Development and Implementation of an Advanced Program for Robotic Treatment of Prostate Cancer—Is Surgical Quality Transferable?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Robotic-Assisted Radical Laparoscopic Prostatectomy
2.3. Implementation of the Surgical Procedure and Standardized Set-Up
2.4. Pathological Work-Up of Specimen
2.5. Data Collection and Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Outcomes of the Robot-Assisted Radical Prostatectomy
3.3. Hospital Readmission Rates and Adverse Events
4. Discussion
4.1. Outcomes of the Robot-Assisted Laparoscopic Radical Prostatectomy
4.2. Hospital Readmission Rates and Adverse Events
4.3. Limitations and Strengths of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grivas, N.; Zachos, I.; Georgiadis, G.; Karavitakis, M.; Tzortzis, V.; Mamoulakis, C. Learning curves in laparoscopic and robot-assisted prostate surgery: A systematic search and review. World J. Urol. 2022, 40, 929–949. [Google Scholar] [CrossRef] [PubMed]
- Fossati, N.; Willemse, P.M.; Van den Broeck, T.; van den Bergh, R.C.N.; Yuan, C.Y.; Briers, E.; Bellmunt, J.; Bolla, M.; Cornford, P.; De Santis, M.; et al. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: A systematic review. Eur. Urol. 2017, 72, 84–109. [Google Scholar] [CrossRef] [PubMed]
- Gratzke, C.; Dovey, Z.; Novara, G.; Geurts, N.; De Groote, R.; Schatteman, P.; de Naeyer, G.; Gandaglia, G.; Mottrie, A. Early catheter removal after robot-assisted radical prostatectomy: Surgical technique and outcomes for the aalst technique (ecarema study). Eur. Urol. 2016, 69, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. Available online: http://journals.lww.com/00000658-200408000-200400003 (accessed on 9 September 2022). [CrossRef] [PubMed]
- Shah, A.A.; Bandari, J.; Pelzman, D.; Davies, B.J.; Jacobs, B.L. Diffusion and adoption of the surgical robot in urology. Transl. Androl. Urol. 2021, 10, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Novara, G.; Ficarra, V.; Rosen, R.C.; Artibani, W.; Costello, A.; Eastham, J.A.; Graefen, M.; Guazzoni, G.; Shariat, S.F.; Stolzenburg, J.U.; et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 431–452. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, C.; Pickard, R.; Robertson, C.; Close, A.; Vale, L.; Armstrong, N.; Barocas, D.A.; Eden, C.G.; Fraser, C.; Gurung, T.; et al. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol. Assess 2012, 16, 1–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novara, G.; Ficarra, V.; Mocellin, S.; Ahlering, T.E.; Carroll, P.R.; Graefen, M.; Guazzoni, G.; Menon, M.; Patel, V.R.; Shariat, S.F.; et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 382–404. [Google Scholar] [CrossRef] [PubMed]
- Gandi, C.; Totaro, A.; Bientinesi, R.; Marino, F.; Pierconti, F.; Martini, M.; Russo, A.; Racioppi, M.; Bassi, P.; Sacco, E. A multi-surgeon learning curve analysis of overall and site-specific positive surgical margins after rarp and implications for training. J. Robot. Surg. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Anceschi, U.; Galfano, A.; Luciani, L.; Misuraca, L.; Albisinni, S.; Dell’oglio, P.; Tuderti, G.; Brassetti, A.; Ferriero, M.C.; Bove, A.M.; et al. Analysis of predictors of early trifecta achievement after robot-assisted radical prostatectomy for trainers and expert surgeons: The learning curve never ends. Minerva Urol. Nephrol. 2022, 74, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Mukkala, A.N.; Song, J.B.; Lee, M.; Boasie, A.; Irish, J.; Finelli, A.; Wei, A.C. A systematic review and meta-analysis of unplanned hospital visits and re-admissions following radical prostatectomy for prostate cancer. Can. Urol. Assoc. J. 2021, 15, E531–E544. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Cohort 1 § | Cohort 2 § | p-Value |
---|---|---|---|
Cases, n | 100 | 108 | |
Age (years), median (IQR) | 65.0 (60.0–71.0) | 65.0 (58.3–70.0) | 0.408 |
Body Mass Index (kg/m2), median (IQR) | 26.3 (24.3–28.7) | 25.6 (23.3–28.2) | 0.158 |
PSA (ng/mL), median (IQR) | 8.5 (5.7–12.4) | 8.7 (5.5–12.0) | 0.706 |
Volume (mL), median (IQR) | 54.0 (43.0–65.0) | 47.0 (37.0–60.0) | 0.010 ** |
Histopathological results of prostate biopsy | |||
Gleason score for biopsy, n/N | <0.010 ** | ||
6 | 21/100 (21.0%) | 13/108 (12.0%) | |
7a | 34/100 (34.0%) | 48/108 (44.4%) | |
7b | 18/100 (18.0%) | 41/108 (38.0%) | |
8 | 19/100 (19.0%) | 3/108 (2.8%) | |
9 | 8/100 (8.0%) | 3/108 (2.8%) | |
10 | 0/100 (0.0%) | 0/108 (0.0%) | |
Total number of biopsy cores, median (IQR) | 12 (10–13) | 12 (12–27) | <0.010 ** |
Number of positive biopsy cores, median (IQR) | 4 (3–6) | 4 (3–6) | 0.973 |
Proportion of positive cores, median (IQR) | 0.33 (0.21–0.50) | 0.25 (0.13–0.42) | <0.010 ** |
Parameter | Cohort 1 | Cohort 2 | |
---|---|---|---|
Cases, n | 100 | 108 | |
Histopathological results of radical prostatectomy | |||
Gleason score for specimen, n/N | <0.010 ** | ||
6 | 11/100 (11.0%) | 9/108 (8.3%) | |
7a | 44/100 (44.0%) | 42/108 (38.9%) | |
7b | 20/100 (20.0%) | 48/108 (44.4%) | |
8 | 14/100 (14.0%) | 5/108 (4.6%) | |
9 | 11/100 (11.0%) | 4/108 (3.7%) | |
10 | 0/100 (0.0%) | 0/108 (0.0%) | |
Pathological T stage, n/N | <0.010 ** | ||
2a | 2/100 (2.0%) | 14/108 (13.0%) | |
2b | 3/100 (3.0%) | 4/108 (3.7%) | |
2c | 52/100 (52.0%) | 43/108 (4.0%) | |
3a | 20/100 (20.0%) | 37/108 (3.4%) | |
3b | 23/100 (23.0%) | 10/108 (9.2%) | |
Pathological N stage, n/N | 0.070 | ||
N0 | 86/100 (86.0%) | 105/108 (97.2%) | |
N1 | 9/100 (9.0%) | 3/108 (2.8%) | |
Nx | 5/100 (5.0%) | 0/108 (0.0%) | |
Surgical margin status (T2 cohort), n/N | 1.000 | ||
Negative | 52/57 (91.2%) | 56/61 (91.8%) | |
Positive | 5/57 (8.8%) | 5/61 (8.2%) | |
Surgical margin status (overall cohort), n/N | 0.751 | ||
Negative | 78/100 (78.0%) | 89/108 (82.4%) | |
Positive | 18/100 (18.0%) | 18/108 (16.7%) | |
Data missing | 2/100 (2.0%) | 1/108 (0.9%) | |
Duration of surgery (minutes), median, IQR | 172 (150–196) | 149 (134–174) | <0.010 ** |
Estimated blood loss $ (mL), median, IQR | 300 (200–400) | 131 (99–188) | <0.010 ** |
Parameter | Value—n/N |
---|---|
Intraoperative complications | 0/108 (0.0%) |
Conversion to open surgery | 0/108 (0.0%) |
Hospital readmission within 30 d | 3/108 (2.8%) |
Hospital readmission within 90 d | 5/108 (4.6%) |
Complications according to Clavien—Dindo | |
1 | 13/108 (12.0%) |
2 | 20/108 (18.5%) |
3a | 5/108 (3.7%) |
Infectious Complications | |
Wound infection | 0/108 (0.0%) |
Bacteremia | 18/108 (16.7%) |
Epididymitis | 1/108 (0.9%) |
Sepsis | 1/108 (0.9%) |
Urological and Surgical Complications | |
Urinary retention | 1/108 (0.9%) |
Lymphocele with intervention | 3/108 (2.8%) |
Urinoma with intervention | 1/108 (0.9%) |
Ileus or revision with bowel involvement | 0/108 (0.0%) |
Blood transfusion | 0/108 (0.0%) |
Other Complications | |
Acute pulmonary insufficiency | 9/108 (8.3%) |
Pneumonia | 0/108 (0.0%) |
Venous thrombosis | 0/108 (0.0%) |
Pulmonary embolism | 0/108 (0.0%) |
Myocardial infarction | 0/108 (0.0%) |
Acute kidney impairment | 3/108 (2.8%) |
Disorder of the liver | 1/108 (0.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigle, A.; Jilg, C.A.; Weishaar, M.; Schlenker, B.; Stief, C.; Gratzke, C.; Grabbert, M. Development and Implementation of an Advanced Program for Robotic Treatment of Prostate Cancer—Is Surgical Quality Transferable? Cancers 2022, 14, 5261. https://doi.org/10.3390/cancers14215261
Sigle A, Jilg CA, Weishaar M, Schlenker B, Stief C, Gratzke C, Grabbert M. Development and Implementation of an Advanced Program for Robotic Treatment of Prostate Cancer—Is Surgical Quality Transferable? Cancers. 2022; 14(21):5261. https://doi.org/10.3390/cancers14215261
Chicago/Turabian StyleSigle, August, Cordula A. Jilg, Moritz Weishaar, Boris Schlenker, Christian Stief, Christian Gratzke, and Markus Grabbert. 2022. "Development and Implementation of an Advanced Program for Robotic Treatment of Prostate Cancer—Is Surgical Quality Transferable?" Cancers 14, no. 21: 5261. https://doi.org/10.3390/cancers14215261
APA StyleSigle, A., Jilg, C. A., Weishaar, M., Schlenker, B., Stief, C., Gratzke, C., & Grabbert, M. (2022). Development and Implementation of an Advanced Program for Robotic Treatment of Prostate Cancer—Is Surgical Quality Transferable? Cancers, 14(21), 5261. https://doi.org/10.3390/cancers14215261