36, 83–93. [Google Scholar] [CrossRef]
- White, A.J.; DeRoo, L.A.; Weinberg, C.R.; Sandler, D.P. Lifetime alcohol intake, binge drinking behaviors, and breast cancer risk. Am. J. Epidemiol. 2017, 186, 541–549. [Google Scholar] [CrossRef]
- White, A.; Castle, I.J.; Chen, C.M.; Shirley, M.; Roach, D.; Hingson, R. Converging patterns of alcohol use and related outcomes among females and males in the United States, 2002 to 2012. Alcohol. Clin. Exp. Res. 2015, 39, 1712–1726. [Google Scholar] [CrossRef]
- Kirksey, K. A social history of racial disparities in breastfeeding in the United States. Soc. Sci. Med. 2021, 289, 114365. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.V.; Li, R.; Anstey, E.H.; Perrine, C.G. Racial and ethnic disparities in breastfeeding initiation—United States, 2019. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 769–774. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.A.; Tehranifar, P.; Flom, J.D.; Terry, M.B.; James-Todd, T. Hair product use, age at menarche and mammographic breast density in multiethnic urban women. Environ. Health 2018, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Berger, K.P.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Calafat, A.M.; Ye, X.; Eskenazi, B. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum. Reprod. 2019, 34, 109–117. [Google Scholar] [CrossRef]
- Llanos, A.A.M.; Rabkin, A.; Bandera, E.V.; Zirpoli, G.; Gonzalez, B.D.; Xing, C.Y.; Qin, B.; Lin, Y.; Hong, C.C.; Demissie, K.; et al. Hair product use and breast cancer risk among African American and White women. Carcinogenesis 2017, 38, 883–892. [Google Scholar] [CrossRef]
- Eberle, C.E.; Sandler, D.P.; Taylor, K.W.; White, A.J. Hair dye and chemical straightener use and breast cancer risk in a large US population of black and white women. Int. J. Cancer 2020, 147, 383–391. [Google Scholar] [CrossRef]
- Rao, R.; McDonald, J.A.; Barrett, E.S.; Greenberg, P.; Teteh, D.K.; Montgomery, S.B.; Qin, B.; Lin, Y.; Hong, C.C.; Ambrosone, C.B.; et al. Associations of hair dye and relaxer use with breast tumor clinicopathologic features: Findings from the Women’s circle of Health Study. Environ. Res. 2022, 203, 111863. [Google Scholar] [CrossRef]
- Ruiz, D.; Becerra, M.; Jagai, J.S.; Ard, K.; Sargis, R.M. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 2018, 41, 193–205. [Google Scholar] [CrossRef]
- Richmond-Bryant, J.; Mikati, I.; Benson, A.F.; Luben, T.J.; Sacks, J.D. Disparities in distribution of particulate matter emissions from US coal-fired power plants by race and poverty status after accounting for reductions in operations between 2015 and 2017. Am. J. Public Health 2020, 110, 655–661. [Google Scholar] [CrossRef]
- Fong, K.C.; Bell, M.L. Do fine particulate air pollution (PM2.5) exposure and its attributable premature mortality differ for immigrants compared to those born in the United States? Environ. Res. 2021, 196, 110387. [Google Scholar] [CrossRef]
- Duty, S.M.; Ackerman, R.M.; Calafat, A.M.; Hauser, R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ. Health Perspect. 2005, 113, 1530–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James-Todd, T.; Terry, M.B.; Rich-Edwards, J.; Deierlein, A.; Senie, R. Childhood hair product use and earlier age at menarche in a racially diverse study population: A pilot study. Ann. Epidemiol. 2011, 21, 461–465. [Google Scholar] [CrossRef] [PubMed]
- James-Todd, T.; Senie, R.; Terry, M.B. Racial/ethnic differences in hormonally-active hair product use: A plausible risk factor for health disparities. J. Immigr. Minor. Health 2012, 14, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Hicken, M.T.; Gee, G.C.; Morenoff, J.; Connell, C.M.; Snow, R.C.; Hu, H. A novel look at racial health disparities: The interaction between social disadvantage and environmental health. Am. J. Public Health 2012, 102, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Alcala, E.; Brown, P.; Capitman, J.A.; Gonzalez, M.; Cisneros, R. Cumulative impact of environmental pollution and population vulnerability on pediatric asthma hospitalizations: A multilevel analysis of CalEnviroScreen. Int. J. Environ. Res. Public Health 2019, 16, 2683. [Google Scholar] [CrossRef]
- Madrigal, D.S.; Minkler, M.; Parra, K.L.; Mundo, C.; Gonzalez, J.E.C.; Jimenez, R.; Vera, C.; Harley, K.G. Improving Latino Youths’ Environmental Health Literacy and Leadership Skills Through Participatory Research on Chemical Exposures in Cosmetics: The HERMOSA Study. Int. Q. Community Health Educ. 2016, 36, 231–240. [Google Scholar] [CrossRef]
- Jakuboski, S.H.; McDonald, J.A.; Terry, M.B. Do current family history-based genetic testing guidelines contribute to breast cancer health inequities? NPJ Breast Cancer 2022, 8, 36. [Google Scholar] [CrossRef]
- Armstrong, S.; Wong, C.A.; Perrin, E.; Page, S.; Sibley, L.; Skinner, A. Association of physical activity with income, race/ethnicity, and sex among adolescents and young adults in the United States: Findings from the National Health and Nutrition Examination Survey, 2007–2016. JAMA Pediatr. 2018, 172, 732–740. [Google Scholar] [CrossRef]
- Bantham, A.; Taverno Ross, S.E.; Sebastião, E.; Hall, G. Overcoming barriers to physical activity in underserved populations. Prog. Cardiovasc. Dis. 2021, 64, 64–71. [Google Scholar] [CrossRef]
- Kehm, R.D.; Genkinger, J.M.; MacInnis, R.J.; John, E.M.; Phillips, K.A.; Dite, G.S.; Milne, R.L.; Zeinomar, N.; Liao, Y.; Knight, J.A.; et al. Recreational physical activity is associated with reduced breast cancer risk in adult women at high risk for breast cancer: A cohort study of women selected for familial and genetic risk. Cancer Res. 2020, 80, 116–125. [Google Scholar] [CrossRef]
- Kehm, R.D.; MacInnis, R.J.; John, E.M.; Liao, Y.; Kurian, A.W.; Genkinger, J.M.; Knight, J.A.; Colonna, S.V.; Chung, W.K.; Milne, R.; et al. Recreational physical activity and outcomes after breast cancer in women at high familial risk. JNCI Cancer Spectr. 2021, 5, pkab090. [Google Scholar] [CrossRef] [PubMed]
- Ornes, L.; Ransdell, L.B. Web-based physical activity intervention for college-aged women. Int. Electron. J. Health Educ. 2007, 10, 126–137. [Google Scholar]
- Enger, S.M.; Ross, R.K.; Paganini-Hill, A.; Carpenter, C.L.; Bernstein, L. Body size, physical activity, and breast cancer hormone receptor status: Results from two case-control studies. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 681–687. [Google Scholar] [PubMed]
- Cotterchio, M.; Kreiger, N.; Theis, B.; Sloan, M.; Bahl, S. Hormonal factors and the risk of breast cancer according to estrogen- and progesterone-receptor subgroup. Cancer Epidemiol. Biomarkers Prev. 2003, 12, 1053–1060. [Google Scholar] [PubMed]
- Ma, H.; Bernstein, L.; Ross, R.K.; Ursin, G. Hormone-related risk factors for breast cancer in women under age 50 years by estrogen and progesterone receptor status: Results from a case-control and a case-case comparison. Breast Cancer Res. 2006, 8, R39. [Google Scholar] [CrossRef] [PubMed]
- Dolle, J.M.; Daling, J.R.; White, E.; Brinton, L.A.; Doody, D.R.; Porter, P.L.; Malone, K.E. Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 1157–1166. [Google Scholar] [CrossRef]
- Kwan, M.L.; Kushi, L.H.; Weltzien, E.; Maring, B.; Kutner, S.E.; Fulton, R.S.; Lee, M.M.; Ambrosone, C.B.; Caan, B.J. Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res. 2009, 11, R31. [Google Scholar] [CrossRef]
- Yang, X.R.; Chang-Claude, J.; Goode, E.L.; Couch, F.J.; Nevanlinna, H.; Milne, R.L.; Gaudet, M.; Schmidt, M.K.; Broeks, A.; Cox, A.; et al. Associations of breast cancer risk factors with tumor subtypes: A pooled analysis from the Breast Cancer Association Consortium studies. J. Natl. Cancer Inst. 2011, 103, 250–263. [Google Scholar] [CrossRef]
- Gaudet, M.M.; Press, M.F.; Haile, R.W.; Lynch, C.F.; Glaser, S.L.; Schildkraut, J.; Gammon, M.D.; Douglas Thompson, W.; Bernstein, J.L. Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger. Breast Cancer Res. Treat. 2011, 130, 587–597. [Google Scholar] [CrossRef]
- Pierobon, M.; Frankenfeld, C.L. Obesity as a risk factor for triple-negative breast cancers: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2013, 137, 307–314. [Google Scholar] [CrossRef]
- Chen, F.Y.; Ou, H.Y.; Wang, S.M.; Wu, Y.H.; Yan, G.J.; Tang, L.L. Associations between body mass index and molecular subtypes as well as other clinical characteristics of breast cancer in Chinese women. Ther. Clin. Risk Manag. 2013, 9, 131–137. [Google Scholar]
- Kawai, M.; Malone, K.E.; Tang, M.T.; Li, C.I. Height, body mass index (BMI), BMI change, and the risk of estrogen receptor-positive, HER2-positive, and triple-negative breast cancer among women ages 20 to 44 years. Cancer 2014, 120, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- John, E.M.; Sangaramoorthy, M.; Hines, L.M.; Stern, M.C.; Baumgartner, K.B.; Giuliano, A.R.; Wolff, R.K.; Slattery, M.L. Overall and abdominal adiposity and premenopausal breast cancer risk among hispanic women: The breast cancer health disparities study. Cancer Epidemiol. Biomarkers Prev. 2015, 24, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Bandera, E.V.; Chandran, U.; Hong, C.C.; Troester, M.A.; Bethea, T.N.; Adams-Campbell, L.L.; Haiman, C.A.; Park, S.Y.; Olshan, A.F.; Ambrosone, C.B.; et al. Obesity, body fat distribution, and risk of breast cancer subtypes in African American women participating in the AMBER Consortium. Breast Cancer Res. Treat. 2015, 150, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cook, L.S.; Tang, M.T.; Porter, P.L.; Hill, D.A.; Wiggins, C.L.; Li, C.I. Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer. Breast Cancer Res. Treat. 2016, 157, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Nagrani, R.; Mhatre, S.; Rajaraman, P.; Soerjomataram, I.; Boffetta, P.; Gupta, S.; Parmar, V.; Badwe, R.; Dikshit, R. Central obesity increases risk of breast cancer irrespective of menopausal and hormonal receptor status in women of South Asian Ethnicity. Eur. J. Cancer 2016, 66, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Munsell, M.F.; Sprague, B.L.; Berry, D.A.; Chisholm, G.; Trentham-Dietz, A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol. Rev. 2014, 36, 114–136. [Google Scholar] [CrossRef]
- White, A.J.; Nichols, H.B.; Bradshaw, P.T.; Sandler, D.P. Overall and central adiposity and breast cancer risk in the Sister Study. Cancer 2015, 121, 3700–3708. [Google Scholar] [CrossRef]
- Rasmy, A.; Sorour, Y. Effect of obesity on neoadjuvant systemic therapy outcomes in patients with early breast cancer: A retrospective institutional study. Asian. Pac. J. Cancer Prev. 2020, 21, 683–691. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Porcu, L.; Agbor-Tarh, D.; Cinieri, S.; Franzoi, M.A.; De Santis, M.C.; Saura, C.; Huober, J.; Fumagalli, D.; Izquierdo, M.; et al. Effect of body mass index on response to neo-adjuvant therapy in HER2-positive breast cancer: An exploratory analysis of the NeoALTTO trial. Breast Cancer Res. 2020, 22, 115. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Yee, D.; Basu, S.; Beckwith, H.; Potter, D.; Blaes, A. Impact of body mass index on pathological complete response following neoadjuvant chemotherapy in operable breast cancer: A meta-analysis. Breast Cancer 2021, 28, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wei, Y.; Kartsonaki, C. Associations of adiposity and weight change with recurrence and survival in breast cancer patients: A systematic review and meta-analysis. Breast Cancer 2022, 29, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.L.; John, E.M.; Caan, B.J.; Lee, V.S.; Bernstein, L.; Cheng, I.; Gomez, S.L.; Henderson, B.E.; Keegan, T.H.; Kurian, A.W. Obesity and mortality after breast cancer by race/ethnicity: The California Breast Cancer Survivorship Consortium. Am. J. Epidemiol. 2014, 179, 95–111. [Google Scholar] [CrossRef]
- Picon-Ruiz, M.; Morata-Tarifa, C.; Valle-Goffin, J.J.; Friedman, E.R.; Slingerland, J.M. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J. Clin. 2017, 67, 378–397. [Google Scholar] [CrossRef]
- Gortmaker, S.L.; Peterson, K.; Wiecha, J.; Sobol, A.M.; Dixit, S.; Fox, M.K.; Laird, N. Reducing obesity via a school-based interdisciplinary intervention among youth: Planet Health. Arch. Pediatr. Adolesc. Med. 1999, 153, 409–418. [Google Scholar] [CrossRef]
- Reynolds, K.D.; Franklin, F.A.; Binkley, D.; Raczynski, J.M.; Harrington, K.F.; Kirk, K.A.; Person, S. Increasing the fruit and vegetable consumption of fourth-graders: Results from the high 5 project. Prev. Med. 2000, 30, 309–319. [Google Scholar] [CrossRef]
- Elliot, D.L.; Goldberg, L.; Kuehl, K.S.; Moe, E.L.; Breger, R.K.; Pickering, M.A. The PHLAME (Promoting Healthy Lifestyles: Alternative Models’ Effects) firefighter study: Outcomes of two models of behavior change. J. Occup. Environ. Med. 2007, 49, 204–213. [Google Scholar] [CrossRef]
- Lindberg, N.M.; Stevens, V.J. Review: Weight-loss interventions with Hispanic populations. Ethn. Dis. 2007, 17, 397–402. [Google Scholar]
- Tussing-Humphreys, L.M.; Fitzgibbon, M.L.; Kong, A.; Odoms-Young, A. Weight loss maintenance in African American women: A systematic review of the behavioral lifestyle intervention literature. J. Obes. 2013, 2013, 437369. [Google Scholar] [CrossRef]
- Vo, L.; Albrecht, S.S.; Kershaw, K.N. Multilevel interventions to prevent and reduce obesity. Curr. Opin. Endocr. Metab. Res. 2019, 4, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.S.; Mulder, C.; Twisk, J.W.R.; van Mechelen, W.; Chinapaw, M.J.M. Tracking of childhood overweight into adulthood: A systematic review of the literature. Obes. Rev. 2008, 9, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Factor-Litvak, P.; Suglia, S.F.; Susser, E.S.; Kezios, K.L.; Lovasi, G.S.; Cirillo, P.M.; Cohn, B.A.; Link, B.G. Tracking of obesity in childhood into adulthood: Effects on body mass index and fat mass index at age 50. Child. Obes. 2020, 16, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Stone, C.R.; Cheung, W.Y.; Hayes, S.C. Physical activity and mortality in cancer survivors: A systematic review and meta-analysis. JNCI Cancer Spectr. 2020, 4, pkz080. [Google Scholar] [CrossRef]
- Jiralerspong, S.; Goodwin, P.J. Obesity and breast cancer prognosis: Evidence, challenges, and opportunities. J. Clin. Oncol. 2016, 34, 4203–4216. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.; Yin, Y.; Feng, L. Cancer survivors could get survival benefits from postdiagnosis physical activity: A meta-analysis. Evid. Based Complement. Altern. Med. 2019, 2019, 1940903. [Google Scholar] [CrossRef]
- Lahart, I.M. Physical activity, risk of death and recurrence in breast cancer survivors: A systematic review and meta-analysis of epidemiological studies. Act. Oncol. 2015, 54, 635–654. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kehm, R.D.; Llanos, A.A.M.; McDonald, J.A.; Tehranifar, P.; Terry, M.B. Evidence-Based Interventions for Reducing Breast Cancer Disparities: What Works and Where the Gaps Are? Cancers 2022, 14, 4122. https://doi.org/10.3390/cancers14174122
Kehm RD, Llanos AAM, McDonald JA, Tehranifar P, Terry MB. Evidence-Based Interventions for Reducing Breast Cancer Disparities: What Works and Where the Gaps Are? Cancers. 2022; 14(17):4122. https://doi.org/10.3390/cancers14174122
Chicago/Turabian StyleKehm, Rebecca D., Adana A. M. Llanos, Jasmine A. McDonald, Parisa Tehranifar, and Mary Beth Terry. 2022. "Evidence-Based Interventions for Reducing Breast Cancer Disparities: What Works and Where the Gaps Are?" Cancers 14, no. 17: 4122. https://doi.org/10.3390/cancers14174122
APA StyleKehm, R. D., Llanos, A. A. M., McDonald, J. A., Tehranifar, P., & Terry, M. B. (2022). Evidence-Based Interventions for Reducing Breast Cancer Disparities: What Works and Where the Gaps Are? Cancers, 14(17), 4122. https://doi.org/10.3390/cancers14174122