Factors Associated with Axillary Lymph Node Status in Clinically Node-Negative Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Tumor Biological Assessment before Neoadjuvant Chemotherapy
2.3. Axillary Ultrasound Procedures for Assessing the Axillary Nodal Status
2.4. Neoadjuvant Chemotherapy Regimens
2.5. Subsequent Surgical Intervention
2.6. Pathological Evaluation of Surgical Specimens after Neoadjuvant Chemotherapy
2.7. Follow-Up
2.8. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. Breast and Axillary Surgery
3.3. Pathological Findings of Tumor in Breast and Axilla
3.4. Predictors of Axillary Lymph Node Status
3.5. Risk Predictors of Axillary Lymph Node Metastasis among Breast Non-pCR Patients
3.6. Clinical Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carter, C.L.; Allen, C.; Henson, D.E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989, 63, 181–187. [Google Scholar] [CrossRef]
- Jatoi, I.; Hilsenbeck, S.G.; Clark, G.M.; Osborne, C.K. Significance of axillary lymph node metastasis in primary breast cancer. J. Clin. Oncol. 1999, 17, 2240–2334. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C.; Miller, D.P.; Shak, S.; Petkov, V.I. Breast cancer-specific survival in patients with lymph node-positive hormone receptor-positive invasive breast cancer and Oncotype DX Recurrence Score results in the SEER database. Breast Cancer Res. Treat. 2017, 163, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ivens, D.; Hoe, A.L.; Podd, T.J.; Hamilton, C.R.; Taylor, I.; Royle, G.T. Assessment of morbidity from complete axillary dissection. Br. J. Cancer 1992, 66, 136–138. [Google Scholar] [CrossRef]
- Hack, T.F.; Cohen, L.; Katz, J.; Robson, L.S.; Goss, P. Physical and psychological morbidity after axillary lymph node dissection for breast cancer. J. Clin. Oncol. 1999, 17, 143–149. [Google Scholar] [CrossRef]
- Crane-Okada, R.; Wascher, R.A.; Elashoff, D.; Giuliano, A.E. Long-term morbidity of sentinel node biopsy versus complete axillary dissection for unilateral breast cancer. Ann. Surg. Oncol. 2008, 15, 1996–2005. [Google Scholar] [CrossRef]
- Del Bianco, P.; Zavagno, G.; Burelli, P.; Scalco, G.; Barutta, L.; Carraro, P.; Pietrarota, P.; Meneghini, G.; Morbin, T.; Tacchetti, G.; et al. Morbidity comparison of sentinel lymph node biopsy versus conventional axillary lymph node dissection for breast cancer patients: Results of the sentinella-GIVOM Italian randomised clinical trial. Eur. J. Surg. Oncol. 2008, 34, 508–513. [Google Scholar] [CrossRef]
- Veronesi, U.; Paganelli, G.; Viale, G.; Luini, A.; Zurrida, S.; Galimberti, V.; Intra, M.; Veronesi, P.; Robertson, C.; Maisonneuve, P.; et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 2003, 349, 546–553. [Google Scholar] [CrossRef]
- Veronesi, U.; Paganelli, G.; Viale, G.; Luini, A.; Zurrida, S.; Galimberti, V.; Intra, M.; Veronesi, P.; Maisonneuve, P.; Gatti, G.; et al. Sentinel-lymph-node biopsy as a staging procedure in breast cancer: Update of a randomised controlled study. Lancet Oncol. 2006, 7, 983–990. [Google Scholar] [CrossRef]
- Krag, D.N.; Anderson, S.J.; Julian, T.B.; Brown, A.M.; Harlow, S.P.; Costantino, J.P.; Ashikaga, T.; Weaver, D.L.; Mamounas, E.P.; Jalovec, L.M.; et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA 2017, 318, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Somerfield, M.R.; Bosserman, L.D.; Perkins, C.L.; Weaver, D.L.; Giuliano, A.E. Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2017, 35, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Lucci, A.; McCall, L.M.; Beitsch, P.D.; Whitworth, P.W.; Reintgen, D.S.; Blumencranz, P.W.; Leitch, A.M.; Saha, S.; Hunt, K.K.; Giuliano, A.E. American College of Surgeons Oncology Group. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J. Clin. Oncol. 2007, 25, 3563–3657. [Google Scholar] [CrossRef]
- Wilke, L.G.; McCall, L.M.; Posther, K.E.; Whitworth, P.W.; Reintgen, D.S.; Leitch, A.M.; Gabram, S.G.; Lucci, A.; Cox, C.E.; Hunt, K.K.; et al. Surgical complications associated with sentinel lymph node biopsy: Results from a prospective international cooperative group trial. Ann. Surg. Oncol. 2006, 13, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Hayes, S.C.; Rye, S.; Battistutta, D.; DiSipio, T.; Newman, B. Upper-body morbidity following breast cancer treatment is common, may persist longer-term and adversely influences quality of life. Health Qual. Life Outcomes 2010, 8, 92. [Google Scholar] [CrossRef]
- Pamilo, M.; Soiva, M.; Lavast, E.M. Real-time ultrasound, axillary mammography, and clinical examination in the detection of axillary lymph node metastases in breast cancer patients. J. Ultrasound Med. 1989, 8, 115–120. [Google Scholar] [CrossRef]
- Valente, S.A.; Levine, G.M.; Silverstein, M.J.; Rayhanabad, J.A.; Weng-Grumley, J.G.; Ji, L.; Holmes, D.R.; Sposto, R.; Sener, S.F. Accuracy of predicting axillary lymph node positivity by physical examination, mammography, ultrasonography, and magnetic resonance imaging. Ann. Surg. Oncol. 2012, 19, 1825–1830. [Google Scholar] [CrossRef]
- Kvistad, K.A.; Rydland, J.; Smethurst, H.B.; Lundgren, S.; Fjøsne, H.E.; Haraldseth, O. Axillary lymph node metastases in breast cancer: Preoperative detection with dynamic contrast-enhanced MRI. Eur. Radiol. 2000, 10, 1464–1471. [Google Scholar] [CrossRef]
- Riegger, C.; Koeninger, A.; Hartung, V.; Otterbach, F.; Kimmig, R.; Forsting, M.; Bockisch, A.; Antoch, G.; Heusner, T.A. Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients. Acta Radiol. 2012, 53, 1092–1098. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Sneige, N.; Bedi, D.G.; Edieken, B.S.; Fornage, B.D.; Kuerer, H.M.; Singletary, S.E.; Hunt, K.K. Role of ultrasound-guided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma. Cancer 2002, 95, 982–988. [Google Scholar] [CrossRef]
- Houssami, N.; Ciatto, S.; Turner, R.M.; Cody, H.S., 3rd; Macaskill, P. Preoperative ultrasound-guided needle biopsy of axillary nodes in invasive breast cancer: Meta-analysis of its accuracy and utility in staging the axilla. Ann. Surg. 2011, 254, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, M.; Gandhi, S.; Ishikawa, T.; Takabe, K. Neoadjuvant Chemotherapy for Breast Cancer: Past, Present, and Future. Breast Cancer 2020, 14, 1178223420980377. [Google Scholar] [CrossRef] [PubMed]
- Voogd, A.C.; Coebergh, J.W.; Repelaer van Driel, O.J.; Roumen, R.M.; van Beek, M.W.; Vreugdenhil, A.; Crommelin, M.A. The risk of nodal metastases in breast cancer patients with clinically negative lymph nodes: A population-based analysis. Breast Cancer Res. Treat. 2000, 62, 63–69. [Google Scholar] [CrossRef]
- Hunt, K.K.; Yi, M.; Mittendorf, E.A.; Guerrero, C.; Babiera, G.V.; Bedrosian, I.; Hwang, R.F.; Kuerer, H.M.; Ross, M.I.; Meric-Bernstam, F. Sentinel lymph node surgery after neoadjuvant chemotherapy is accurate and reduces the need for axillary dissection in breast cancer patients. Ann. Surg. 2009, 250, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilli, Z.; Hoskin, T.L.; Day, C.N.; Habermann, E.B.; Boughey, J.C. Impact of Neoadjuvant Chemotherapy on Nodal Disease and Nodal Surgery by Tumor Subtype. Ann. Surg. Oncol. 2018, 25, 482–493. [Google Scholar] [CrossRef]
- Tadros, A.B.; Yang, W.T.; Krishnamurthy, S.; Rauch, G.M.; Smith, B.D.; Valero, V.; Black, D.M.; Lucci, A., Jr.; Caudle, A.S.; DeSnyder, S.M.; et al. Identification of Patients With Documented Pathologic Complete Response in the Breast After Neoadjuvant Chemotherapy for Omission of Axillary Surgery. JAMA Surg. 2017, 152, 665–670. [Google Scholar] [CrossRef]
- Barron, A.U.; Hoskin, T.L.; Day, C.N.; Hwang, E.S.; Kuerer, H.M.; Boughey, J.C. Association of Low Nodal Positivity Rate Among Patients With ERBB2-Positive or Triple-Negative Breast Cancer and Breast Pathologic Complete Response to Neoadjuvant Chemotherapy. JAMA Surg. 2018, 153, 1120–1126. [Google Scholar] [CrossRef]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef]
- Kuerer, H.M.; Sahin, A.A.; Hunt, K.K.; Newman, L.A.; Breslin, T.M.; Ames, F.C.; Ross, M.I.; Buzdar, A.U.; Hortobagyi, G.N.; Singletary, S.E. Incidence and impact of documented eradication of breast cancer axillary lymph node metastases before surgery in patients treated with neoadjuvant chemotherapy. Ann. Surg. 1999, 230, 72–78. [Google Scholar] [CrossRef]
- Mougalian, S.S.; Hernandez, M.; Lei, X.; Lynch, S.; Kuerer, H.M.; Symmans, W.F.; Theriault, R.L.; Fornage, B.D.; Hsu, L.; Buchholz, T.A.; et al. Ten-Year Outcomes of Patients With Breast Cancer With Cytologically Confirmed Axillary Lymph Node Metastases and Pathologic Complete Response After Primary Systemic Chemotherapy. JAMA Oncol. 2016, 2, 508–516. [Google Scholar] [CrossRef]
- Boughey, J.C.; Ballman, K.V.; McCall, L.M.; Mittendorf, E.A.; Symmans, W.F.; Julian, T.B.; Byrd, D.; Hunt, K.K. Tumor Biology and Response to Chemotherapy Impact Breast Cancer-specific Survival in Node-positive Breast Cancer Patients Treated With Neoadjuvant Chemotherapy: Long-term Follow-up From ACOSOG Z1071 (Alliance). Ann. Surg. 2017, 266, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Gerber, B.; Schneeweiss, A.; Möbus, V.; Golatta, M.; Tesch, H.; Krug, D.; Hanusch, C.; Denkert, C.; Lübbe, K.; Heil, J.; et al. Pathological Response in the Breast and Axillary Lymph Nodes after Neoadjuvant Systemic Treatment in Patients with Initially Node-Positive Breast Cancer Correlates with Disease Free Survival: An Exploratory Analysis of the GeparOcto Trial. Cancers 2022, 14, 521. [Google Scholar] [CrossRef]
- Chen, S.C.; Yu, C.C.; Chang, H.K.; Lin, Y.C.; Lo, Y.F.; Shen, S.C.; Kuo, W.L.; Tsai, H.P.; Chou, H.H.; Chu, C.H.; et al. Discrepancy of Breast and Axillary Pathologic Complete Response and Outcomes in Different Subtypes of Node-positive Breast Cancer after Neoadjuvant Chemotherapy. J. Cancer 2021, 12, 5365–5374. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.L.; L Hoskin, T.; Heins, C.D.N.; Habermann, E.B.; Boughey, J.C. Preoperative Prediction of Node-Negative Disease After Neoadjuvant Chemotherapy in Patients Presenting with Node-Negative or Node-Positive Breast Cancer. Ann. Surg. Oncol. 2017, 24, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Van der Noordaa, M.E.M.; van Duijnhoven, F.H.; Cuijpers, F.N.E.; van Werkhoven, E.; Wiersma, T.G.; Elkhuizen, P.H.M.; Winter-Warnars, G.; Dezentje, V.; Sonke, G.S.; Groen, E.J.; et al. Toward omitting sentinel lymph node biopsy after neoadjuvant chemotherapy in patients with clinically node-negative breast cancer. Br. J. Surg. 2021, 108, 667–674. [Google Scholar] [CrossRef]
- Choi, H.J.; Ryu, J.M.; Kim, I.; Nam, S.J.; Kim, S.W.; Yu, J.; Lee, J.E.; Lee, S.K. Prediction of axillary pathologic response with breast pathologic complete response after neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2019, 176, 591–596. [Google Scholar] [CrossRef]
- Samiei, S.; van Nijnatten, T.J.A.; de Munck, L.; Keymeulen, K.B.M.I.; Simons, J.M.; Kooreman, L.F.S.; Siesling, S.; Lobbes, M.B.I.; Smidt, M.L. Correlation Between Pathologic Complete Response in the Breast and Absence of Axillary Lymph Node Metastases After Neoadjuvant Systemic Therapy. Ann. Surg. 2020, 271, 574–580. [Google Scholar] [CrossRef]
- Ryu, J.M.; Choi, H.J.; Park, E.H.; Kim, J.Y.; Lee, Y.J.; Park, S.; Lee, J.; Park, H.K.; Nam, S.J.; Kim, S.W.; et al. Relationship Between Breast and Axillary Pathologic Complete Response According to Clinical Nodal Stage: A Nationwide Study From Korean Breast Cancer Society. J. Breast Cancer 2022, 25, 94–105. [Google Scholar] [CrossRef]
- Sleeman, J.P.; Thiele, W. Tumor metastasis and the lymphatic vasculature. Int. J. Cancer 2009, 125, 2747–2756. [Google Scholar] [CrossRef]
- Podgrabinska, S.; Skobe, M. Role of lymphatic vasculature in regional and distant metastases. Microvasc. Res. 2014, 95, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Lauria, R.; Perrone, F.; Carlomagno, C.; De Laurentiis, M.; Morabito, A.; Gallo, C.; Varriale, E.; Pettinato, G.; Panico, L.; Petrella, G.; et al. The prognostic value of lymphatic and blood vessel invasion in operable breast cancer. Cancer 1995, 76, 1772–1778. [Google Scholar] [CrossRef]
- Ozmen, V.; Karanlik, H.; Cabioglu, N.; Igci, A.; Kecer, M.; Asoglu, O.; Tuzlali, S.; Mudun, A. Factors predicting the sentinel and non-sentinel lymph node metastases in breast cancer. Breast Cancer Res. Treat. 2006, 95, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, C.; Tartter, P.I.; Bleiweiss, I.J. Lymphatic invasion, tumor size, and age are independent predictors of axillary lymph node metastases in women with T1 breast cancers. Ann. Surg. 1999, 230, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Tasoulis, M.K.; Lee, H.B.; Yang, W.; Pope, R.; Krishnamurthy, S.; Kim, S.Y.; Cho, N.; Teoh, V.; Rauch, G.M.; Smith, B.D.; et al. Accuracy of Post-Neoadjuvant Chemotherapy Image-Guided Breast Biopsy to Predict Residual Cancer. JAMA Surg. 2020, 155, e204103. [Google Scholar] [CrossRef]
- Kuerer, H.M.; Rauch, G.M.; Krishnamurthy, S.; Adrada, B.E.; Caudle, A.S.; DeSnyder, S.M.; Black, D.M.; Santiago, L.; Hobbs, B.P.; Lucci, A., Jr.; et al. A Clinical Feasibility Trial for Identification of Exceptional Responders in Whom Breast Cancer Surgery Can Be Eliminated Following Neoadjuvant Systemic Therapy. Ann. Surg. 2018, 267, 946–951. [Google Scholar] [CrossRef]
- Van Loevezijn, A.A.; van der Noordaa, M.E.M.; van Werkhoven, E.D.; Loo, C.E.; Winter-Warnars, G.A.O.; Wiersma, T.; van de Vijver, K.K.; Groen, E.J.; Blanken-Peeters, C.F.J.M.; Zonneveld, B.J.G.L.; et al. Minimally Invasive Complete Response Assessment of the Breast After Neoadjuvant Systemic Therapy for Early Breast Cancer (MICRA trial): Interim Analysis of a Multicenter Observational Cohort Study. Ann. Surg. Oncol. 2021, 28, 3243–3253. [Google Scholar] [CrossRef]
Variable | No. of Cases | % |
---|---|---|
Age (years), median (IQR) | 46.5 (13) | |
<40 | 56 | 25.2 |
41–50 | 90 | 40.5 |
51–60 | 51 | 23.0 |
>60 | 25 | 11.3 |
Tumor size (cm), median (IQR) | 3.3 (1.5) | |
Tumor histology | ||
IDC | 212 | 95.5 |
Others | 10 | 4.5 |
Clinical T category a | ||
T1 | 14 | 6.3 |
T2 | 187 | 84.2 |
T3 | 21 | 9.5 |
SBR grade b | ||
1 | 35 | 15.8 |
2 | 98 | 44.1 |
3 | 89 | 40.1 |
Biologic subtype | ||
HR-positive/HER2-negative | 91 | 41.0 |
HR-positive/HER2-positive | 51 | 23.0 |
HR-negative/HER2-positive | 30 | 13.5 |
HR-negative/HER2-negative | 50 | 22.5 |
Ki-67 | ||
<20 | 61 | 27.5 |
≥20 | 132 | 59.5 |
Unknown | 29 | 13.0 |
Breast surgery type | ||
Mastectomy | 49 | 22.1 |
Breast-conserving surgery | 173 | 77.9 |
Lymphovascular invasion | ||
Present | 20 | 9.0 |
Absent | 202 | 91.0 |
Pathological breast status after NAC | ||
Breast non-pCR c | 132 | 59.5 |
Breast pCR d | 90 | 40.5 |
Pathological node status after NAC | ||
ypN+ e | 17 | 7.7 |
ypN0 f | 205 | 92.3 |
Variable | Pathological Node Status after NAC | p Value | Multivariate Analysis * | |||
---|---|---|---|---|---|---|
ypN0 a (n = 205) | ypN+ b (n = 17) | Odds Ratio | 95% CI | p Value | ||
Age (years), median (IQR) | 46 (14) | 48 (8) | 0.783 | |||
≤40 | 53 (25.9) | 3 (17.6) | 0.661 | - | ||
41–50 | 81 (39.5) | 9 (52.9) | ||||
51–60 | 47 (22.9) | 4 (23.5) | ||||
>60 | 24 (11.7) | 1 (5.9) | ||||
Tumor size (cm), median (IQR) | 3.3 (1.5) | 3.2 (1.3) | 0.953 | - | ||
Tumor histology | 0.032 | |||||
IDC | 198 (96.6) | 14 (82.4) | Reference | |||
Others | 7 (3.4) | 3 (17.6) | 3.410 | 0.568–20.476 | 0.180 | |
Clinical T category c | 0.486 | - | ||||
T1 | 13 (6.3) | 1 (5.9) | ||||
T2 | 174 (84.9) | 13 (76.5) | ||||
T3 | 18 (8.8) | 3 (17.6) | ||||
SBR grade d | 0.034 | |||||
1 | 30 (14.6) | 5 (29.4) | Reference | |||
2 | 88 (42.9) | 10 (58.8) | 0.534 | 0.126–2.261 | 0.394 | |
3 | 87 (42.4) | 2 (11.8) | 0.196 | 0.028–1.378 | 0.101 | |
Biologic subtype | 0.064 | |||||
HR-positive/HER2-negative | 79 (38.5) | 12 (70.6) | Reference | |||
HR-positive/HER2-positive | 49 (23.9) | 2 (11.8) | 0.670 | 0.134–3.365 | 0.627 | |
HR-negative/HER2-positive | 28 (13.7) | 2 (11.8) | 0.575 | 0.093–3.556 | 0.552 | |
HR-negative/HER2-negative | 49 (23.9) | 1 (5.8) | 0.795 | 0.115–5.474 | 0.816 | |
Ki-67 | 0.047 | |||||
<20 | 52 (25.4) | 9 (52.9) | Reference | |||
≥20 | 125 (61.0) | 7 (41.2) | 0.995 | 0.252–3.926 | 0.995 | |
Unknown | 28 (13.7) | 1 (5.9) | 0.308 | 0.042–.241 | 0.245 | |
Lymphovascular invasion | <0.0001 | <0.0001 | ||||
Present | 10 (4.9) | 10 (58.8) | 29.366 | 7.146–120.682 | ||
Absent | 195 (95.1) | 7 (41.2) | Reference | |||
Pathological breast status after NAC | <0.001 | 0.077 | ||||
Breast non-pCR e | 115 (56.1) | 17 (100.0) | 13.896 | 0.752–256.837 | ||
Breast pCR f | 90 (43.9) | 0 | Reference |
Variable | Pathological Breast Status | p Value | Multivariate Analysis * | |||
---|---|---|---|---|---|---|
Breast Non-pCR a (n = 132) | Breast pCR b (n = 90) | Odds Ratio | 95% CI | p Value | ||
Age (years), median (IQR) | 47 (10) | 46 (18) | 0.664 | |||
≤40 | 29 (22.0) | 27 (30.0) | 0.127 | - | ||
41–50 | 62 (47.0) | 28 (31.1) | ||||
51–60 | 28 (21.2) | 23 (25.6) | ||||
>60 | 13 (9.8) | 12 (13.3) | ||||
Tumor size (cm), median (IQR) | 3.3 (1.3) | 3.2 (1.5) | 0.314 | |||
Tumor histology | 0.052 | |||||
IDC | 123 (93.2) | 89 (98.9) | Reference | |||
Others | 9 (6.8) | 1 (1.1) | 0.541 | 0.050–5.821 | 0.612 | |
Clinical T category c | 0.896 | - | ||||
T1 | 9 (6.8) | 5 (5.6) | ||||
T2 | 110 (83.3) | 77 (85.6) | ||||
T3 | 13 (9.8) | 8 (8.9) | ||||
SBR Grade d | <0.0001 | |||||
1 | 31 (23.5) | 4 (4.4) | Reference | |||
2 | 66 (50.0) | 32 (35.6) | 2.519 | 0.748–8.484 | 0.136 | |
3 | 35 (26.5) | 54 (60.0) | 5.624 | 1.546–20.456 | 0.009 | |
Biologic subtype | <0.0001 | |||||
HR-positive/HER2-negative | 71 (53.8) | 20 (22.2) | Reference | |||
HR-positive/HER2-positive | 27 (20.5) | 24 (26.7) | 2.533 | 1.138–5.637 | 0.023 | |
HR-negative/HER2-positive | 12 (9.1) | 18 (20.0) | 2.923 | 1.132–7.546 | 0.027 | |
HR-negative/HER2-negative | 22 (16.7) | 28 (31.1) | 2.164 | 0.946–4.949 | 0.067 | |
Ki-67 | <0.0001 | |||||
<20 | 53 (40.2) | 8 (8.9) | Reference | |||
≥20 | 65 (49.2) | 67 (74.4) | 2.682 | 1.053–6.829 | 0.039 | |
Unknown | 14 (10.6) | 15 (16.7) | 4.354 | 1.399–13.554 | 0.011 | |
Operation type | 0.203 | |||||
Mastectomy | 33 (25.0) | 16 (17.8) | ||||
Breast-conserving surgery | 99 (75.0) | 74 (82.2) |
Variable | Pathological Node Status after NAC | p Value | Multivariate Analysis * | |||
---|---|---|---|---|---|---|
ypN0 a (n =115) | ypN+ b (n = 17) | Odds Ratio | 95% CI | p Value | ||
Age (years), median (IQR) | 47 (12) | 48 (8) | 0.879 | |||
≤40 | 26 (22.6) | 3 (17.6) | - | |||
41–50 | 53 (46.1) | 9 (52.9) | ||||
51–60 | 24 (20.9) | 4 (23.5) | ||||
>60 | 12 (10.4) | 1 (5.9) | ||||
Tumor size (cm), median (IQR) | 3.3 (1.3) | 3.2 (1.3) | 0.699 | - | ||
Tumor histology | 0.092 | - | ||||
IDC | 109 (94.8) | 14 (82.4) | ||||
Others | 6 (5.2) | 3 (17.6) | ||||
Clinical T category c | 0.512 | - | ||||
T1 | 8 (7.0) | 1 (5.9) | ||||
T2 | 97 (84.3) | 13 (76.5) | ||||
T3 | 10 98.7) | 3 (17.6) | ||||
SBR grade d | 0.333 | - | ||||
1 | 26 (22.6) | 5 (29.4) | ||||
2 | 56 (48.7) | 10 (58.8) | ||||
3 | 33 (28.7) | 2 (11.8) | ||||
Biologic subtype | 0.353 | - | ||||
HR-positive/HER2-negative | 59 (51.3) | 12 (70.6) | ||||
HR-positive/HER2-positive | 25 (21.7) | 2 (11.8) | ||||
HR-negative/HER2-positive | 10 (8.7) | 2 (11.8) | ||||
HR-negative/HER2-negative | 21 (18.3) | 1 (5.9) | ||||
Ki-67 | 0.481 | - | ||||
<20 | 44 (38.3) | 9 (52.9) | ||||
≥20 | 58 (50.4) | 7 (41.2) | ||||
Unknown | 13 (11.3) | 1 (5.9) | ||||
Breast surgery type | 0.013 | |||||
Mastectomy | 24 (20.9) | 9 (52.9) | 3.420 | 1.004–11.648 | 0.049 | |
Breast-conserving surgery | 91 (79.1) | 8 (47.1) | Reference | |||
Lymphovascular invasion | <0.0001 | <0.0001 | ||||
Present | 8 (7.0) | 10 (58.8) | 16.927 | 4.882–58.687 | ||
Absent | 107 (93.0) | 7 (41.2) | Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-C.; Cheung, Y.-C.; Ueng, S.-H.; Lin, Y.-C.; Kuo, W.-L.; Shen, S.-C.; Lo, Y.-F.; Chen, S.-C. Factors Associated with Axillary Lymph Node Status in Clinically Node-Negative Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers 2022, 14, 4451. https://doi.org/10.3390/cancers14184451
Yu C-C, Cheung Y-C, Ueng S-H, Lin Y-C, Kuo W-L, Shen S-C, Lo Y-F, Chen S-C. Factors Associated with Axillary Lymph Node Status in Clinically Node-Negative Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers. 2022; 14(18):4451. https://doi.org/10.3390/cancers14184451
Chicago/Turabian StyleYu, Chi-Chang, Yun-Chung Cheung, Shir-Hwa Ueng, Yung-Chang Lin, Wen-Ling Kuo, Shih-Che Shen, Yung-Feng Lo, and Shin-Cheh Chen. 2022. "Factors Associated with Axillary Lymph Node Status in Clinically Node-Negative Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy" Cancers 14, no. 18: 4451. https://doi.org/10.3390/cancers14184451
APA StyleYu, C. -C., Cheung, Y. -C., Ueng, S. -H., Lin, Y. -C., Kuo, W. -L., Shen, S. -C., Lo, Y. -F., & Chen, S. -C. (2022). Factors Associated with Axillary Lymph Node Status in Clinically Node-Negative Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers, 14(18), 4451. https://doi.org/10.3390/cancers14184451