Number of Tumor Foci as a Risk Factor for Recurrence in Papillary Thyroid Carcinoma: Does It Improve Predictability?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinicopathological Characteristics of 1288 Patients with PTC
3.2. Comparison of Recurrence Rates According to the Number of Tumor Foci
3.3. Comparison of Recurrence Rates after Propensity Score Matching
3.4. Comparison of Predictability of Recurrence of Various Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hong, S.; Won, Y.J.; Lee, J.J.; Jung, K.W.; Kong, H.J.; Im, J.S.; Seo, H.G. Community of Population-Based Regional Cancer, R. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2018. Cancer Res. Treat. 2021, 53, 301–315. [Google Scholar] [CrossRef]
- Dong, W.; Horiuchi, K.; Tokumitsu, H.; Sakamoto, A.; Noguchi, E.; Ueda, Y.; Okamoto, T. Time-Varying Pattern of Mortality and Recurrence from Papillary Thyroid Cancer: Lessons from a Long-Term Follow-Up. Thyroid 2019, 29, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Leboulleux, S. Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 2021, 17, 176–188. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, H.; Moon, B.I. Association of Multifocality With Prognosis of Papillary Thyroid Carcinoma: A Systematic Review and Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 847–854. [Google Scholar] [CrossRef]
- Li, X.; Kwon, H. The Impact of BRAF Mutation on the Recurrence of Papillary Thyroid Carcinoma: A Meta-Analysis. Cancers 2020, 12, 2056. [Google Scholar] [CrossRef]
- Joseph, K.R.; Edirimanne, S.; Eslick, G.D. Multifocality as a prognostic factor in thyroid cancer: A meta-analysis. Int. J. Surg. 2018, 50, 121–125. [Google Scholar] [CrossRef]
- Vuong, H.G.; Duong, U.N.P.; Pham, T.Q.; Tran, H.M.; Oishi, N.; Mochizuki, K.; Nakazawa, T.; Hassell, L.; Katoh, R.; Kondo, T. Clinicopathological Risk Factors for Distant Metastasis in Differentiated Thyroid Carcinoma: A Meta-analysis. World J. Surg. 2018, 42, 1005–1017. [Google Scholar] [CrossRef]
- Qu, N.; Zhang, L.; Lu, Z.W.; Ji, Q.H.; Yang, S.W.; Wei, W.J.; Zhang, Y. Predictive factors for recurrence of differentiated thyroid cancer in patients under 21 years of age and a meta-analysis of the current literature. Tumour. Biol. 2016, 37, 7797–7808. [Google Scholar] [CrossRef]
- Markovic, I.; Goran, M.; Besic, N.; Buta, M.; Djurisic, I.; Stojiljkovic, D.; Zegarac, M.; Pupic, G.; Inic, Z.; Dzodic, R. Multifocality as independent prognostic factor in papillary thyroid cancer—A multivariate analysis. J. BUON 2018, 23, 1049–1054. [Google Scholar]
- Hitu, L.; Stefan, P.A.; Piciu, D. Total Tumor Diameter and Unilateral Multifocality as Independent Predictor Factors for Metastatic Papillary Thyroid Microcarcinoma. J. Clin. Med. 2021, 10, 3707. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.D.; Chao, T.C.; Hsueh, C.; Kuo, S.F. High recurrent rate of multicentric papillary thyroid carcinoma. Ann. Surg. Oncol. 2009, 16, 2609–2616. [Google Scholar] [CrossRef]
- Feng, J.W.; Pan, H.; Wang, L.; Ye, J.; Jiang, Y.; Qu, Z. Total tumor diameter: The neglected value in papillary thyroid microcarcinoma. J. Endocrinol. Investig. 2020, 43, 601–613. [Google Scholar] [CrossRef]
- Qu, N.; Zhang, L.; Wu, W.L.; Ji, Q.H.; Lu, Z.W.; Zhu, Y.X.; Lin, D.Z. Bilaterality weighs more than unilateral multifocality in predicting prognosis in papillary thyroid cancer. Tumour. Biol. 2016, 37, 8783–8789. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, H.K.; Byun, D.W.; Suh, K.; Yoo, M.H.; Min, Y.K.; Kim, S.W.; Chung, J.H. Number of tumor foci as predictor of lateral lymph node metastasis in papillary thyroid carcinoma. Head Neck 2015, 37, 650–654. [Google Scholar] [CrossRef]
- Feng, J.W.; Qu, Z.; Qin, A.C.; Pan, H.; Ye, J.; Jiang, Y. Significance of multifocality in papillary thyroid carcinoma. Eur. J. Surg. Oncol. 2020, 46, 1820–1828. [Google Scholar] [CrossRef]
- Lu, Z.; Sheng, J.; Zhang, Y.; Deng, J.; Li, Y.; Lu, A.; Zhang, J.; Yu, H.; Zhang, M.; Xiong, Z.; et al. Clonality analysis of multifocal papillary thyroid carcinoma by using genetic profiles. J. Pathol. 2016, 239, 72–83. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A.; ESMO Guidelines Committee. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Yan, T.; Qiu, W.; Song, J.; Ying, T.; Fan, Y.; Yang, Z. Bilateral multifocality, a marker for aggressive disease, is not an independent prognostic factor for papillary thyroid microcarcinoma: A propensity score matching analysis. Clin. Endocrinol. 2021, 95, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Sohn, S.Y.; Jang, H.W.; Kim, S.W.; Chung, J.H. Multifocality, but not bilaterality, is a predictor of disease recurrence/persistence of papillary thyroid carcinoma. World J. Surg. 2013, 37, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.R.; Roh, J.L.; Gong, G.; Cho, K.J.; Choi, S.H.; Nam, S.Y.; Kim, S.Y. Multifocality of papillary thyroid carcinoma as a risk factor for disease recurrence. Oral Oncol. 2019, 94, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.B.; Cakir, B.; Evranos, B.; Baser, H.; Cuhaci, N.; Aydin, C.; Ersoy, R. Preoperative predictors and prognosis of bilateral multifocal papillary thyroid carcinomas. Surg. Oncol. 2019, 28, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Su, X.; He, K.; Wang, Y.; Wang, H.; Wang, H.; Zhao, Y.; Zhao, W.; Zarnegar, R.; Fahey, T.J., 3rd; et al. Comparison of the clinicopathologic features and prognosis of bilateral versus unilateral multifocal papillary thyroid cancer: An updated study with more than 2000 consecutive patients. Cancer 2016, 122, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Mao, Z.; Ruan, J.; Su, X.; Li, L.; Fahey, T.J., 3rd; Wang, W.; Teng, L. Nomogram-Based New Recurrence Predicting System in Early-Stage Papillary Thyroid Cancer. Int. J. Endocrinol. 2019, 2019, 1029092. [Google Scholar] [CrossRef]
- Manso, J.; Censi, S.; Roberti, A.; Iacobone, M.; Barollo, S.; Bertazza, L.; Galuppini, F.; Vianello, F.; Albinger, N.; Scaroni, C.; et al. Prognostic significance of the sum of the diameters of single foci in multifocal papillary thyroid cancer: The concept of new-old tumor burden. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820964326. [Google Scholar] [CrossRef]
- Zhao, Q.; Ming, J.; Liu, C.; Shi, L.; Xu, X.; Nie, X.; Huang, T. Multifocality and total tumor diameter predict central neck lymph node metastases in papillary thyroid microcarcinoma. Ann. Surg. Oncol. 2013, 20, 746–752. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Age (years) | 47.4 ± 11.7 (IQR 39–55) |
Female sex | 1126 (87.4%) |
Pathologic features | |
Number of tumor foci | |
1 (unifocal) | 787 (61.1%) |
2 | 322 (25.0%) |
3 | 114 (8.9%) |
≥4 | 65 (5.0%) |
Primary tumor size (cm) | 1.0 ± 0.7 (IQR 0.6–1.2) |
Total tumor diameter (cm) | 1.3 ± 0.9 (IQR 0.7–1.6) |
Microscopic ETE | 787 (61.1%) |
Bilaterality | 338 (26.2%) |
LN metastasis | |
N0 | 743 (57.7%) |
N1a | 545 (42.3%) |
Margin involvement | 43 (3.3%) |
Coexisting HT | 363 (28.2%) |
Postoperative management | |
131I remnant ablation | 568 (44.1%) |
131I dose (mCi) | 134.1 ± 35.0 (IQR 100.0–150.0) |
Follow-up period (years) | 6.4 ± 3.3 (IQR 4.4–8.7) |
Recurrence | 37 (2.9%) |
Characteristics | TF4 (n = 65) | TF3 (n = 114) | TF2 (n = 322) | TF1 (n = 787) | p-Value |
---|---|---|---|---|---|
Age (years) | 49.1 ± 10.7 | 48.1 ± 11.9 | 47.7 ± 11.2 | 47.0 ± 11.7 | 0.383 |
Female sex | 54 (83.1%) | 102 (89.5%) | 278 (86.3%) | 692 (87.9%) | 0.556 |
Pathologic feature | |||||
Tumor size (cm) | 1.0 ± 0.6 | 1.1 ± 0.7 | 1.0 ± 0.7 | 1.0 ± 0.7 | 0.419 |
Total tumor diameter | <0.001 | ||||
0.0–1.0 cm | 2 (3.1%) | 13 (11.4%) | 111 (34.5%) | 514 (65.3%) | |
1.1–2.0 cm | 19 (29.2%) | 58 (50.9%) | 161 (50.0%) | 212 (26.9%) | |
2.1–3.0 cm | 23 (35.4%) | 30 (26.3%) | 34 (10.6%) | 43 (5.5%) | |
>3.0 cm | 21 (32.3%) | 13 (11.4%) | 16 (5.0%) | 18 (2.3%) | |
Microscopic ETE | 47 (72.3%) | 79 (69.3%) | 212 (65.8%) | 449 (57.1%) | 0.002 |
LN metastasis | 0.002 | ||||
N0 | 25 (38.5%) | 59 (51.8%) | 181 (56.2%) | 478 (60.7%) | |
N1 | 40 (61.5%) | 55 (48.2%) | 141 (43.8%) | 309 (39.3%) | |
Margin involvement | 3 (4.6%) | 3 (2.6%) | 18 (5.6%) | 19 (2.4%) | 0.054 |
Coexisting HT | 18 (27.7%) | 31 (27.2%) | 85 (26.4%) | 229 (29.1%) | 0.827 |
Postoperative course | |||||
131I remnant ablation | 36 (55.4%) | 58 (50.9%) | 145 (45.0%) | 329 (41.8%) | 0.064 |
131I dose (mCi) | 154.2 ± 30.2 | 131.8 ± 47.4 | 130.3 ± 35.3 | 133.9 ± 32.2 | 0.003 |
Follow-up period (years) | 6.3 ± 3.6 | 6.0 ± 3.2 | 6.2 ± 3.2 | 6.6 ± 3.2 | 0.077 |
Recurrence | 5 (7.7%) | 6 (5.3%) | 10 (3.1%) | 16 (2.0%) | 0.020 |
Characteristics | TF4 (n = 65) | TF3 (n = 114) | TF2 (n = 322) | TF1 (n = 501) | p-Value |
---|---|---|---|---|---|
Age (years) | 49.1 ± 10.7 | 48.1 ± 11.9 | 47.7 ± 11.2 | 46.8 ± 12.0 | 0.333 |
Female sex | 54 (83.1%) | 102 (89.5%) | 278 (86.3%) | 439 (87.6%) | 0.615 |
Pathologic feature | |||||
Tumor size (cm) | 1.0 ± 0.6 | 1.1 ± 0.7 | 1.0 ± 0.7 | 1.0 ± 0.7 | 0.557 |
Total tumor diameter | <0.001 | ||||
0.0–1.0 cm | 2 (3.1%) | 13 (11.4%) | 111 (34.5%) | 317 (63.3%) | |
1.1–2.0 cm | 19 (29.2%) | 58 (50.9%) | 161 (50.0%) | 148 (29.5%) | |
2.1–3.0 cm | 23 (35.4%) | 30 (26.3%) | 34 (10.6%) | 24 (4.8%) | |
>3.0 cm | 21 (32.3%) | 13 (11.4%) | 16 (5.0%) | 12 (2.4%) | |
Microscopic ETE | 47 (72.3%) | 79 (69.3%) | 212 (65.8%) | 332 (66.3%) | 0.704 |
LN metastasis | 0.063 | ||||
N0 | 25 (38.5%) | 59 (51.8%) | 181 (56.2%) | 255 (50.9%) | |
N1 | 40 (61.5%) | 55 (48.2%) | 141 (43.8%) | 246 (49.1%) | |
Margin involvement | 3 (4.6%) | 3 (2.6%) | 18 (5.6%) | 19 (3.8%) | 0.492 |
Coexisting HT | 18 (27.7%) | 31 (27.2%) | 85 (26.4%) | 143 (28.5%) | 0.927 |
Postoperative course | |||||
131I remnant ablation | 36 (55.4%) | 58 (50.9%) | 145 (45.0%) | 241 (48.1%) | 0.402 |
131I dose (mCi) | 154.2 ± 30.2 | 131.8 ± 47.4 | 130.3 ± 35.3 | 135.6 ± 32.7 | 0.004 |
Follow-up period (years) | 6.3 ± 3.6 | 6.0 ± 3.2 | 6.2 ± 3.2 | 6.7 ± 3.3 | 0.042 |
Recurrence | 5 (7.7%) | 6 (5.3%) | 10 (3.1%) | 10 (2.0%) | 0.039 |
Characteristics | Multivariate Analysis | Prediction Model | ||
---|---|---|---|---|
HR (95% CI) | p-Value | Area under ROC (95% CI) | p-Value | |
Multifocality | 2.404 (1.125–5.135) | 0.024 | 0.716 (0.625–0.807) | Ref. |
Bilaterality | 2.530 (1.226–5.219) | 0.012 | 0.719 (0.624–0.814) | 0.887 |
Number of tumor foci | 0.718 (0.623–0.814) | 0.946 | ||
2 foci | 1.507 (0.679–3.349) | 0.314 | ||
3 foci | 2.473 (0.953–6.417) | 0.063 | ||
≥4 foci | 3.214 (1.115–9.265) | 0.031 | ||
Total tumor diameter | 0.631 (0.525–0.736) | 0.217 | ||
1.1–2.0 cm | 0.890 (0.322–2.461) | 0.822 | ||
2.1–3.0 cm | 3.584 (1.345–9.548) | 0.011 | ||
>3.0 cm | 5.359 (1.322–21.72) | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.; Lim, W.; Moon, B.-I. Number of Tumor Foci as a Risk Factor for Recurrence in Papillary Thyroid Carcinoma: Does It Improve Predictability? Cancers 2022, 14, 4141. https://doi.org/10.3390/cancers14174141
Kwon H, Lim W, Moon B-I. Number of Tumor Foci as a Risk Factor for Recurrence in Papillary Thyroid Carcinoma: Does It Improve Predictability? Cancers. 2022; 14(17):4141. https://doi.org/10.3390/cancers14174141
Chicago/Turabian StyleKwon, Hyungju, Woosung Lim, and Byung-In Moon. 2022. "Number of Tumor Foci as a Risk Factor for Recurrence in Papillary Thyroid Carcinoma: Does It Improve Predictability?" Cancers 14, no. 17: 4141. https://doi.org/10.3390/cancers14174141
APA StyleKwon, H., Lim, W., & Moon, B. -I. (2022). Number of Tumor Foci as a Risk Factor for Recurrence in Papillary Thyroid Carcinoma: Does It Improve Predictability? Cancers, 14(17), 4141. https://doi.org/10.3390/cancers14174141