Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Immunohistochemistry
2.3. Image Analysis
2.4. Immunoscore Determination
2.5. Monitoring of the Study
2.6. Statistics
3. Results
3.1. Immune Densities and Immunoscore in Relation to the Age of the Patients
3.2. Immunoscore and the Outcome of Asian Colon Cancer Patients
3.3. Immunoscore in Microsatellite-Stable (MSS) Tumors
3.4. Immunoscore and Time-to-Event Analysis among Patients with Stage II Colon Cancer
3.5. Performance of Immunoscore in Multivariable Analyses
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 2014, 232, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pages, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [PubMed]
- Koelzer, V.H.; Dawson, H.; Andersson, E.; Karamitopoulou, E.; Masucci, G.V.; Lugli, A.; Zlobec, I. Active immunosurveillance in the tumor microenvironment of colorectal cancer is associated with low frequency tumor budding and improved outcome. Transl. Res. 2015, 166, 207–217. [Google Scholar] [CrossRef]
- Laghi, L.; Bianchi, P.; Miranda, E.; Balladore, E.; Pacetti, V.; Grizzi, F.; Allavena, P.; Torri, V.; Repici, A.; Santoro, A.; et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: A longitudinal study. Lancet Oncol. 2009, 10, 877–884. [Google Scholar] [CrossRef]
- Lee, W.S.; Park, S.; Lee, W.Y.; Yun, S.H.; Chun, H.K. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer 2010, 116, 5188–5199. [Google Scholar] [CrossRef] [PubMed]
- Mlecnik, B.; Bindea, G.; Angell, H.K.; Maby, P.; Angelova, M.; Tougeron, D.; Church, S.E.; Lafontaine, L.; Fischer, M.; Fredriksen, T.; et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity 2016, 44, 698–711. [Google Scholar] [CrossRef]
- Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Berger, A.; Bindea, G.; Meatchi, T.; Bruneval, P.; Trajanoski, Z.; Fridman, W.H.; Pages, F.; et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 2011, 29, 610–618. [Google Scholar] [CrossRef]
- Nosho, K.; Baba, Y.; Tanaka, N.; Shima, K.; Hayashi, M.; Meyerhardt, J.A.; Giovannucci, E.; Dranoff, G.; Fuchs, C.S.; Ogino, S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer and prognosis: Cohort study and literature review. J. Pathol. 2010, 222, 350–366. [Google Scholar] [CrossRef]
- Ogino, S.; Galon, J.; Fuchs, C.S.; Dranoff, G. Cancer immunology—Analysis of host and tumor factors for personalized medicine. Nat. Rev. Clin. Oncol. 2011, 8, 711–719. [Google Scholar] [CrossRef]
- Ogino, S.; Nosho, K.; Irahara, N.; Meyerhardt, J.A.; Baba, Y.; Shima, K.; Glickman, J.N.; Ferrone, C.R.; Mino-Kenudson, M.; Tanaka, N.; et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 2009, 15, 6412–6420. [Google Scholar] [CrossRef]
- Pages, F.; Berger, A.; Camus, M.; Sanchez-Cabo, F.; Costes, A.; Molidor, R.; Mlecnik, B.; Kirilovsky, A.; Nilsson, M.; Damotte, D.; et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 2005, 353, 2654–2666. [Google Scholar] [CrossRef] [PubMed]
- Mlecnik, B.; Bindea, G.; Angell, H.K.; Sasso, M.S.; Obenauf, A.C.; Fredriksen, T.; Lafontaine, L.; Bilocq, A.M.; Kirilovsky, A.; Tosolini, M.; et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl. Med. 2014, 6, 228ra37. [Google Scholar] [CrossRef]
- Pages, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P.; et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 2009, 27, 5944–5951. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Angell, H.K.; Galon, J. The immune landscape of human tumors: Implications for cancer immunotherapy. Oncoimmunology 2014, 3, e27456. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Fridman, W.H.; Galon, J. The prognostic impact of anti-cancer immune response: A novel classification of cancer patients. Semin. Immunopathol. 2011, 33, 335–340. [Google Scholar] [CrossRef]
- Pages, F.; Galon, J.; Fridman, W.H. The essential role of the in situ immune reaction in human colorectal cancer. J. Leukoc. Biol. 2008, 84, 981–987. [Google Scholar] [CrossRef]
- Angell, H.K.; Bruni, D.; Barrett, J.C.; Herbst, R.; Galon, J. The Immunoscore: Colon Cancer and Beyond. Clin. Cancer Res. 2020, 26, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020, 52, 55–81. [Google Scholar] [CrossRef]
- Kirilovsky, A.; Marliot, F.; El Sissy, C.; Haicheur, N.; Galon, J.; Pages, F. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients. Int. Immunol. 2016, 28, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Pages, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 391, 2128–2139. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Du, L.; Zhou, Y.; Li, K. The prognostic value of Immunoscore in patients with cancer: A pooled analysis of 10,328 patients. Int. J. Biol. Markers 2020, 35, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Pages, F.; Andre, T.; Taieb, J.; Vernerey, D.; Henriques, J.; Borg, C.; Marliot, F.; Ben Jannet, R.; Louvet, C.; Mineur, L.; et al. Prognostic and predictive value of the Immunoscore in stage III colon cancer patients treated with oxaliplatin in the prospective IDEA France PRODIGE-GERCOR cohort study. Ann. Oncol. 2020, 31, 921–929. [Google Scholar] [CrossRef]
- Sinicrope, F.A.; Shi, Q.; Hermitte, F.; Zemla, T.J.; Mlecnik, B.; Benson, A.B.; Gill, S.; Goldberg, R.M.; Kahlenberg, M.S.; Nair, S.G.; et al. Contribution of Immunoscore and Molecular Features to Survival Prediction in Stage III Colon Cancer. JNCI Cancer Spectr. 2020, 4, pkaa023. [Google Scholar] [CrossRef]
- Uno, H.; Claggett, B.; Tian, L.; Inoue, E.; Gallo, P.; Miyata, T.; Schrag, D.; Takeuchi, M.; Uyama, Y.; Zhao, L.; et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 2014, 32, 2380–2385. [Google Scholar] [CrossRef]
- Galon, J.; Angell, H.K.; Bedognetti, D.; Marincola, F.M. The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures. Immunity 2013, 39, 11–26. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Van den Eynde, M.; Mlecnik, B.; Bindea, G.; Fredriksen, T.; Church, S.E.; Lafontaine, L.; Haicheur, N.; Marliot, F.; Angelova, M.; Vasaturo, A.; et al. The Link between the Multiverse of Immune Microenvironments in Metastases and the Survival of Colorectal Cancer Patients. Cancer Cell 2018, 34, 1012–1026. [Google Scholar] [CrossRef]
- Mlecnik, B.; Bifulco, C.; Bindea, G.; Marliot, F.; Lugli, A.; Lee, J.J.; Zlobec, I.; Rau, T.T.; Berger, M.D.; Nagtegaal, I.D.; et al. Multicenter International Society for Immunotherapy of Cancer Study of the Consensus Immunoscore for the Prediction of Survival and Response to Chemotherapy in Stage III Colon Cancer. J. Clin. Oncol. 2020, 38, 3638–3651. [Google Scholar] [CrossRef]
- Mascaux, C.; Angelova, M.; Vasaturo, A.; Beane, J.; Hijazi, K.; Anthoine, G.; Buttard, B.; Rothe, F.; Willard-Gallo, K.; Haller, A.; et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 2019, 571, 570–575. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef]
- Angelova, M.; Mlecnik, B.; Vasaturo, A.; Bindea, G.; Fredriksen, T.; Lafontaine, L.; Buttard, B.; Morgand, E.; Bruni, D.; Jouret-Mourin, A.; et al. Evolution of metastases in space and time under immune selection. Cell 2018, 175, 751–765.e16. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Fuchs, E.; Ricken, G.; Mlecnik, B.; Bindea, G.; Spanberger, T.; Hackl, M.; Widhalm, G.; Dieckmann, K.D.; Bilocq, A.M.; et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 2016, 5, e1. [Google Scholar] [CrossRef]
- Mlecnik, B.; Bindea, G.; Kirilovsky, A.; Angell, H.K.; Obenauf, A.C.; Tosolini, M.; Church, S.E.; Maby, P.; Vasaturo, A.; Angelova, M.; et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl. Med. 2016, 8, 327ra26. [Google Scholar] [CrossRef]
- Mlecnik, B.; Van den Eynde, M.; Bindea, G.; Church, S.E.; Vasaturo, A.; Fredriksen, T.; Lafontaine, L.; Haicheur, N.; Marliot, F.; Debetancourt, D.; et al. Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. J. Natl. Cancer Inst. 2018, 110, 97–108. [Google Scholar] [CrossRef]
- Halama, N.; Michel, S.; Kloor, M.; Zoernig, I.; Benner, A.; Spille, A.; Pommerencke, T.; von Knebel, D.M.; Folprecht, G.; Luber, B.; et al. Localization and Density of Immune Cells in the Invasive Margin of Human Colorectal Cancer Liver Metastases Are Prognostic for Response to Chemotherapy. Cancer Res. 2011, 71, 5670–5677. [Google Scholar] [CrossRef]
- Montecino-Rodriguez, E.; Berent-Maoz, B.; Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 2013, 123, 958–965. [Google Scholar] [CrossRef]
- Andre, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 2004, 350, 2343–2351. [Google Scholar] [CrossRef]
- Twelves, C.; Wong, A.; Nowacki, M.P.; Abt, M.; Burris, H., 3rd; Carrato, A.; Cassidy, J.; Cervantes, A.; Fagerberg, J.; Georgoulias, V.; et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 2005, 352, 2696–2704. [Google Scholar] [CrossRef]
- Yothers, G.; O’Connell, M.J.; Allegra, C.J.; Kuebler, J.P.; Colangelo, L.H.; Petrelli, N.J.; Wolmark, N. Oxaliplatin as adjuvant therapy for colon cancer: Updated results of NSABP C-07 trial, including survival and subset analyses. J. Clin. Oncol. 2011, 29, 3768–3774. [Google Scholar] [CrossRef] [PubMed]
- Auclin, E.; Zaanan, A.; Vernerey, D.; Douard, R.; Gallois, C.; Laurent-Puig, P.; Bonnetain, F.; Taieb, J. Subgroups and prognostication in stage III colon cancer: Future perspectives for adjuvant therapy. Ann. Oncol. 2017, 28, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.R.; Hersh, E.M. Patient survival after chemotherapy and its relationship to in vitro lymphocyte blastogenesis. Cancer 1971, 28, 851–855. [Google Scholar] [CrossRef]
- Emens, L.A.; Machiels, J.P.; Reilly, R.T.; Jaffee, E.M. Chemotherapy: Friend or foe to cancer vaccines? Curr. Opin. Mol. Ther. 2001, 3, 77–84. [Google Scholar]
- Mathe, G. Chemotherapy, a double agent in respect of immune functions. Cancer Chemother. Pharmacol. 1978, 1, 65–68. [Google Scholar] [CrossRef]
- Vacchelli, E.; Aranda, F.; Eggermont, A.; Galon, J.; Sautes-Fridman, C.; Cremer, I.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014, 3, e27878. [Google Scholar] [CrossRef]
- Benson, A.B., 3rd; Hamilton, S.R. Path toward prognostication and prediction: An evolving matrix. J. Clin. Oncol. 2011, 29, 4599–4601. [Google Scholar] [CrossRef]
- Emens, L.A. It’s TIME for a biomarker-driven approach to cancer immunotherapy. J. Immunother. Cancer 2016, 4, 1–3. [Google Scholar] [CrossRef]
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Yoshino, T.; Argilés, G.; Oki, E.; Martinelli, E.; Taniguchi, H.; Arnold, D.; Mishima, S.; Li, Y.; Smruti, B.K.; Ahn, J.B.; et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis treatment and follow-up of patients with localised colon cancer. Ann. Oncol. 2021, 32, 1496–1510. [Google Scholar] [CrossRef]
Time to Recurrence (TTR) | ||||||||
---|---|---|---|---|---|---|---|---|
Number of | Rate at | Unadjusted | RMST | |||||
Patients (%) | 3 yr % (95% CI) | 5 yr % (95% CI) | HR (95% CI) | p-Value * | C-Index (95% CI) | Rel. Months (95% CI) | p-Value ** | |
Age at surgery (5 groups) | 0.55 (0.49−0.62) | |||||||
<60 | 134 (31.7) | 82.4 (75.7–89.8) | 81.3 (74.3–88.9) | 1.0 (reference) | 0.0 (reference) | |||
≥60–70 | 134 (31.7) | 85.3 (79.2–91.8) | 83.5 (77.2–90.4) | 0.87 (0.47−1.59) | 0.6500 | 2.2 (−5.1–9.6) | 0.5517 | |
≥70–85 | 149 (35.2) | 86.4 (80.8–92.2) | 85.6 (80–91.7) | 0.72 (0.39−1.32) | 0.2854 | 3.9 (−3.2–10.9) | 0.2832 | |
>85 | 6 (1.4) | 66.7 (37.9–100) | 50 (22.5–100) | 2.85 (0.85−9.56) | 0.0897 | −15.8 (−43.3–11.7) | 0.2609 | |
Gender | 0.5 (0.44−0.56) | |||||||
Male | 231 (54.6) | 84.2 (79.3–89.4) | 83.6 (78.6–88.9) | 1.0 (reference) | 0.0 (reference) | |||
Female | 192 (45.4) | 84.9 (79.7–90.3) | 82.4 (77–88.3) | 1.03 (0.63−1.67) | 0.9133 | −0.4 (−13.1–12.3) | 0.9520 | |
T stage | 0.62 (0.56−0.67) | |||||||
T1 | 20 (4.7) | 100 (100–100) | 100 (100–100) | 1.0 (reference) | 0.0 (reference) | |||
T2 | 53 (12.5) | 93.7 (87–100) | 93.7 (87–100) | Inf (0-Inf) | NA | −8.2 (−17.1–0.8) | 0.0737 | |
T3 | 289 (68.3) | 84.9 (80.7–89.4) | 82.9 (78.4–87.6) | Inf (0-Inf) | NA | −20.5 (−26–15) | <0.0001 | |
T4 | 61 (14.4) | 68.9 (57.6–82.4) | 68.9 (57.6–82.4) | Inf (0-Inf) | NA | −38.7 (−54.1–23.4) | <0.0001 | |
N stage | 0.64 (0.58−0.71) | |||||||
N0 | 318 (75.2) | 89.8 (86.4–93.3) | 88.3 (84.7–92.1) | 1.0 (reference) | 0.0 (reference) | |||
N1 | 66 (15.6) | 79.2 (69.3–90.4) | 79.2 (69.3–90.4) | 1.94 (1.01−3.74) | 0.0477 | −11.3 (−24.6–1.9) | 0.0944 | |
N2 | 39 (9.2) | 38.5 (23.5–62.8) | 34.2 (19.9–58.8) | 6.91 (3.89−12.27) | <.0001 | −59.5 (−80.5–38.6) | <0.0001 | |
AJCC/UICC-TNM stage | 0.67 (0.62−0.72) | |||||||
I | 67 (15.8) | 98.3 (95.1–100) | 98.3 (95.1–100) | 1.0 (reference) | 0.0 (reference) | |||
II | 251 (59.3) | 87.6 (83.4–91.9) | 85.7 (81.3–90.4) | 9.34 (1.28−68.23) | 0.0277 | −16.9 (−24.4–9.5) | <0.0001 | |
III | 105 (24.8) | 66.2 (56.8–77.1) | 64.9 (55.4–76) | 25.62 (3.49−187.95) | 0.0014 | −44.3 (−58.5–30.1) | <0.0001 | |
Differentiation grade | 0.62 (0.56−0.67) | |||||||
Well | 118 (28.2) | 91.3 (86.4–96.6) | 91.3 (86.4–96.6) | 1.0 (reference) | 0.0 (reference) | |||
Moderate | 261 (62.4) | 83.3 (78.6–88.3) | 81.4 (76.5–86.7) | 2.35 (1.18−4.67) | 0.0152 | −14.9 (−25.1–4.7) | 0.0043 | |
Poor–undiff. | 39 (9.3) | 68.4 (53.9–86.8) | 64.1 (49–84) | 5.15 (2.19−12.14) | 0.0002 | −39.3 (−64.9–13.6) | 0.0027 | |
Proximal vs. Distal Primary (Tumor) | 0.51 (0.45−0.57) | |||||||
Proximal | 184 (44.2) | 84.2 (78.7–90.1) | 83.5 (78–89.5) | 1.0 (reference) | 0.0 (reference) | |||
Distal | 232 (55.8) | 84.7 (80–89.6) | 82.6 (77.7–87.9) | 1.07 (0.65−1.77) | 0.7848 | −1.6 (−14.5–11.3) | 0.8042 | |
VELIPI | 0.53 (0.48−0.58) | |||||||
NO | 122 (28.8) | 88.3 (82.1–95.1) | 88.3 (82.1–95.1) | 1.0 (reference) | 0.0 (reference) | |||
YES | 301 (71.2) | 83.3 (79–87.7) | 81.4 (77–86.1) | 1.44 (0.77−2.7) | 0.2514 | −9.1 (−24.4–6.2) | 0.2433 | |
Mucinous colloid type | 0.51 (0.48−0.54) | |||||||
NO | 367 (95.3) | 84.9 (81.2–88.7) | 83.3 (79.5–87.3) | 1.0 (reference) | 0.0 (reference) | |||
YES | 18 (4.7) | 75.1 (56.6–99.7) | 75.1 (56.6–99.7) | 1.54 (0.56−4.23) | 0.4061 | −11.9 (−43.7–19.9) | 0.4632 | |
MSI Status (Derived) | 0.52 (0.49−0.56) | |||||||
MSS | 246 (90.4) | 86.2 (82–90.6) | 84.5 (80.1–89.2) | 1.0 (reference) | 0.0 (reference) | |||
MSI–H | 26 (9.6) | 92.3 (82.6–100) | 92.3 (82.6–100) | 0.48 (0.12−2.01) | 0.3168 | 9.6 (−5.7–24.8) | 0.2178 | |
Adjuvant chemotherapy | 0.57 (0.5-0.63) | |||||||
NO | 146 (35.5) | 89.9 (85–95.1) | 89.9 (85–95.1) | 1.0 (reference) | 0.0 (reference) | |||
YES | 265 (64.5) | 81.8 (76.9–86.9) | 79.4 (74.2–84.8) | 2 (1.12−3.57) | 0.0198 | −15.4 (−27.8–3.1) | 0.0145 | |
Immunoscore Lo vs. Int+Hi | 0.58 (0.52−0.64) | |||||||
Lo (0–25%) | 158 (37.4) | 78.5 (72.1–85.4) | 77 (70.5–84.1) | 1.9 (1.17−3.1) | 0.0097 | −19.3 (−34.1–4.5) | 0.0106 | |
Int+Hi (25–100%) | 265 (62.6) | 88.4 (84.3–92.6) | 86.9 (82.7–91.4) | 1.0 (reference) | 0.0 (reference) | |||
Immunoscore Lo vs. Int vs. Hi | 0.6 (0.55−0.66) | |||||||
Lo (0–25%) | 158 (37.4) | 78.5 (72.1–85.4) | 77 (70.5–84.1) | 7.26 (1.75−30.19) | 0.0064 | −33.5 (−47.2–19.9) | <0.0001 | |
Int (25–70%) | 197 (46.6) | 85.2 (80.1–90.6) | 84 (78.7–89.6) | 4.77 (1.14−20.04) | 0.0327 | −21.1 (−32.9–9.3) | 0.0005 | |
Hi (70–100%) | 68 (16.1) | 98.3 (95–100) | 96.3 (91.3–100) | 1.0 (reference) | 0.0 (reference) | |||
Immunoscore | 0.61 (0.55−0.67) | |||||||
I0 (0–10%) | 71 (16.8) | 75.1 (65.5–86.1) | 73.5 (63.6–84.8) | 7.75 (1.8−33.4) | 0.0060 | −16.1 (−22.7–9.6) | <0.0001 | |
I1 (10–25%) | 87 (20.6) | 81.3 (73.2–90.3) | 80 (71.7–89.3) | 6.05 (1.4−26.18) | 0.0161 | −12.4 (−17.9–6.9) | <0.0001 | |
I2 (25–70%) | 197 (46.6) | 85.2 (80.1–90.6) | 84 (78.7–89.6) | 4.48 (1.07−18.82) | 0.0404 | −10 (−13.4–6.5) | <0.0001 | |
I3 (70–95%) | 62 (14.7) | 98.1 (94.6–100) | 96 (90.7–100) | 1.0 (reference) | −1.8 (−4.5–0.9) | 0.1969 | ||
I4 (95–100%) | 6 (1.4) | 100 (100–100) | 100 (100–100) | Inf (0-Inf) | NA | 0.0 (reference) | ||
Immunoscore Lo vs. Int+Hi and High risk (T4 and VELIPI+) vs. Low risk (all others) | 0.58 (0.52−0.65) | |||||||
0–25% High Risk | 11 (2.6) | 63.6 (40.7–99.5) | 63.6 (40.7–99.5) | 3.48 (1.22−9.91) | 0.0198 | −27.1 (−59.4–5.3) | 0.1007 | |
0–25% Low Risk | 147 (34.8) | 79.7 (73.2–86.7) | 78.1 (71.5–85.4) | 1.79 (1.08−2.99) | 0.0250 | −9.7 (−18.5–0.9) | 0.0302 | |
25–100% High Risk | 16 (3.8) | 87.5 (72.7–100) | 87.5 (72.7–100) | 0.97 (0.23−4.06) | 0.9643 | −0.4 (−19.4–18.6) | 0.9678 | |
25–100% Low Risk | 249 (58.9) | 88.4 (84.2–92.8) | 86.9 (82.4–91.5) | 1.0 (reference) | 0.0 (reference) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlecnik, B.; Torigoe, T.; Bindea, G.; Popivanova, B.; Xu, M.; Fujita, T.; Hazama, S.; Suzuki, N.; Nagano, H.; Okuno, K.; et al. Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study. Cancers 2022, 14, 4346. https://doi.org/10.3390/cancers14184346
Mlecnik B, Torigoe T, Bindea G, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, et al. Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study. Cancers. 2022; 14(18):4346. https://doi.org/10.3390/cancers14184346
Chicago/Turabian StyleMlecnik, Bernhard, Toshihiko Torigoe, Gabriela Bindea, Boryana Popivanova, Mingli Xu, Tomonobu Fujita, Shoichi Hazama, Nobuaki Suzuki, Hiroaki Nagano, Kiyotaka Okuno, and et al. 2022. "Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study" Cancers 14, no. 18: 4346. https://doi.org/10.3390/cancers14184346
APA StyleMlecnik, B., Torigoe, T., Bindea, G., Popivanova, B., Xu, M., Fujita, T., Hazama, S., Suzuki, N., Nagano, H., Okuno, K., Hirohashi, Y., Furuhata, T., Takemasa, I., Patel, P., Vora, H., Shah, B., Patel, J. B., Rajvik, K. N., Pandya, S. J., ... Galon, J. (2022). Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study. Cancers, 14(18), 4346. https://doi.org/10.3390/cancers14184346