The Evolving Landscape of Immunotherapy in Locally Advanced Rectal Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Deficient MMR or MSI-High Localized Rectal Cancer
3. Proficient MMR or MSI-Low Localized Rectal Cancer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Robert, C. A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.A.; Shiu, K.-K.; Kim, T.-W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus Chemotherapy for Microsatellite Instability-High or Mismatch Repair-Deficient Metastatic Colorectal Cancer (KEYNOTE-177): Final Analysis of a Randomised, Open-Label, Phase 3 Study. Lancet Oncol. 2022, 23, 659–670. [Google Scholar] [CrossRef]
- Casak, S.J.; Marcus, L.; Fashoyin-Aje, L.; Mushti, S.L.; Cheng, J.; Shen, Y.-L.; Pierce, W.F.; Her, L.; Goldberg, K.B.; Theoret, M.R.; et al. FDA Approval Summary: Pembrolizumab for the First-Line Treatment of Patients with MSI-H/DMMR Advanced Unresectable or Metastatic Colorectal Carcinoma. Clin. Cancer Res. 2021, 27, 4680–4684. [Google Scholar] [CrossRef] [PubMed]
- Trullas, A.; Delgado, J.; Genazzani, A.; Mueller-Berghaus, J.; Migali, C.; Müller-Egert, S.; Zander, H.; Enzmann, H.; Pignatti, F. The EMA Assessment of Pembrolizumab as Monotherapy for the First-Line Treatment of Adult Patients with Metastatic Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer. ESMO Open 2021, 6, 100145. [Google Scholar] [CrossRef]
- Antoniotti, C.; Rossini, D.; Pietrantonio, F.; Catteau, A.; Salvatore, L.; Lonardi, S.; Boquet, I.; Tamberi, S.; Marmorino, F.; Moretto, R.; et al. Upfront FOLFOXIRI plus Bevacizumab with or without Atezolizumab in the Treatment of Patients with Metastatic Colorectal Cancer (AtezoTRIBE): A Multicentre, Open-Label, Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2022, 23, 876–887. [Google Scholar] [CrossRef]
- Morano, F.; Raimondi, A.; Pagani, F.; Lonardi, S.; Salvatore, L.; Cremolini, C.; Murgioni, S.; Randon, G.; Palermo, F.; Antonuzzo, L.; et al. Temozolomide Followed by Combination with Low-Dose Ipilimumab and Nivolumab in Patients With Microsatellite-Stable, O6-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: The MAYA Trial. J. Clin. Oncol. 2022, 40, 1562–1573. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
- Salvatore, L.; Bensi, M.; Corallo, S.; Bergamo, F.; Pellegrini, I.; Rasola, C.; Borelli, B.; Tamburini, E.; Randon, G.; Galuppo, S.; et al. Phase II Study of Preoperative (PREOP) Chemoradiotherapy (CTRT) plus Avelumab (AVE) in Patients (PTS) with Locally Advanced Rectal Cancer (LARC): The AVANA Study. J. Clin. Oncol. 2021, 39, 3511. [Google Scholar] [CrossRef]
- Yuki, S.; Bando, H.; Tsukada, Y.; Inamori, K.; Komatsu, Y.; Homma, S.; Uemura, M.; Kato, T.; Kotani, D.; Fukuoka, S.; et al. Short-Term Results of VOLTAGE-A: Nivolumab Monotherapy and Subsequent Radical Surgery Following Preoperative Chemoradiotherapy in Patients with Microsatellite Stable and Microsatellite Instability-High Locally Advanced Rectal Cancer. J. Clin. Oncol. 2020, 38, 4100. [Google Scholar] [CrossRef]
- Tamberi, S.; Grassi, E.; Zingaretti, C.; Papiani, G.; Pini, S.; Corbelli, J.; Di Bartolomeo, M.; Pietrantonio, F.; Frassineti, G.L.; Passardi, A.; et al. A Phase II Study of Capecitabine plus Concomitant Radiation Therapy Followed by Durvalumab (MEDI4736) as Preoperative Treatment in Rectal Cancer: PANDORA Study Final Results. J. Clin. Oncol. 2022, 40, LBA3513. [Google Scholar] [CrossRef]
- Shamseddine, A.; Zeidan, Y.; Bouferraa, Y.; Turfa, R.; Kattan, J.; Mukherji, D.; Temraz, S.; Alqasem, K.; Amarin, R.; Awabdeh, T.A.; et al. SO-30 Efficacy and Safety of Neoadjuvant Short-Course Radiation Followed by MFOLFOX-6 plus Avelumab for Locally-Advanced Rectal Adenocarcinoma: Averectal Study. Ann. Oncol. 2021, 32, S215. [Google Scholar] [CrossRef]
- Rahma, O.E.; Yothers, G.; Hong, T.S.; Russell, M.M.; You, Y.N.; Parker, W.; Jacobs, S.A.; Colangelo, L.H.; Lucas, P.C.; Gollub, M.J.; et al. NRG-GI002: A Phase II Clinical Trial Platform Using Total Neoadjuvant Therapy (TNT) in Locally Advanced Rectal Cancer (LARC)—Pembrolizumab Experimental Arm (EA) Primary Results. J. Clin. Oncol. 2021, 39, 8. [Google Scholar] [CrossRef]
- Lin, Z.; Cai, M.; Zhang, P.; Li, G.; Liu, T.; Li, X.; Cai, K.; Nie, X.; Wang, J.; Liu, J.; et al. Phase II, Single-Arm Trial of Preoperative Short-Course Radiotherapy Followed by Chemotherapy and Camrelizumab in Locally Advanced Rectal Cancer. J. Immunother. Cancer 2021, 9, e003554. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Buhard, O.; Cervera, P.; Hain, E.; Dumont, S.; Bardier, A.; Bachet, J.-B.; Gornet, J.-M.; Lopez-Trabada, D.; Dumont, S.; et al. Clinical and Molecular Characterisation of Hereditary and Sporadic Metastatic Colorectal Cancers Harbouring Microsatellite Instability/DNA Mismatch Repair Deficiency. Eur. J. Cancer 2017, 86, 266–274. [Google Scholar] [CrossRef]
- Liu, G.-C.; Liu, R.-Y.; Yan, J.-P.; An, X.; Jiang, W.; Ling, Y.-H.; Chen, J.-W.; Bei, J.-X.; Zuo, X.-Y.; Cai, M.-Y.; et al. The Heterogeneity Between Lynch-Associated and Sporadic MMR Deficiency in Colorectal Cancers. J. Natl. Cancer Inst. 2018, 110, 975–984. [Google Scholar] [CrossRef]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant Immunotherapy Leads to Pathological Responses in MMR-Proficient and MMR-Deficient Early-Stage Colon Cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Verschoor, Y.L.; van den Berg, J.; Beets, G.; Sikorska, K.; Aalbers, A.; van Lent, A.; Grootscholten, C.; Huibregtse, I.; Marsman, H.; Oosterling, S.; et al. Neoadjuvant Nivolumab, Ipilimumab, and Celecoxib in MMR-Proficient and MMR-Deficient Colon Cancers: Final Clinical Analysis of the NICHE Study. J. Clin. Oncol. 2022, 40, 3511. [Google Scholar] [CrossRef]
- Hu, H.; Kang, L.; Zhang, J.; Wu, Z.; Wang, H.; Huang, M.; Lan, P.; Wu, X.; Wang, C.; Cao, W.; et al. Neoadjuvant PD-1 Blockade with Toripalimab, with or without Celecoxib, in Mismatch Repair-Deficient or Microsatellite Instability-High, Locally Advanced, Colorectal Cancer (PICC): A Single-Centre, Parallel-Group, Non-Comparative, Randomised, Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 38–48. [Google Scholar] [CrossRef]
- Keane, C.; Fearnhead, N.S.; Bordeianou, L.G.; Christensen, P.; Basany, E.E.; Laurberg, S.; Mellgren, A.; Messick, C.; Orangio, G.R.; Verjee, A.; et al. International Consensus Definition of Low Anterior Resection Syndrome. Dis. Colon Rectum 2020, 63, 274–284. [Google Scholar] [CrossRef] [PubMed]
- McKenna, N.P.; Bews, K.A.; Yost, K.J.; Cima, R.R.; Habermann, E.B. Bowel Dysfunction after Low Anterior Resection for Colorectal Cancer: A Frequent Late Effect of Surgery Infrequently Treated. J. Am. Coll. Surg. 2022, 234, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Back, E.; Häggström, J.; Holmgren, K.; Haapamäki, M.M.; Matthiessen, P.; Rutegård, J.; Rutegård, M. Permanent Stoma Rates after Anterior Resection for Rectal Cancer: Risk Prediction Scoring Using Preoperative Variables. Br. J. Surg. 2021, 108, 1388–1395. [Google Scholar] [CrossRef]
- Kang, S.-B.; Cho, J.R.; Jeong, S.-Y.; Oh, J.H.; Ahn, S.; Choi, S.; Kim, D.-W.; Lee, B.H.; Youk, E.G.; Park, S.C.; et al. Quality of Life after Sphincter Preservation Surgery or Abdominoperineal Resection for Low Rectal Cancer (ASPIRE): A Long-Term Prospective, Multicentre, Cohort Study. Lancet Reg. Health-West. Pac. 2021, 6, 100087. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ Preservation in Patients with Rectal Adenocarcinoma Treated with Total Neoadjuvant Therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef]
- Fokas, E.; Appelt, A.; Glynne-Jones, R.; Beets, G.; Perez, R.; Garcia-Aguilar, J.; Rullier, E.; Joshua Smith, J.; Marijnen, C.; Peters, F.P.; et al. International Consensus Recommendations on Key Outcome Measures for Organ Preservation after (Chemo)Radiotherapy in Patients with Rectal Cancer. Nat. Rev. Clin. Oncol. 2021, 18, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Andre, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.M.; Garcia-Carbonero, R.; Alcaide, J.; Gibbs, P.; et al. Final Overall Survival for the Phase III KN177 Study: Pembrolizumab versus Chemotherapy in Microsatellite Instability-High/Mismatch Repair Deficient (MSI-H/DMMR) Metastatic Colorectal Cancer (MCRC). J. Clin. Oncol. 2021, 39, 3500. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Lenz, H.-J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2021, 40, 161–170. [Google Scholar] [CrossRef]
- Yamazaki, T.; Gunderson, A.J.; Gilchrist, M.; Whiteford, M.; Kiely, M.X.; Hayman, A.; O’Brien, D.; Ahmad, R.; Manchio, J.V.; Fox, N.; et al. Galunisertib plus Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Single-Arm, Phase 2 Trial. Lancet Oncol. 2022, 23, 1189–1200. [Google Scholar] [CrossRef]
- Kuncman, Ł.; Orzechowska, M.; Stawiski, K.; Masłowski, M.; Ciążyńska, M.; Gottwald, L.; Milecki, T.; Fijuth, J. The Kinetics of FMS-Related Tyrosine Kinase 3 Ligand (Flt-3L) during Chemoradiotherapy Suggests a Potential Gain from the Earlier Initiation of Immunotherapy. Cancers 2022, 14, 3844. [Google Scholar] [CrossRef] [PubMed]
- Corrò, C.; Dutoit, V.; Koessler, T. Emerging Trends for Radio-Immunotherapy in Rectal Cancer. Cancers 2021, 13, 1374. [Google Scholar] [CrossRef] [PubMed]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Hsieh, C.-C.; Chuang, J.-P. Prognostic Significance of Partial Tumor Regression after Preoperative Chemoradiotherapy for Rectal Cancer: A Meta-Analysis. Dis. Colon Rectum 2013, 56, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological Features of Rectal Cancer after Preoperative Radiochemotherapy. Int. J. Colorectal Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.-K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-Course Radiotherapy Followed by Chemotherapy before Total Mesorectal Excision (TME) versus Preoperative Chemoradiotherapy, TME, and Optional Adjuvant Chemotherapy in Locally Advanced Rectal Cancer (RAPIDO): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Conroy, T.; Bosset, J.-F.; Etienne, P.-L.; Rio, E.; François, É.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant Chemotherapy with FOLFIRINOX and Preoperative Chemoradiotherapy for Patients with Locally Advanced Rectal Cancer (UNICANCER-PRODIGE 23): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- Fessas, P.; Lee, H.; Ikemizu, S.; Janowitz, T. A Molecular and Preclinical Comparison of the PD-1–Targeted T-Cell Checkpoint Inhibitors Nivolumab and Pembrolizumab. Semin. Oncol. 2017, 44, 136–140. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
Study Name | Experimental Setting | Study Population | Treatment | pCR Rate |
---|---|---|---|---|
Studies enrolling dMMR/MSI-H LARC patients | ||||
Cercek et al. [9] | Phase 2, single arm Clinical stage II-III LARC | 12 | Dostarlimab × 9 cycles → NOM in cCR+, otherwise CRT → surgery if cCR-, otherwise NOM | 100% * |
VOLTAGE-A Cohort A-2 [11] | Phase 2, single arm Clinical stage II-III LARC | 5 | CRT → nivolumab × 5 cycles → surgery | 60% |
Studies enrolling LARC patients regardless of MSI status or pMMR/MSI-L LARC patients only | ||||
AVANA [10] | Phase 2, single arm Clinical stage II-III LARC | 58 pMMR/MSI-L + 2 dMMR/MSI-H | CRT + avelumab × 6 cycles → surgery | 8% (50% in dMMR/MSI-H) |
VOLTAGE-A Cohort A-1 [11] | Phase 2, single arm Clinical stage II-III LARC | 37 pMMR/MSI-L | CRT → nivolumab × 5 cycles → surgery | 30% |
PANDORA [12] | Phase 2, single arm Clinical stage II-III LARC | 55 (MSI status NA) | CRT → durvalumab × 3 cycles → surgery | 33% |
AVERECTAL [13] | Phase 2, single arm Clinical stage II-III LARC | 44 (MSI status NA) | SCRT → FOLFOX + avelumab × 6 cycles → surgery | 37% |
Lin et al. [15] | Phase 2, single arm Clinical stage II-III LARC | 26 pMMR/MSI-L | SCRT → CAPOX + camrelizumab × 2 cycles → surgery | 46% |
NRG-GI002 [14] | Phase 2, randomized Clinical stage II-III LARC | 185 (MSI status NA) | FOLFOX → CRT ± pembrolizumab × 4 months → surgery | 29% |
ExiST [30] | Phase 2, single arm Clinical stage II-III-IV rectal cancer | 37 pMMR/MSI-L + 1 dMMR/MSI-H | galunisertib → CRT + galunisertib → surgery if cCR-, otherwise surgery ± adjuvant chemotherapy or NOM with FOLFOX × 8 cycles/CAPOX × 4 cycles | 32% § (100% in dMMR/MSI-H) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germani, M.M.; Carullo, M.; Boccaccino, A.; Conca, V.; Masi, G. The Evolving Landscape of Immunotherapy in Locally Advanced Rectal Cancer Patients. Cancers 2022, 14, 4453. https://doi.org/10.3390/cancers14184453
Germani MM, Carullo M, Boccaccino A, Conca V, Masi G. The Evolving Landscape of Immunotherapy in Locally Advanced Rectal Cancer Patients. Cancers. 2022; 14(18):4453. https://doi.org/10.3390/cancers14184453
Chicago/Turabian StyleGermani, Marco Maria, Martina Carullo, Alessandra Boccaccino, Veronica Conca, and Gianluca Masi. 2022. "The Evolving Landscape of Immunotherapy in Locally Advanced Rectal Cancer Patients" Cancers 14, no. 18: 4453. https://doi.org/10.3390/cancers14184453
APA StyleGermani, M. M., Carullo, M., Boccaccino, A., Conca, V., & Masi, G. (2022). The Evolving Landscape of Immunotherapy in Locally Advanced Rectal Cancer Patients. Cancers, 14(18), 4453. https://doi.org/10.3390/cancers14184453