The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Variables
2.3. The Development of Models
2.4. The Evaluation and Interpretation of Models
2.5. The RSF Risk Stratification of Patients
2.6. The Individual Prediction
2.7. Statistical Analysis
3. Results
3.1. The Characteristics of Patients
3.2. The Development of Models
3.3. The Evaluation and Interpretation of the Models
3.4. The RSF Risk Stratification of Patients
3.5. The Individual Postoperative Prognostic Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hruban, R.H.; Gaida, M.M.; Thompson, E.; Hong, S.-M.; Noë, M.; Brosens, L.A.; Jongepier, M.; Offerhaus, G.J.A.; Wood, L.D. Why Is Pancreatic Cancer so Deadly? The Pathologist’s View. J. Pathol. 2019, 248, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R. (Eds.) SEER Cancer Statistics Review, 1975–2018; National Cancer Institute: Bethesda, MD, USA, April 2021; Based on November 2020 SEER Data Submission, Posted to the SEER Web Site. Available online: https://seer.cancer.gov/csr/1975_2018/ (accessed on 21 July 2022).
- Yadav, D.; Lowenfels, A.B. The Epidemiology of Pancreatitis and Pancreatic Cancer. Gastroenterology 2013, 144, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P. Pancreatic Cancer Epidemiology: Understanding the Role of Lifestyle and Inherited Risk Factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef]
- Lynch, S.M.; Vrieling, A.; Lubin, J.H.; Kraft, P.; Mendelsohn, J.B.; Hartge, P.; Canzian, F.; Steplowski, E.; Arslan, A.A.; Gross, M.; et al. Cigarette Smoking and Pancreatic Cancer: A Pooled Analysis from the Pancreatic Cancer Cohort Consortium. Am. J. Epidemiol. 2009, 170, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Grote, V.A.; Rohrmann, S.; Nieters, A.; Dossus, L.; Tjønneland, A.; Halkjær, J.; Overvad, K.; Fagherazzi, G.; Boutron-Ruault, M.C.; Morois, S.; et al. Diabetes Mellitus, Glycated Haemoglobin and C-Peptide Levels in Relation to Pancreatic Cancer Risk: A Study within the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Diabetologia 2011, 54, 3037–3046. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Giovannucci, E.; Willett, W.C.; Colditz, G.A.; Stampfer, M.J.; Fuchs, C.S. Physical Activity, Obesity, Height, and the Risk of Pancreatic Cancer. JAMA 2001, 286, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Lucenteforte, E.; La Vecchia, C.; Silverman, D.; Petersen, G.M.; Bracci, P.M.; Ji, B.T.; Bosetti, C.; Li, D.; Gallinger, S.; Miller, A.B.; et al. Alcohol Consumption and Pancreatic Cancer: A Pooled Analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann. Oncol. 2012, 23, 374–382. [Google Scholar] [CrossRef]
- Yin, M.-Y.; Xi, L.-T.; Liu, L.; Zhu, J.-Z.; Qian, L.-J.; Xu, C.-F. Pancreatic Cancer Incidence and Mortality Patterns in 2006-2015 and Prediction of the Epidemiological Trend to 2025 in China. World J. Clin. Cases 2022, 10, 4404–4413. [Google Scholar] [CrossRef]
- Ullman, N.A.; Burchard, P.R.; Dunne, R.F.; Linehan, D.C. Immunologic Strategies in Pancreatic Cancer: Making Cold Tumors Hot. J. Clin. Oncol. 2022, 40, 2789–2805. [Google Scholar] [CrossRef]
- Pliarchopoulou, K.; Pectasides, D. Pancreatic Cancer: Current and Future Treatment Strategies. Cancer Treat. Rev. 2009, 35, 431–436. [Google Scholar] [CrossRef]
- Wray, C.J.; Ahmad, S.A.; Matthews, J.B.; Lowy, A.M. Surgery for Pancreatic Cancer: Recent Controversies and Current Practice. Gastroenterology 2005, 128, 1626–1641. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Castan, F.; Lopez, A.; Turpin, A.; Ben Abdelghani, M.; Wei, A.C.; Mitry, E.; Biagi, J.J.; Evesque, L.; Artru, P.; et al. Five-Year Outcomes of FOLFIRINOX vs Gemcitabine as Adjuvant Therapy for Pancreatic Cancer: A Randomized Clinical Trial. JAMA Oncol. 2022, 2022, 3829. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shi, K.-Q.; Chen, B.-C.; Huang, Z.-P.; Lu, F.-Y.; Zhou, M.-T. A Nomogram Based on Preoperative Inflammatory Markers Predicting the Overall Survival of Pancreatic Ductal Adenocarcinoma. J. Gastroenterol. Hepatol. 2017, 32, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Tol, J.A.M.G.; Brosens, L.A.A.; van Dieren, S.; van Gulik, T.M.; Busch, O.R.C.; Besselink, M.G.H.; Gouma, D.J. Impact of Lymph Node Ratio on Survival in Patients with Pancreatic and Periampullary Cancer. Br. J. Surg. 2015, 102, 237–245. [Google Scholar] [CrossRef]
- Vickers, A.J.; Van Calster, B.; Steyerberg, E.W. Net Benefit Approaches to the Evaluation of Prediction Models, Molecular Markers, and Diagnostic Tests. BMJ 2016, 352, i6. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random Survival Forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Taylor, J.M.G. Random Survival Forests. J. Thorac. Oncol. 2011, 6, 1974–1975. [Google Scholar] [CrossRef]
- Buhrmester, V.; Münch, D.; Arens, M. Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. Mach. Learn. Knowl. Extr. 2021, 3, 966–989. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Gleisner, A.L.; Cameron, J.L.; Winter, J.M.; Assumpcao, L.; Lillemoe, K.D.; Wolfgang, C.; Hruban, R.H.; Schulick, R.D.; Yeo, C.J.; et al. Prognostic Relevance of Lymph Node Ratio Following Pancreaticoduodenectomy for Pancreatic Cancer. Surgery 2007, 141, 610–618. [Google Scholar] [CrossRef]
- Paniccia, A.; Hosokawa, P.; Henderson, W.; Schulick, R.D.; Edil, B.H.; McCarter, M.D.; Gajdos, C. Characteristics of 10-Year Survivors of Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2015, 150, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Park, B.; Kwon, J.; Lim, C.-S.; Shin, Y.C.; Jung, W.; Shin, S.H.; Heo, J.S.; Han, I.W. Development of Nomograms for Predicting Prognosis of Pancreatic Cancer after Pancreatectomy: A Multicenter Study. Biomedicines 2022, 10, 1341. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Shi, G.; Zhang, P. Development and Validation of Nomograms to Predict Overall Survival and Cancer-Specific Survival in Patients With Pancreatic Adenosquamous Carcinoma. Front. Oncol. 2022, 12, 831649. [Google Scholar] [CrossRef] [PubMed]
- Geer, R.J.; Brennan, M.F. Prognostic Indicators for Survival after Resection of Pancreatic Adenocarcinoma. Am. J. Surg. 1993, 165, 68–72, discussion 72–73. [Google Scholar] [CrossRef]
- Stotz, M.; Eisner, F.; Szkandera, J.; Absenger, G.; Kornprat, P.; Lackner, C.; Samonigg, H.; Gerger, A.; Pichler, M. Clinico-Pathological Characteristics and Clinical Outcome of Different Histological Types of Pancreatic Cancer in a Large Middle European Series. J. Clin. Pathol. 2013, 66, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Fan, Z.; Gong, Y.; Jin, K.; Yang, C.; Cheng, H.; Huang, D.; Ni, Q.; Liu, C.; Yu, X. Characteristics and Outcomes of Pancreatic Cancer by Histological Subtypes. Pancreas 2019, 48, 817–822. [Google Scholar] [CrossRef]
- Lillemoe, K.D.; Yeo, C.J.; Cameron, J.L. Pancreatic Cancer: State-of-the-Art Care. CA Cancer J. Clin. 2000, 50, 241–268. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, L.; Wang, X.; Zhu, S.; Luo, J.; Zhang, Y.; Tong, Y.; Feng, F.; Kang, Y.; Bi, Q. Nomogram Predicts Risk and Prognostic Factors for Bone Metastasis of Pancreatic Cancer: A Population-Based Analysis. Front. Endocrinol. 2021, 12, 752176. [Google Scholar] [CrossRef]
- Hank, T.; Sandini, M.; Ferrone, C.R.; Ryan, D.P.; Mino-Kenudson, M.; Qadan, M.; Wo, J.Y.; Klaiber, U.; Weekes, C.D.; Weniger, M.; et al. A Combination of Biochemical and Pathological Parameters Improves Prediction of Postresection Survival After Preoperative Chemotherapy in Pancreatic Cancer: The PANAMA-Score. Ann. Surg. 2022, 275, 391–397. [Google Scholar] [CrossRef]
- Hartwig, W.; Hackert, T.; Hinz, U.; Gluth, A.; Bergmann, F.; Strobel, O.; Büchler, M.W.; Werner, J. Pancreatic Cancer Surgery in the New Millennium: Better Prediction of Outcome. Ann. Surg. 2011, 254, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in Oncology: More than Meets the Eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Training Set (n = 2804) | Test Set (n = 795) | p Value |
---|---|---|---|
Age | 65 (58, 73) | 65 (57, 72) | 0.5 |
Race | 0.9 | ||
White | 2215 (79%) | 629 (79%) | |
Black | 293 (10%) | 82 (10%) | |
Asian or Pacific Islander | 292 (10%) | 84 (11%) | |
other | 4(0.1%) | 0 (0%) | |
Sex | 0.5 | ||
Male | 1432 (51%) | 396 (50%) | |
Female | 1372 (49%) | 399 (50%) | |
Marital status | 0.5 | ||
Married | 2067 (74%) | 577 (73%) | |
Single | 737 (26%) | 218 (27%) | |
Radiation | 0.4 | ||
Yes | 998 (36%) | 271 (34%) | |
No | 1806 (64%) | 524 (64%) | |
Chemotherapy | 0.2 | ||
Yes | 1862 (66%) | 508 (64%) | |
No | 942 (34%) | 287 (36%) | |
Histological type | 0.5 | ||
Epithelial neoplasms | 56 (2.0%) | 9 (1.1%) | |
Adenomas and adenocarcinomas | 1435 (51%) | 413 (52%) | |
Cystic, mucinous, and serous | 130 (4.6%) | 32 (4.0%) | |
Ductal and lobular neoplasms | 1144 (41%) | 332 (42%) | |
Complex epithelial neoplasms | 39 (1.4%) | 9 (1.1%) | |
Surgery | 0.1 | ||
Local excision | 5 (0.2%) | 5 (0.6%) | |
Partial pancreatectomy | 464 (17%) | 118 (15%) | |
Local or partial pancreatectomy and duodenectomy | 1882 (67%) | 537 (68%) | |
Total pancreatectomy | 79 (2.8%) | 32 (4.0%) | |
Total pancreatectomy and subtotal gastrectomy or duodenectomy | 221 (7.9%) | 68 (8.6%) | |
Extended pancreatoduodenectomy | 132 (4.7%) | 33 (4.2%) | |
Pancreatectomy | 21 (0.7%) | 2 (0.3%) | |
AJCC stage | >0.9 | ||
I | 357 (13%) | 103 (13%) | |
II | 2185 (78%) | 621 (78%) | |
III | 102 (3.6%) | 26 (3.3%) | |
IV | 160 (5.7%) | 45 (5.7%) | |
T stage | 0.7 | ||
T1 | 204 (7.3%) | 55 (6.9%) | |
T2 | 449 (16%) | 115 (14%) | |
T3 | 2039 (73%) | 594 (75%) | |
T4 | 112 (4.0%) | 31 (3.9%) | |
N stage | 0.1 | ||
N0 | 942 (34%) | 294 (37%) | |
N1 | 1862 (66%) | 501 (63%) | |
M stage | >0.9 | ||
M0 | 2644 (94.3%) | 750 (94.3%) | |
M1 | 160 (5.7%) | 45 (5.7%) | |
Site | 0.4 | ||
Pancreas Head | 1969 (70%) | 572 (72%) | |
Pancreas Body Tail | 566 (20%) | 158 (20%) | |
Other | 269 (9.6%) | 65 (8.2%) | |
Clinical grade | 0.2 | ||
I | 449 (16%) | 108 (14%) | |
II | 1315 (47%) | 394 (50%) | |
III | 985 (35%) | 283 (36%) | |
IV | 55 (2.0%) | 10 (1.3%) | |
Tumor size (mm) | 32 (25, 45) | 32 (25, 42) | 0.5 |
Examined lymph nodes | 14 (9, 21) | 14 (9, 21) | 0.6 |
Positive lymph nodes | 1 (0, 3) | 1 (0, 4) | 0.2 |
Positive lymph nodes rate (%) | 0.10 (0.00, 0.25) | 0.08 (0.00, 0.25) | 0.2 |
Model | AUC | Brier Score | C-Index | ||||
---|---|---|---|---|---|---|---|
1-Year | 3-Year | 5-Year | 1-Year | 3-Year | 5-Year | ||
RSF model | 0.753 | 0.744 | 0.759 | 0.188 | 0.177 | 0.131 | 0.723 |
Cox model | 0.736 | 0.737 | 0.76 | 0.193 | 0.181 | 0.132 | 0.670 |
Deepsurv model | 0.744 | 0.742 | 0.749 | 0.202 | 0.175 | 0.122 | 0.700 |
RSF Risk Stratification | Number | Events | Median | 0.95 LCL | 0.95 UCL |
---|---|---|---|---|---|
Low-risk | 1332 | 644 | 73 | 63 | 85 |
Medium-risk | 766 | 719 | 19 | 18 | 20 |
High-risk | 706 | 686 | 10 | 9 | 11 |
RSF Risk Stratification | Number | Events | Median | 0.95 LCL | 0.95 UCL |
---|---|---|---|---|---|
Low-risk | 218 | 41 | 41 | 35 | 53 |
Medium-risk | 156 | 20 | 20 | 17 | 21 |
High-risk | 212 | 14 | 14 | 12 | 18 |
1-Year | 3-Year | 5-Year | |
---|---|---|---|
RSF risk stratification | 0.667 | 0.693 | 0.688 |
AJCC stage | 0.568 | 0.603 | 0.622 |
p value | <0.001 | <0.001 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Yin, M.; Liu, L.; Gao, J.; Yu, C.; Liu, X.; Xu, C.; Zhu, J. The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study. Cancers 2022, 14, 4667. https://doi.org/10.3390/cancers14194667
Lin J, Yin M, Liu L, Gao J, Yu C, Liu X, Xu C, Zhu J. The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study. Cancers. 2022; 14(19):4667. https://doi.org/10.3390/cancers14194667
Chicago/Turabian StyleLin, Jiaxi, Minyue Yin, Lu Liu, Jingwen Gao, Chenyan Yu, Xiaolin Liu, Chunfang Xu, and Jinzhou Zhu. 2022. "The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study" Cancers 14, no. 19: 4667. https://doi.org/10.3390/cancers14194667
APA StyleLin, J., Yin, M., Liu, L., Gao, J., Yu, C., Liu, X., Xu, C., & Zhu, J. (2022). The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study. Cancers, 14(19), 4667. https://doi.org/10.3390/cancers14194667