Development and In Vitro Assessment of a Novel Vacuum-Based Tissue-Holding Device for Laparoscopic and Robotic Kidney Cancer Operations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Prototyping
2.2. Tissue-Holding Experiments
2.3. Conventional and Robotic Laparoscopy Experiments
3. Results
3.1. THD Development Process
3.2. THD Prototype #1 Feasibility Tests
3.2.1. Experiments in the Conventional Laparoscopic Model Setting
3.2.2. Evaluation of Tissue Damage
3.3. The Experiments Described in the Following Were Performed with THD, Prototype #2
3.3.1. Conventional Laparoscopy in Thiel-Fixated Human Bodies (Kidney and Liver)
3.3.2. Robotic-Assisted Laparoscopy (Davinci Xi® System) Experiments with Porcine Kidneys (and Liver)
3.3.3. Holding Force Measurements Using Different Vacuum Settings in Porcine Kidneys
4. Discussion
4.1. Limitations
4.1.1. Material Property
4.1.2. Utility
4.1.3. Blood/Clots
4.1.4. Costs
4.1.5. Ethical Considerations
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Mathur, M.; de Groot, A. PSU16 Trends in the Adoption of Different Surgical Approaches across Specialties: A National Study from 2013 to 2019. Value Health 2021, 24, S226–S227. [Google Scholar] [CrossRef]
- Sheetz, K.H.; Claflin, J.; Dimick, J.B. Trends in the Adoption of Robotic Surgery for Common Surgical Procedures. JAMA Netw. Open 2020, 3, e1918911. [Google Scholar] [CrossRef] [PubMed]
- Krimphove, M.J.; Reese, S.W.; Chen, X.; Marchese, M.; Pucheril, D.; Cone, E.; Chou, W.; Tully, K.H.; Kibel, A.S.; Urman, R.D.; et al. Recovery from Minimally Invasive vs. Open Surgery in Kidney Cancer Patients: Opioid Use and Workplace Absenteeism. Investig. Clin. Urol. 2021, 62, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, M.; Qu, L.; Ye, H.; Liu, B.; Yang, Q.; Sheng, J.; Xiao, L.; Lv, C.; Yang, B.; et al. A Propensity-Score Matched Comparison of Perioperative and Early Renal Functional Outcomes of Robotic versus Open Partial Nephrectomy. PLoS ONE 2014, 9, e94195. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Du, Y.; Wang, H.; Peng, L.; Wei, T.; Zhang, X.; Li, X.; Wang, A. Laparoscopic Versus Open Partial Nephrectomy: A Systemic Review and Meta-Analysis of Surgical, Oncological, and Functional Outcomes. Front. Oncol. 2020, 10, 2261. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.; Campbell, J.; Pokala, N. Hemorrhagic Complications of Robot-Assisted Laparoscopic Partial Nephrectomy for Renal Masses. J. Clin. Oncol. 2016, 34, 621. [Google Scholar] [CrossRef]
- Tomaszewski, J.J.; Smaldone, M.C.; Mehrazin, R.; Kocher, N.; Ito, T.; Abbosh, P.; Baber, J.; Kutikov, A.; Viterbo, R.; Chen, D.Y.T.; et al. Anatomic Complexity Quantitated by Nephrometry Score Is Associated with Prolonged Warm Ischemia Time during Robotic Partial Nephrectomy. Urology 2014, 84, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Hara, I.; Takenaka, A.; Kawabata, G.; Fujisawa, M. Incidence of Local and Port Site Recurrence of Urologic Cancer After Laparoscopic Surgery. Urology 2008, 71, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Nakano, T.; Kakegawa, S.; Ohtaki, Y.; Nagashima, T.; Kamiyoshihara, M.; Atsumi, J.; Igai, H.; Takeyoshi, I. Pericardium Reconstruction with the Starfish Heart Positioner after Extended Thymectomy with Combined Left Side Pericardium Resection. Ann. Thorac. Surg. 2012, 94, 2136–2138. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Watanabe, G.; Ohtake, H.; Terada, T. StarfishTM Heart Positioner Maintains Right Ventricular Function during Lateral Wall Displacement. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2007, 2, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Gründeman, P.F.; Budde, R.; Beck, H.M.; Van Boven, W.J.; Borst, C. Endoscopic Exposure and Stabilization of Posterior and Inferior Branches Using the Endo-Starfish Cardiac Positioner and the Endo-Octopus Stabilizer for Closed-Chest Beating Heart Multivessel CABG: Hemodynamic Changes in the Pig. Circulation 2003, 108, II34–II38. [Google Scholar] [CrossRef] [PubMed]
- Gründeman, P.F.; Verlaan, C.W.J.; Van Boven, W.J.; Borst, C. Ninety-Degree Anterior Cardiac Displacement in off-Pump Coronary Artery Bypass Grafting: The Starfish Cardiac Positioner Preserves Stroke Volume and Arterial Pressure. Ann. Thorac. Surg. 2004, 78, 679–684. [Google Scholar] [CrossRef]
- Dullum, M.K.; Resano, F.G. Xpose: A New Device That Provides Reproducible and Easy Access for Multivessel Beating Heart Bypass Grafting. Heart Surg. Forum 2000, 3, 113–117. [Google Scholar]
- Kasahara, H.; Kikuchi, I.; Otsuka, A.; Tsuzuki, Y.; Nojima, M.; Yoshida, K. Laparoscopic-Extracorporeal Surgery Performed with a Fixation Device for Adnexal Masses Complicating Pregnancy: Report of Two Cases. World J. Methodol. 2017, 7, 148–150. [Google Scholar] [CrossRef]
- Muranishi, Y.; Sato, T.; Yutaka, Y.; Sakaguchi, Y.; Komatsu, T.; Yoshizawa, A.; Hirata, M.; Nakamura, T.; Date, H. Development of a Novel Lung-Stabilizing Device for VATS Procedures. Surg. Endosc. 2017, 31, 4260–4267. [Google Scholar] [CrossRef]
- Muranishi, Y.; Sato, T.; Ueda, Y.; Yutaka, Y.; Sakaguchi, Y.; Nakamura, T.; Date, H. A Novel Suction-Based Lung-Stabilizing Device for Video-Assisted Thoracoscopic Surgical Procedures. J. Thorac. Dis. 2018, 10, 1081–1083. [Google Scholar] [CrossRef] [Green Version]
- Kanno, T.; Ito, N.; Kawashima, K. A Cornea Holding Device for Transplantation Surgery Using Negative Pressure. In Proceedings of the 1st Annual IEEE Conference on Control Technology and Applications, CCTA 2017, Maui, HI, USA, 27–30 August 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2017, pp. 720–725. [Google Scholar]
Setting [mmHg] | Test 1 [g] | Test 2 [g] | Test 3 [g] | Test 4 [g] | Test 5 [g] | Mean [g] |
---|---|---|---|---|---|---|
−600 | 320 | 350 | 285 | 315 | 310 | 316 |
−500 | 280 | 270 | 225 | 200 | 215 | 238 |
−400 | 170 | 140 | 150 | 135 | 140 | 147 |
−300 | 105 | 110 | 105 | 95 | 110 | 105 |
−200 | insufficient | insufficient | insufficient | insufficient | insufficient | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabi, M.; Bieri, U.; Ramakrishnan, V.; Niemann, T.; Nocito, A.; Brader, N.; Maake, C.; Hefermehl, L.J. Development and In Vitro Assessment of a Novel Vacuum-Based Tissue-Holding Device for Laparoscopic and Robotic Kidney Cancer Operations. Cancers 2022, 14, 4618. https://doi.org/10.3390/cancers14194618
Gabi M, Bieri U, Ramakrishnan V, Niemann T, Nocito A, Brader N, Maake C, Hefermehl LJ. Development and In Vitro Assessment of a Novel Vacuum-Based Tissue-Holding Device for Laparoscopic and Robotic Kidney Cancer Operations. Cancers. 2022; 14(19):4618. https://doi.org/10.3390/cancers14194618
Chicago/Turabian StyleGabi, Michael, Uwe Bieri, Venkat Ramakrishnan, Tilo Niemann, Antonio Nocito, Nadine Brader, Caroline Maake, and Lukas John Hefermehl. 2022. "Development and In Vitro Assessment of a Novel Vacuum-Based Tissue-Holding Device for Laparoscopic and Robotic Kidney Cancer Operations" Cancers 14, no. 19: 4618. https://doi.org/10.3390/cancers14194618
APA StyleGabi, M., Bieri, U., Ramakrishnan, V., Niemann, T., Nocito, A., Brader, N., Maake, C., & Hefermehl, L. J. (2022). Development and In Vitro Assessment of a Novel Vacuum-Based Tissue-Holding Device for Laparoscopic and Robotic Kidney Cancer Operations. Cancers, 14(19), 4618. https://doi.org/10.3390/cancers14194618