Challenges and Learning Curves in Adopting TaTME and Robotic Surgery for Rectal Cancer: A Cusum Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Ethical and Quality Considerations
2.3. Preoperative Staging, Treatment, and Management
2.4. Training and Surgical Technique
2.5. Data Collection
2.6. Study Outcomes
2.7. Endpoints
2.8. Cumulative Sum Analysis
2.9. Statistical Analysis
3. Results
3.1. Patients
3.2. Surgical and Pathology Outcomes
3.3. Learning Curve Analyses through CUSUM Control Charts
3.3.1. Postoperative Morbidity
3.3.2. Operative Time
3.3.3. Major Postoperative Complications
3.3.4. Anastomotic Leakage
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Pas, M.H.G.M.; Haglind, E.; Cuesta, M.A.; Fürst, A.; Lacy, A.M.; Hop, W.C.J.; Bonjer, H.J. Laparoscopic versus Open Surgery for Rectal Cancer (COLOR II): Short-Term Outcomes of a Randomised, Phase 3 Trial. Lancet Oncol. 2013, 14, 210–218. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Park, J.W.; Nam, B.H.; Kim, S.; Kang, S.B.; Lim, S.B.; Choi, H.S.; Kim, D.W.; Chang, H.J.; Kim, D.Y.; et al. Open versus Laparoscopic Surgery for Mid-Rectal or Low-Rectal Cancer after Neoadjuvant Chemoradiotherapy (COREAN Trial): Survival Outcomes of an Open-Label, Non-Inferiority, Randomised Controlled Trial. Lancet Oncol. 2014, 15, 767–774. [Google Scholar] [CrossRef]
- Pigazzi, A.; Ellenhorn, J.D.I.; Ballantyne, G.H.; Paz, I.B. Robotic-Assisted Laparoscopic Low Anterior Resection with Total Mesorectal Excision for Rectal Cancer. Surg. Endosc. Other Interv. Tech. 2006, 20, 1521–1525. [Google Scholar] [CrossRef]
- Funahashi, K.; Koike, J.; Teramoto, T.; Saito, N.; Shiokawa, H.; Kurihara, A.; Kaneko, T.; Shirasaka, K.; Kaneko, H. Transanal Rectal Dissection: A Procedure to Assist Achievement of Laparoscopic Total Mesorectal Excision for Bulky Tumor in the Narrow Pelvis. Am. J. Surg. 2009, 197, e46–e50. [Google Scholar] [CrossRef] [PubMed]
- Bhangu, A.; Minaya-Bravo, A.M.; Gallo, G.; Glasbey, J.C.; Kamarajah, S.; Pinkney, T.D.; El-Hussuna, A.; Battersby, N.J.; Buchs, N.C.; Buskens, C.; et al. An International Multicentre Prospective Audit of Elective Rectal Cancer Surgery; Operative Approach versus Outcome, Including Transanal Total Mesorectal Excision (TaTME). Colorectal Dis. 2018, 20, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Francis, N.; Penna, M.; Mackenzie, H.; Carter, F.; Hompes, R.; Aigner, F.; Albert, M.; Araujo, S.; Arezzo, A.; Arnold, S.; et al. Consensus on Structured Training Curriculum for Transanal Total Mesorectal Excision (TaTME). Surg. Endosc. 2017, 31, 2711–2719. [Google Scholar] [CrossRef]
- Gachabayov, M.; Kim, S.H.; Jimenez-Rodriguez, R.; Kuo, L.J.; Cianchi, F.; Tulina, I.; Tsarkov, P.; Bergamaschi, R. Impact of Robotic Learning Curve on Histopathology in Rectal Cancer: A Pooled Analysis. Surg. Oncol. 2020, 34, 121–125. [Google Scholar] [CrossRef]
- Kim, Y.W.; Lee, H.M.; Kim, N.K.; Min, B.S.; Lee, K.Y. The Learning Curve for Robot-Assisted Total Mesorectal Excision for Rectal Cancer. Surg. Laparosc. Endosc. Percutaneous Tech. 2012, 22, 400–405. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, C.W.; Cho, M.S.; Baik, S.H.; Kim, D.W.; Min, B.S.; Lee, K.Y.; Kim, N.K. Multidimensional Analyses of the Learning Curve of Robotic Low Anterior Resection for Rectal Cancer: 3-Phase Learning Process Comparison. Surg. Endosc. 2014, 28, 2821–2831. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, R.M.; Rubio-Dorado-Manzanares, M.; Díaz-Pavón, J.M.; Reyes-Díaz, M.L.; Vazquez-Monchul, J.M.; Garcia-Cabrera, A.M.; Padillo, J.; De la Portilla, F. Learning Curve in Robotic Rectal Cancer Surgery: Current State of Affairs. Int. J. Colorectal Dis. 2016, 31, 1807–1815. [Google Scholar] [CrossRef]
- Koedam, T.W.A.; Veltcamp Helbach, M.; van de Ven, P.M.; Kruyt, P.M.; van Heek, N.T.; Bonjer, H.J.; Tuynman, J.B.; Sietses, C. Transanal Total Mesorectal Excision for Rectal Cancer: Evaluation of the Learning Curve. Tech. Coloproctol. 2018, 22, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Kelly, J.; Nassif, G.J.; deBeche-Adams, T.C.; Albert, M.R.; Monson, J.R.T. Defining the Learning Curve for Transanal Total Mesorectal Excision for Rectal Adenocarcinoma. Surg. Endosc. 2020, 34, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Caycedo-Marulanda, A.; Verschoor, C.P. Experience beyond the Learning Curve of Transanal Total Mesorectal Excision (TaTME) and Its Effect on the Incidence of Anastomotic Leak. Tech. Coloproctol. 2020, 24, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persiani, R.; Agnes, A.; Belia, F.; D’Ugo, D.; Biondi, A. The Learning Curve of TaTME for Mid-Low Rectal Cancer: A Comprehensive Analysis from a Five-Year Institutional Experience. Surg. Endosc. 2020, 35, 6190–6200. [Google Scholar] [CrossRef]
- Burghgraef, T.A.; Sikkenk, D.J.; Verheijen, P.M.; Moumni, M.E.; Hompes, R.; Consten, E.C.J. The learning curve of laparoscopic, robot-assisted and transanal total mesorectal excisions: A systematic review. Surg. Endosc. 2022, 36, 6337–6360. [Google Scholar] [CrossRef]
- Schlachta, C.M.; Mamazza, J.; Seshadri, P.A.; Cadeddu, M.; Gregoire, R.; Poulin, E.C. Defining a Learning Curve for Laparoscopic Colorectal Resections. Dis. Colon Rectum 2001, 44, 217–222. [Google Scholar] [CrossRef]
- Liang, J.W.; Zhang, X.M.; Zhou, Z.X.; Wang, Z.; Bi, J. Learning Curve of Laparoscopic-Assisted Surgery for Rectal Cancer. Zhonghua Yi Xue Za Zhi 2011, 91, 1698–1701. [Google Scholar]
- Planellas, P.; Salvador, H.; Cornejo, L.; Buxó, M.; Farrés, R.; Molina, X.; Maroto, A.; Ortega, N.; Rodríguez-Hermosa, J.I.; Codina-Cazador, A. Risk Factors for Suboptimal Laparoscopic Surgery in Rectal Cancer Patients. Langenbeck’s Arch. Surg. 2021, 406, 309–318. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery after Surgery (ERAS®) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef] [Green Version]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of Surgical Complications: A New Proposal with Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Penna, M.; Hompes, R.; Arnold, S.; Wynn, G.; Austin, R.; Warusavitarne, J.; Moran, B.; Hanna, G.B.; Mortensen, N.J.; Tekkis, P.P. Incidence and Risk Factors for Anastomotic Failure in 1594 Patients Treated by Transanal Total Mesorectal Excision Results from the International TATME Registry. Ann. Surg. 2019, 269, 700–711. [Google Scholar] [CrossRef]
- Gómez-Hernández, M.T.; Fuentes, M.G.; Novoa, N.M.; Rodríguez, I.; Varela, G.; Jiménez, M.F. The Robotic Surgery Learning Curve of a Surgeon Experienced in Video-Assisted Thoracoscopic Surgery Compared with His Own Video-Assisted Thoracoscopic Surgery Learning Curve for Anatomical Lung Resections. Eur. J. Cardio-Thorac. Surg. 2021, 61, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.G.; Pfeffer, F.; Kørner, H. Norwegian Moratorium on Transanal Total Mesorectal Excision. Br. J. Surg. 2019, 106, 1120–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caycedo-Marulanda, A.; Brown, C.J.; Chadi, S.A.; Ashamalla, S.; Lee, L.; Stotland, P.; Hameed, U.; Melich, G.; Ma, G.; Letarte, F.; et al. Canadian TaTME Expert Collaboration (CaTaCO) Position Statement. Surg. Endosc. 2020, 34, 3748–3753. [Google Scholar] [CrossRef] [PubMed]
- Adamina, M.; Aigner, F.; Araujo, S.; Arezzo, A.; Ashamalla, S.; deBeche-Adams, T.; Bell, S.; Bemelman, W.; Brown, C.; Brunner, W.; et al. International Expert Consensus Guidance on Indications, Implementation and Quality Measures for Transanal Total Mesorectal Excision. Colorectal Dis. 2020, 22, 749–755. [Google Scholar] [CrossRef]
- Robertson, R.L.; Karimuddin, A.; Phang, T.; Raval, M.; Brown, C. Transanal versus Conventional Total Mesorectal Excision for Rectal Cancer Using the IDEAL Framework for Implementation. BJS Open 2021, 5, zrab002. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.; Carvello, M.; D’Hoore, A.; Foppa, C. Integration of Transanal Techniques for Precise Rectal Transection and Single-Stapled Anastomosis: A Proof of Concept Study. Colorectal Dis. 2019, 21, 841–846. [Google Scholar] [CrossRef]
- Ruiz, M.G.; Parra, I.M.; Palazuelos, C.M.; Martín, J.A.; Fernández, C.C.; Diego, J.C.; Fleitas, M.G. Robotic-Assisted Laparoscopic Transanal Total Mesorectal Excision for Rectal Cancer: A Prospective Pilot Study. Dis. Colon Rectum 2015, 58, 145–153. [Google Scholar] [CrossRef]
- Borstlap, W.A.A.; Musters, G.D.; Stassen, L.P.S.; van Westreenen, H.L.; Hess, D.; van Dieren, S.; Festen, S.; van der Zaag, E.J.; Tanis, P.J.; Bemelman, W.A. Vacuum-Assisted Early Transanal Closure of Leaking Low Colorectal Anastomoses: The CLEAN Study. Surg. Endosc. 2018, 32, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Deijen, C.L.; Velthuis, S.; Tsai, A.; Mavroveli, S.; de Lange-de Klerk, E.S.M.; Sietses, C.; Tuynman, J.B.; Lacy, A.M.; Hanna, G.B.; Bonjer, H.J. COLOR III: A Multicentre Randomised Clinical Trial Comparing Transanal TME versus Laparoscopic TME for Mid and Low Rectal Cancer. Surg. Endosc. 2016, 30, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Lelong, B.; de Chaisemartin, C.; Meillat, H.; Cournier, S.; Boher, J.M.; Genre, D.; Karoui, M.; Tuech, J.J.; Delpero, J.R. A Multicentre Randomised Controlled Trial to Evaluate the Efficacy, Morbidity and Functional Outcome of Endoscopic Transanal Proctectomy versus Laparoscopic Proctectomy for Low-Lying Rectal Cancer (ETAP-GRECCAR 11 TRIAL): Rationale and Design. BMC Cancer 2017, 17, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, Y.; Park, E.J.; Baik, S.H. Robotic Surgery for Rectal Cancer and Cost-Effectiveness. J. Minim. Invasive Surg. 2019, 22, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Rodrigues Armijo, P.; Krause, C.; Siu, K.C.; Oleynikov, D. A Comprehensive Review of Robotic Surgery Curriculum and Training for Residents, Fellows, and Postgraduate Surgical Education. Surg. Endosc. 2020, 34, 361–367. [Google Scholar] [CrossRef]
- Moit, H.; Dwyer, A.; De Sutter, M.; Heinzel, S.; Crawford, D. A Standardized Robotic Training Curriculum in a General Surgery Program. J. Soc. Laparoendosc. Surg. 2019, 23, e2019.00045. [Google Scholar] [CrossRef] [Green Version]
- Renzulli, P.; Laffer, U.T. Learning Curve: The Surgeon as a Prognostic Factor in Colorectal Cancer Surgery. Recent Results Cancer Res. 2005, 165, 86–104. [Google Scholar] [CrossRef]
- Odermatt, M.; Ahmed, J.; Panteleimonitis, S.; Khan, J.; Parvaiz, A. Prior Experience in Laparoscopic Rectal Surgery Can Minimise the Learning Curve for Robotic Rectal Resections: A Cumulative Sum Analysis. Surg. Endosc. 2017, 31, 4067–4076. [Google Scholar] [CrossRef]
- Olthof, P.B.; Giesen, L.J.X.; Vijfvinkel, T.S.; Roos, D.; Dekker, J.W.T. Transition from Laparoscopic to Robotic Rectal Resection: Outcomes and Learning Curve of the Initial 100 Cases. Surg. Endosc. 2021, 35, 2921–2927. [Google Scholar] [CrossRef]
- Tou, S.; Bergamaschi, R.; Heald, R.J.; Parvaiz, A. Structured Training in Robotic Colorectal Surgery. Colorectal Dis. 2015, 17, 185. [Google Scholar] [CrossRef]
Robot-Assisted Surgery n = 79 | TaTME n = 67 | Total n = 146 | p-Value | |
---|---|---|---|---|
Sex Women Men | 29 (36.7%) 50 (63.3%) | 2 (3.0%) 65 (97.0%) | 31 (21.1%) 115 (78.8%) | <0.001 |
BMI, median (IQR) | 26 (23–29) | 28 (25–32) | 26 (24–30) | 0.217 |
Age, median (IQR) | 70 (62–76) | 64 (58–71) | 67 (59–75) | 0.008 |
Tumor location(distance from anal verge) ≤3 cm >3 cm and ≤7 cm >7 cm | 1 (1.3%) 24 (30.3%) 54 (68.4%) | 8 (11.9%) 41 (61.2%) 18 (26.9%) | 9 (6.2%) 65 (44.5%) 72 (49.3%) | <0.001 |
ASA score ASA I or II ASA III or IV | 6 (7.6%) 73 (92.4%) | 10 (14.9%) 57 (85.1%) | 16 (11.0%) 130 (89.0%) | 0.158 |
cT stage T1 T2 T3 T4 | 5 (7.1%) 13 (18.6%) 42 (60.0%) 10 (14.3%) | 0 (0%) 12 (19.0%) 48 (76.2%) 3 (4.8%) | 5 (3.8%) 25 (18.8%) 90 (67.7%) 13 (9.8%) | 0.026 |
cN stage N0 N1 N2 | 21 (30.4%) 25 (36.2%) 23 (33.3%) | 9 (14.3%) 22 (34.9%) 32 (50.8%) | 30 (22.7%) 47 (35.6%) 55 (41.7%) | 0.045 |
Synchronous metastases No Yes | 73 (92.4%) 6 (7.6%) | 60 (89.6%) 7 (10.4%) | 133 (91.1%) 13 (8.9%) | 0.546 |
Neoadjuvant treatment No Yes | 32 (40.5%) 47 (59.5%) | 9 (13.4%) 58 (86.6%) | 41 (28.1%) 105 (71.9%) | <0.001 |
Robot-Assisted Surgery n = 79 | TaTME n = 67 | Total n = 146 | p-Value | |
---|---|---|---|---|
Surgical techniques Low anterior resection Ultralow anterior resection Hartmann | 43 (54.4%) 23 (29.1%) 13 (16.5%) | 14 (20.9%) 46 (68.7%) 7 (10.4%) | 57 (39.0%) 69 (47.3%) 20 (13.7%) | <0.001 |
Anastomosis No Yes | 13 (16.5%) 66 (83.5%) | 7 (10.4%) 60 (89.6%) | 20 (13.7%) 126 (86.3%) | 0.293 |
Stoma No Stoma Colostomy Ileostomy | 20 (25.3%) 13 (16.5%) 46 (58.2%) | 0 (0%) 7 (10.4%) 60 (89.6%) | 20 (13.7%) 20 (13.7%) 106 (72.6%) | <0.001 |
Estimated blood loss, in mL, median (IQR) | 50 (50–50) | 50 (50–100) | 50 (50–50) | 0.109 |
Operative time, in min, median (IQR) | 240 (210–289) | 240 (200–300) | 240 (200–290) | 0.868 |
Conversion to open surgery No Yes | 71 (89.9%) 8 (10.1%) | 66 (98.5%) 1 (1.5%) | 137 (93.8%) 9 (6.2%) | 0.039 |
Length of stay, in days, median (IQR) | 6 (5–8) | 6 (5–11) | 6 (5–9) | 0.039 |
Postoperative complications No Yes | 54 (68.4%) 25 (31.6%) | 44 (65.7%) 23 (34.3%) | 99 (67.8%) 47 (32.2%) | 0.611 |
Postoperative reintervention No Yes | 75 (94.9%) 4 (5.1%) | 59 (88.1%) 8 (11.9%) | 134 (91.8%) 12 (8.2%) | 0.145 |
Clavien-Dindo classification No complications <3A ≥3A | 54 (68.4%) 20 (25.3%) 5 (6.4%) | 44 (65.7%) 15 (22.3%) 8 (12.0%) | 99 (67.8%) 35 (23.9%) 13 (8.3%) | 0.484 |
Major complications No Yes | 74 (93.7%) 5 (6.3%) | 59 (88.1%) 8 (11.9%) | 133 (91.1%) 13 (8.9%) | 0.236 |
Anastomotic leakage No Yes | 75 (94.9%) 4 (5.1%) | 57 (85.1%) 10 (14.9%) | 132 (90.4%) 14 (9.6%) | 0.052 |
Rehospitalization No Yes | 69 (87.3%) 10 (12.7%) | 52 (77.6%) 15 (22.4%) | 121 (82.9%) 25 (17.1%) | 0.120 |
Mesorectal quality Complete/Partial Incomplete | 74 (93.7%) 5 (6.3%) | 58 (86.6%) 9 (13.4%) | 132 (90.4%) 14 (9.6%) | 0.146 |
Involvement of distal margin No Yes | 75 (94.9%) 4 (5.1%) | 65 (97.0%) 2 (3.0%) | 140 (95.9%) 6 (4.1%) | 0.688 |
Involvement of circumferential margin No Yes | 74 (93.7%) 5 (6.3%) | 65 (97.0%) 2 (3.0%) | 139 (95.25) 7 (4.8%) | 0.453 |
Phase I Learning n = 14 | Phase II Competence n = 29 | Phase III Mastery n = 24 | Total n = 67 | p-Value | |
---|---|---|---|---|---|
Estimated blood loss, in mL, median (IQR) | 50 (50–62.5) | 50 (50–200) | 50 (50–50) | 50 (50–100) | 0.029 |
Operative time, in min, median (IQR) | 263.5 (200–292.5) | 210 (180–257.5) | 270 (224.3–315) | 241 (200–297.5) | 0.014 |
Conversion to open surgery No Yes | 14 (100%) 0 (0%) | 28 (96.6%) 1 (3.4%) | 24 (100%) 0 (0%) | 66 (98.5%) 1 (1.5%) | 1.000 |
Length of stay, in days, median (IQR) | 9 (5.8–22.8) | 6 (5–10.5) | 5.5 (5–7.8) | 6 (5–11) | 0.074 |
Postoperative complications No Yes | 5 (35.7%) 9 (64.3%) | 21 (72.4%) 8 (27.6%) | 18 (75.0%) 6 (25.0%) | 44 (65.7%) 23 (34.3%) | 0.016 |
Clavien-Dindo classification No complications <3A ≥3A | 5 (35.7%) 6 (42.9%) 3 (21.4%) | 21 (72.4%) 3 (10.3%) 5 (17.2%) | 18 (75.0%) 6 (25.0%) 0 (0%) | 44 (65.7%) 15 (22.3%) 8 (12.0%) | 0.009 |
Major complications No Yes | 11 (78.6%) 3 (21.4%) | 24 (82.8%) 5 (17.2%) | 24 (100%) 0 (0%) | 59 (88.1%) 8 (11.9%) | 0.043 |
Postoperative reintervention No Yes | 11 (78.6%) 3 (21.4%) | 24 (82.8%) 5 (17.2%) | 24 (100%) 0 (0%) | 59 (88.1%) 8 (11.9%) | 0.043 |
Anastomotic leakage No Yes | 9 (64.3%) 5 (35.7%) | 24 (82.8%) 5 (17.2%) | 24 (100%) 0 (0%) | 57 (85.1%) 10 (14.9%) | 0.005 |
Rehospitalization No Yes | 7 (50.0%) 7 (50.0%) | 23 (79.3%) 6 (20.7%) | 22 (91.7%) 2 (8.3%) | 52 (77.6%) 15 (22.4%) | 0.013 |
Phase I Learning n = 53 | Phase II Consolidation/Mastery n = 26 | Total n = 79 | p-Value | |
---|---|---|---|---|
Estimated blood loss, in mL, median (IQR) | 50 (50–50) | 50 (50–50) | 50 (50–50) | 0.486 |
Operative time, in min, median (IQR) | 250 (218–290) | 217.5 (198.5–269.3) | 240 (210–289) | 0.160 |
Conversion to open surgery No Yes | 49 (92.5%) 4 (7.5%) | 22 (84.6%) 4 (15.4%) | 71 (89.9%) 8 (10.1%) | 0.428 |
Length of stay, in days, median (IQR) | 7 (5–8.5) | 5 (4–6.5) | 6 (5–8) | 0.143 |
Postoperative complications No Yes | 36 (67.9%) 17 (32.1%) | 18 (69.2%) 8 (30.8%) | 54 (68.4%) 25 (31.6%) | 1.000 |
Clavien-Dindo classification No complications <3A ≥3A | 36 (67.9%) 13 (24.5%) 4 (7.5%) | 18 (69.2%) 7 (26.9%) 1 (3.8%) | 54 (68.4%) 20 (25.3%) 5 (6.4%) | 1.000 |
Major complications No Yes | 49 (92.5%) 4 (7.5%) | 25 (96.2%) 1 (3.8%) | 74 (93.7%) 5 (6.3%) | 1.000 |
Postoperative reintervention No Yes | 50 (94.3%) 3 (5.7%) | 25 (96.2%) 1 (3.8%) | 75 (94.9%) 4 (5.1%) | 1.000 |
Anastomotic leakage No Yes | 50 (94.3%) 3 (5.7%) | 25 (96.2%) 1 (3.8%) | 75 (94.9%) 4 (5.1%) | 1.000 |
Rehospitalization No Yes | 44 (83.0%) 9 (17.0%) | 25 (96.2%) 1 (3.8%) | 69 (87.3%) 10 (12.7%) | 0.153 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planellas, P.; Cornejo, L.; Pigem, A.; Gómez-Romeu, N.; Julià-Bergkvist, D.; Ortega, N.; Rodríguez-Hermosa, J.I.; Farrés, R. Challenges and Learning Curves in Adopting TaTME and Robotic Surgery for Rectal Cancer: A Cusum Analysis. Cancers 2022, 14, 5089. https://doi.org/10.3390/cancers14205089
Planellas P, Cornejo L, Pigem A, Gómez-Romeu N, Julià-Bergkvist D, Ortega N, Rodríguez-Hermosa JI, Farrés R. Challenges and Learning Curves in Adopting TaTME and Robotic Surgery for Rectal Cancer: A Cusum Analysis. Cancers. 2022; 14(20):5089. https://doi.org/10.3390/cancers14205089
Chicago/Turabian StylePlanellas, Pere, Lídia Cornejo, Anna Pigem, Núria Gómez-Romeu, David Julià-Bergkvist, Nuria Ortega, José Ignacio Rodríguez-Hermosa, and Ramon Farrés. 2022. "Challenges and Learning Curves in Adopting TaTME and Robotic Surgery for Rectal Cancer: A Cusum Analysis" Cancers 14, no. 20: 5089. https://doi.org/10.3390/cancers14205089
APA StylePlanellas, P., Cornejo, L., Pigem, A., Gómez-Romeu, N., Julià-Bergkvist, D., Ortega, N., Rodríguez-Hermosa, J. I., & Farrés, R. (2022). Challenges and Learning Curves in Adopting TaTME and Robotic Surgery for Rectal Cancer: A Cusum Analysis. Cancers, 14(20), 5089. https://doi.org/10.3390/cancers14205089