Optimizing the Choice for Adjuvant Chemotherapy in Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Factors Influencing Recurrence after Radical Surgery
2.1. Tumor Stage
2.2. Number of Examined Lymph Nodes
2.3. Type of Lymphadenectomy
2.4. Tumor Grade
2.5. Lymphovascular and/or Perineural Invasion
2.6. Age of Patient
2.7. Immunological and Nutritional Status of Patient
3. Trials Supporting Current Clinical Practice
3.1. Adjuvant Chemotherapy
3.2. Adjuvant Chemoradiotherapy
3.3. Perioperative Chemotherapy
4. Current Indications for Adjuvant Chemotherapy
4.1. Stage II–III
4.2. Stage I
5. Novel Biomarkers and Therapeutic Approaches
5.1. Molecular and Microenvironmental Diversity of Gastric Cancer
5.2. Microsatellite Instability (MSI)
5.3. PD-L1 Expression
5.4. Epstein–Barr Virus (EBV)
5.5. Specific Molecular Targets
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA. Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 42–54. [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.; Gospodarwicz, M.; Wittekind, C.; Amin, M. TNM Classification of Maligant Tumours; Brierley, J.D., Gospodarowicz, M.K., Wittekind, C., Eds.; Wiley-Blackwell: Oxford, UK; ISBN 978-1-119-26357-9.
- Sano, T.; Coit, D.G.; Kim, H.H.; Roviello, F.; Kassab, P.; Wittekind, C.; Yamamoto, Y.; Ohashi, Y. Proposal of a new stage grouping of gastric cancer for TNM classification: International Gastric Cancer Association staging project. Gastric Cancer 2017, 20, 217–225. [Google Scholar] [CrossRef]
- In, H.; Solsky, I.; Palis, B.; Langdon-Embry, M.; Ajani, J.; Sano, T. Validation of the 8th Edition of the AJCC TNM Staging System for Gastric Cancer using the National Cancer Database. Ann. Surg. Oncol. 2017, 24, 3683–3691. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Bu, Z.-D.; Yan, Y.; Li, Z.-Y.; Wu, A.-W.; Zhang, L.-H.; Zhang, J.; Wu, X.-J.; Zong, X.-L.; Li, S.-X.; et al. The 8th edition of the American Joint Committee on Cancer tumor-node-metastasis staging system for gastric cancer is superior to the 7th edition: Results from a Chinese mono-institutional study of 1663 patients. Gastric Cancer 2018, 21, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Karpeh, M.S.; Leon, L.; Klimstra, D.; Brennan, M.F. Lymph node staging in gastric cancer: Is location more important than Number? An analysis of 1038 patients. Ann. Surg. 2000, 232, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.-L.; Lu, J.; Li, P.; Xie, J.-W.; Wang, J.-B.; Lin, J.-X.; Chen, Q.-Y.; Lin, M.; Tu, R.-H.; Zheng, C.-H.; et al. Evaluation of the Eighth Edition of the American Joint Committee on Cancer TNM Staging System for Gastric Cancer: An Analysis of 7371 Patients in the SEER Database. Gastroenterol. Res. Pract. 2019, 2019, 6294382. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.-F.; Ji, T.-T.; Lin, Y.; Li, R.-Z. The prognostic value of lymph nodes count on survival of patients with node-negative gastric cancer. Oncotarget 2016, 7, 43680–43688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Guo, S.; Dong, Z.; Meng, X.; Zheng, G.; Yang, D.; Zheng, Z.; Zhao, Y. Implication of lymph node staging in migration and different treatment strategies for stage T2N0M0 and T1N1M0 resected gastric cancer: A SEER population analysis. Clin. Transl. Oncol. 2019, 21, 1499–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- In, H.; Kantor, O.; Sharpe, S.M.; Baker, M.S.; Talamonti, M.S.; Posner, M.C. Adjuvant Therapy Improves Survival for T2N0 Gastric Cancer Patients with Sub-optimal Lymphadenectomy. Ann. Surg. Oncol. 2016, 23, 1956–1962. [Google Scholar] [CrossRef]
- Arsoniadis, E.G.; Marmor, S.; Diep, G.K.; Hui, J.Y.C.; Jensen, E.H.; Tuttle, T.M. Survival Rates for Patients with Resected Gastric Adenocarcinoma Finally have Increased in the United States. Ann. Surg. Oncol. 2017, 24, 3361–3367. [Google Scholar] [CrossRef] [PubMed]
- Hartgrink, H.H.; van de Velde, C.J.H.; Putter, H.; Bonenkamp, J.J.; Klein Kranenbarg, E.; Songun, I.; Welvaart, K.; van Krieken, J.H.J.M.; Meijer, S.; Plukker, J.T.M.; et al. Extended lymph node dissection for gastric cancer: Who may benefit? Final results of the randomized Dutch gastric cancer group trial. J. Clin. Oncol. 2004, 22, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, A.; Weeden, S.; Fielding, J.; Bancewicz, J.; Craven, J.; Joypaul, V.; Sydes, M.; Fayers, P. Patient survival after D1 and D2 resections for gastric cancer: Long-term results of the MRC randomized surgical trial. Surgical Co-operative Group. Br. J. Cancer 1999, 79, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Bickenbach, K.; Strong, V.E. Comparisons of Gastric Cancer Treatments: East vs. West. J. Gastric Cancer 2012, 12, 55–62. [Google Scholar] [CrossRef]
- de Steur, W.O.; Hartgrink, H.H.; Dikken, J.L.; Putter, H.; van de Velde, C.J.H. Quality control of lymph node dissection in the Dutch Gastric Cancer Trial. Br. J. Surg. 2015, 102, 1388–1393. [Google Scholar] [CrossRef]
- Park, J.H.; Ryu, M.-H.; Kim, H.J.; Ryoo, B.-Y.; Yoo, C.; Park, I.; Park, Y.S.; Oh, S.T.; Yook, J.H.; Kim, B.S.; et al. Risk factors for selection of patients at high risk of recurrence or death after complete surgical resection in stage I gastric cancer. Gastric Cancer 2016, 19, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Kamada, K.; Tsurui, Y.; Kashizuka, H.; Okano, E.; Ogawa, S.; Obara, S.; Tatsumi, M. Clinicopathological analysis for recurrence of stage Ib gastric cancer (according to the second English edition of the Japanese classification of gastric carcinoma). Gastric Cancer 2011, 14, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-E.; Hong, J.-Y.; Kim, J.E.; Shim, H.-J.; Bae, W.-K.; Hwang, E.-C.; Jeong, O.; Park, Y.K.; Lee, K.-H.; Lee, J.-H.; et al. Prognostic significance of the concomitant existence of lymphovascular and perineural invasion in locally advanced gastric cancer patients who underwent curative gastrectomy and adjuvant chemotherapy. Jpn. J. Clin. Oncol. 2015, 45, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yan, J.; Hu, W.; Zhang, J.; Huo, B. Adjuvant chemotherapy provided survival benefit for stage T2N0 gastric cancer with high-risk factors. Neoplasma 2018, 65, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araki, I.; Hosoda, K.; Yamashita, K.; Katada, N.; Sakuramoto, S.; Moriya, H.; Mieno, H.; Ema, A.; Kikuchi, S.; Mikami, T.; et al. Prognostic impact of venous invasion in stage IB node-negative gastric cancer. Gastric Cancer 2015, 18, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhou, Y.; Huang, K.; Zhao, G.; Fu, H.; Shi, Y. Defining a high-risk subgroup of pathological T2N0 gastric cancer by prognostic risk stratification for adjuvant therapy. J. Gastrointest. Surg. 2011, 15, 2153–2158. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, Y.; Zhang, L.; Li, Z.; Wu, X.; Liu, Y.; Bu, Z.; Ji, J. A nomogram for predicting the likelihood of lymph node metastasis in early gastric patients. BMC Cancer 2016, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, R.; Inagawa, S.; Sano, N.; Tadano, S.; Adachi, S.; Yamamoto, M. The neutrophil-to-lymphocyte ratio (NLR) predicts short-term and long-term outcomes in gastric cancer patients. Eur. J. Surg. Oncol. 2018, 44, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, Y.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Ichikawa, T.; Yin, C.; Suzuki, A.; Fujikawa, H.; Yasuda, H.; Hiro, J.; et al. Lymphocyte-to-C-reactive protein ratio and score are clinically feasible nutrition-inflammation markers of outcome in patients with gastric cancer. Clin. Nutr. 2020, 39, 1209–1217. [Google Scholar] [CrossRef]
- Hirahara, N.; Tajima, Y.; Matsubara, T.; Fujii, Y.; Kaji, S.; Kawabata, Y.; Hyakudomi, R.; Yamamoto, T.; Uchida, Y.; Taniura, T. Systemic Immune-Inflammation Index Predicts Overall Survival in Patients with Gastric Cancer: A Propensity Score-Matched Analysis. J. Gastrointest. Surg. 2021, 25, 1124–1133. [Google Scholar] [CrossRef]
- Song, H.; Sun, H.; Yang, L.; Gao, H.; Cui, Y.; Yu, C.; Xu, H.; Li, L. Nutritional Risk Index as a Prognostic Factor Predicts the Clinical Outcomes in Patients with Stage III Gastric Cancer. Front. Oncol. 2022, 12, 880419. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, P.; Song, Y.; Sun, J.; Chen, X.; Zhao, J.; Ma, B.; Wang, Z. The prognostic nutritional index is a predictive indicator of prognosis and postoperative complications in gastric cancer: A meta-analysis. Eur. J. Surg. Oncol. 2016, 42, 1176–1182. [Google Scholar] [CrossRef]
- Wang, N.; Xi, W.; Lu, S.; Jiang, J.; Wang, C.; Zhu, Z.; Yan, C.; Liu, J.; Zhang, J. A Novel Inflammatory-Nutritional Prognostic Scoring System for Stage III Gastric Cancer Patients with Radical Gastrectomy Followed by Adjuvant Chemotherapy. Front. Oncol. 2021, 11, 650562. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, K.; Lee, J.-B.; Park, T.; Khang, S.; Jeong, H.; Ko, C.-S.; Yook, J.-H.; Kim, B.-S.; Lee, I.-S. Preoperative nutritional risk index and postoperative one-year skeletal muscle loss can predict the prognosis of patients with gastric adenocarcinoma: A registry-based study. BMC Cancer 2021, 21, 157. [Google Scholar] [CrossRef]
- Sakuramoto, S.; Sasako, M.; Yamaguchi, T.; Kinoshita, T.; Fujii, M.; Nashimoto, A.; Furukawa, H.; Nakajima, T.; Ohashi, Y.; Imamura, H.; et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 2007, 357, 1810–1820. [Google Scholar] [CrossRef]
- Sasako, M.; Sakuramoto, S.; Katai, H.; Kinoshita, T.; Furukawa, H.; Yamaguchi, T.; Nashimoto, A.; Fujii, M.; Nakajima, T.; Ohashi, Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J. Clin. Oncol. 2011, 29, 4387–4393. [Google Scholar] [CrossRef]
- Kakeji, Y.; Yoshida, K.; Kodera, Y.; Kochi, M.; Sano, T.; Ichikawa, W.; Lee, S.-W.; Shibahara, K.; Shikano, T.; Kataoka, M.; et al. Three-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 plus docetaxel versus S-1 alone in stage III gastric cancer: JACCRO GC-07. Gastric Cancer 2022, 25, 188–196. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Kim, Y.-W.; Yang, H.-K.; Chung, H.C.; Park, Y.-K.; Lee, K.H.; Lee, K.-W.; Kim, Y.H.; Noh, S.-I.; Cho, J.Y.; et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet 2012, 379, 315–321. [Google Scholar] [CrossRef]
- Noh, S.H.; Park, S.R.; Yang, H.-K.; Chung, H.C.; Chung, I.-J.; Kim, S.-W.; Kim, H.-H.; Choi, J.-H.; Kim, H.-K.; Yu, W.; et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1389–1396. [Google Scholar] [CrossRef]
- Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N. Engl. J. Med. 2001, 345, 725–730. [Google Scholar] [CrossRef]
- Lee, J.; Lim, D.H.; Kim, S.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Choi, M.G.; Sohn, T.S.; Noh, J.H.; et al. Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: The ARTIST trial. J. Clin. Oncol. 2012, 30, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Sohn, T.S.; Lee, J.; Lim, D.H.; Hong, M.E.; Kim, K.-M.; Sohn, I.; Jung, S.H.; Choi, M.G.; Lee, J.H.; et al. Phase III Trial to Compare Adjuvant Chemotherapy with Capecitabine and Cisplatin Versus Concurrent Chemoradiotherapy in Gastric Cancer: Final Report of the Adjuvant Chemoradiotherapy in Stomach Tumors Trial, Including Survival and Subset Analyses. J. Clin. Oncol. 2015, 33, 3130–3136. [Google Scholar] [CrossRef]
- Park, S.H.; Lim, D.H.; Sohn, T.S.; Lee, J.; Zang, D.Y.; Kim, S.T.; Kang, J.H.; Oh, S.Y.; Hwang, I.G.; Ji, J.H.; et al. A randomized phase III trial comparing adjuvant single-agent S1, S-1 with oxaliplatin, and postoperative chemoradiation with S-1 and oxaliplatin in patients with node-positive gastric cancer after D2 resection: The ARTIST 2 trial(☆). Ann. Oncol. 2021, 32, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Smalley, S.R.; Benedetti, J.K.; Haller, D.G.; Hundahl, S.A.; Estes, N.C.; Ajani, J.A.; Gunderson, L.L.; Goldman, B.; Martenson, J.A.; Jessup, J.M.; et al. Updated analysis of SWOG-directed intergroup study 0116: A phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J. Clin. Oncol. 2012, 30, 2327–2333. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.K.; Cunningham, D.; Rao, S. Chemotherapy for operable gastric cancer: Current perspectives. Indian J. Surg. Oncol. 2011, 2, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Berney, C.R.; Merrett, N.D. Adjuvant chemoradiotherapy for gastric cancer. N. Engl. J. Med. 2002, 346, 210–211. [Google Scholar] [PubMed]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.H.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ronellenfitsch, U.; Schwarzbach, M.; Hofheinz, R.; Kienle, P.; Kieser, M.; Slanger, T.E.; Jensen, K. Perioperative chemo(radio)therapy versus primary surgery for resectable adenocarcinoma of the stomach, gastroesophageal junction, and lower esophagus. Cochrane Database Syst. Rev. 2013, 5, CD008107. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer Assoc. 2017, 20, 1–19. [CrossRef]
- National Comprehensive Cancer Network. Gastric Cancer (Version 2.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf (accessed on 27 June 2022).
- Jansen, E.P.M.; Boot, H.; Saunders, M.P.; Crosby, T.D.L.; Dubbelman, R.; Bartelink, H.; Verheij, M.; Cats, A. A phase I-II study of postoperative capecitabine-based chemoradiotherapy in gastric cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1424–1428. [Google Scholar] [CrossRef] [PubMed]
- De Gramont, A.; Bosset, J.F.; Milan, C.; Rougier, P.; Bouché, O.; Etienne, P.L.; Morvan, F.; Louvet, C.; Guillot, T.; François, E.; et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: A French intergroup study. J. Clin. Oncol. 1997, 15, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v38–v49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, H.; Li, Z.; Xue, Y.; Wang, Y.; Zhou, Z.; Yu, J.; Bu, Z.; Chen, L.; Du, Y.; et al. Perioperative or postoperative adjuvant oxaliplatin with S-1 versus adjuvant oxaliplatin with capecitabine in patients with locally advanced gastric or gastro-oesophageal junction adenocarcinoma undergoing D2 gastrectomy (RESOLVE): An open-label, superiority and non-inferiority, phase 3 randomised controlled trial. Lancet. Oncol. 2021, 22, 1081–1092. [Google Scholar] [CrossRef]
- Xie, Y.; Du, D.; Song, X.; Li, X.; Ni, Z.; Huang, H. The role of chemotherapy in patients with stage IB gastric adenocarcinoma: A real-world competing risk analysis. World J. Surg. Oncol. 2022, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Seyedin, S.; Wang, P.-C.; Zhang, Q.; Lee, P. Benefit of Adjuvant Chemoradiotherapy for Gastric Adenocarcinoma: A SEER Population Analysis. Gastrointest. Cancer Res. 2014, 7, 82–90. [Google Scholar] [PubMed]
- Datta, J.; McMillan, M.T.; Ruffolo, L.; Lowenfeld, L.; Mamtani, R.; Plastaras, J.P.; Dempsey, D.T.; Karakousis, G.C.; Drebin, J.A.; Fraker, D.L.; et al. Multimodality Therapy Improves Survival in Resected Early Stage Gastric Cancer in the United States. Ann. Surg. Oncol. 2016, 23, 2936–2945. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.-K.; Wang, Q.-H.; Wu, Y.-Y. Challenges surrounding postoperative adjuvant chemotherapy for T2N0 gastric cancer. Oncol. Lett. 2020, 20, 126. [Google Scholar] [CrossRef]
- Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef] [PubMed]
- Sohn, B.H.; Hwang, J.-E.; Jang, H.-J.; Lee, H.-S.; Oh, S.C.; Shim, J.-J.; Lee, K.-W.; Kim, E.H.; Yim, S.Y.; Lee, S.H.; et al. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin. Cancer Res. 2017, 23, 4441–4449. [Google Scholar] [CrossRef] [PubMed]
- Derks, S.; Liao, X.; Chiaravalli, A.M.; Xu, X.; Camargo, M.C.; Solcia, E.; Sessa, F.; Fleitas, T.; Freeman, G.J.; Rodig, S.J.; et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016, 7, 32925–32932. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.-H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830. [Google Scholar] [CrossRef] [PubMed]
- Derks, S.; de Klerk, L.K.; Xu, X.; Fleitas, T.; Liu, K.X.; Liu, Y.; Dietlein, F.; Margolis, C.; Chiaravalli, A.M.; Da Silva, A.C.; et al. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann. Oncol. 2020, 31, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lu, H.; Tang, X.; Zhao, Y.; Liu, H. Immunogenomic characterization in gastric cancer identifies microenvironmental and immunotherapeutically relevant gene signatures. Immun. Inflamm. Dis. 2022, 10, 43–59. [Google Scholar] [CrossRef]
- Murphy, K.M.; Zhang, S.; Geiger, T.; Hafez, M.J.; Bacher, J.; Berg, K.D.; Eshleman, J.R. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J. Mol. Diagn. 2006, 8, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Cherri, S.; Oneda, E.; Noventa, S.; Melocchi, L.; Zaniboni, A. Microsatellite instability and chemosensitivity in solid tumours. Ther. Adv. Med. Oncol. 2022, 14, 17588359221099348. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017, 3, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.Y.; Kim, H.; Shin, S.-J.; Kim, H.Y.; Lee, J.; Yang, H.-K.; Kim, W.H.; Kim, Y.-W.; Kook, M.-C.; Park, Y.K.; et al. Microsatellite Instability and Programmed Cell Death-Ligand 1 Expression in Stage II/III Gastric Cancer: Post Hoc Analysis of the CLASSIC Randomized Controlled study. Ann. Surg. 2019, 270, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.-M.; Nankivell, M.G.; Morano, F.; et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability as a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.-J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Andre, T.; Tougeron, D.; Piessen, G.; De La Fouchardiere, C.; Louvet, C.; Adenis, A.; Jary, M.; Tournigand, C.; Aparicio, T.; Desrame, J.; et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in patients (pts) with localized microsatellite instability-high (MSI)/mismatch repair deficient (dMMR) oeso-gastric adenocarcinoma (OGA): The GERCOR NEONIPIGA phase II study. J. Clin. Oncol. 2022, 40, 244. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Lorenzen, S.; Thuss-Patience, P.C.; Homann, N.; Schenk, M.; Lindig, U.; Heuer, V.; Kretzschmar, A.; Goekkurt, E.; Haag, G.M.; et al. Surgical and pathological outcome, and pathological regression, in patients receiving perioperative atezolizumab in combination with FLOT chemotherapy versus FLOT alone for resectable esophagogastric adenocarcinoma: Interim results from DANTE, a randomized, multicenter, phase IIb trial of the FLOT-AIO German Gastric Cancer Group and Swiss SAKK. J. Clin. Oncol. 2022, 40, 4003. [Google Scholar] [CrossRef]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-Line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Fan, H.; Gulley, M.L. Molecular Methods for Detecting Epstein-Barr Virus (Part I): In Situ Hybridization to Epstein-Barr Virus-Encoded RNA (EBER) Transcripts. Methods Mol. Med. 2001, 49, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- He, Q.; Chen, J.; Zhou, K.; Jin, C.; Wang, A.; Ji, K.; Ji, X.; Zhang, J.; Wu, X.; Li, X.; et al. Effect of Additional Trastuzumab in Neoadjuvant and Adjuvant Treatment for Patients with Resectable HER2-Positive Gastric Cancer. Ann. Surg. Oncol. 2021, 28, 4413–4422. [Google Scholar] [CrossRef] [PubMed]
- Apicella, M.; Corso, S.; Giordano, S. Targeted therapies for gastric cancer: Failures and hopes from clinical trials. Oncotarget 2017, 8, 57654–57669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study (Year)/Region | Treatment Arms | No of Patients | Outcome | HR (95% CI) | p * |
---|---|---|---|---|---|
ADJUVANT CT | |||||
ACTS-GC (2007)/ Japan | Surgery (D2) alone Surgery (D2) + S-1 | 530 529 | 5-yr-OS 61% 5-yr-OS 72% | 1 0.67 (0.54–0.83) | 0.003 |
JACCRO-GC-07 (2022)/Japan | Surgery (D2) + S-1 Surgery (D2) + S-1 + DTX | 459 454 | 3-yr-DFS 50% 3-yr-DFS 66% | 1 0.632 (0.40–0.99) | 0.001 |
CLASSIC (2012)/ South Korea | Surgery (D2) alone Surgery (D2) + CAPOX | 515 520 | 5-yr-OS 69% 5-yr-OS 78% | 1 0.66 (0.51–0.85) | 0.001 |
ADJUVANT CT + RT (CHEMORADIOTHERAPY) | |||||
INT-0116 (2001)/ North America | Surgery alone Surgery + 5FU/FA/RT | 275 281 | 3-yr-DFS 41% 3-yr-DFS 50% | 1.35 (1.09–1.66) 1 | 0.005 |
ARTIST (2012)/ South Korea | Surgery (D2) + XP Surgery (D2) + XP/RT | 228 230 | 5-yr-OS 73% 5-yr-OS 75% | 1.13 (0.78–1.65) 1 | 0.530 |
ARTIST-II (2021)/ South Korea | Surgery (D2) + S-1 in N+ Surgery (D2) + SOx in N+ Surgery (D2) + SOx/RT in N+ | 182 181 183 | 3-yr-DFS 65% 3-yr-DFS 74% 3-yr-DFS 73% | 1.44 (1.02–2.44) 1 1.10 (0.85–1.61) | 0.042 0.879 |
ADJUVANT CT AFTER NEOADJUVANT CT AND SURGERY (PERIOPERATIVE CT) | |||||
MAGIC (2006) Europe | Surgery alone ECF + Surgery + ECF | 253 250 | 5-yr-OS 23% 5-yr-OS 36% | 1 0.75 (0.60–0.93) | 0.009 |
AIO-FLOT4 (2017) Germany | ECF(X) + Surgery + ECF(X) FLOT + Surgery + FLOT | 360 256 | 5-yr-OS 36% 5-yr-OS 45% | 1 0.77 (0.63–0.94) | 0.012 |
Trial | Included Stages | N. of Patients at Stage IB (%) | Staging System |
---|---|---|---|
ACTS-GC | II-IIIB | 0 | AJCC 2nd edition |
JACCRO-GC-07 | III | 0 | AJCC 6th edition |
CLASSIC | II-IIIB | 0 | AJCC 6th edition |
INT-0166 | IB-IV (M0) | 62 (11.2) | AJCC 3rd edition |
ARTIST | II-IIIB | 99 (21.6) | AJCC 6th edition |
MAGIC | II-IV (M0) | 0 | AJCC 5th edition |
FLOT | II-IV (M0) | 113 (27.2) | AJCC 7th edition |
Study | Phase | Setting | Arms | Eligibility | Endpoint |
---|---|---|---|---|---|
CONVENTIONAL CHEMOTHERAPY | |||||
NCT01787539 stoperopchem | II/III | Perioperative | EOX-Surgery-EOX EOX-Surgery-Observation | cT2-4a, N0-3 | DFS OS |
IMMUNE CHECKPOIN INHIBITORS (ICI) * | |||||
NCT04744649 | II | Neoadjuvant | CAPOX or SOX CAPOX or SOX + JS001 | PD-L1 ≥ 10% or EPV+ or MSI-H/dMMR | pCR |
NCT04795661 Imhotep | II | Neoadjuvant | Pembrolizumab | EPV+ or MSI-H/dMMR | pCR |
NCT04139135 | III | Perioperative | SOx SOx + HLX10 | PD-L1 ≥ 5% | EFS |
NCT03221426 | III | Perioperative | XP(F) or FLOT XP(F) or FLOT + Pembrolizumab | ≥cT3 or cN+ | pCR OS EFS |
NCT04592913 | III | Perioperative | FLOT FLOT + Durvalumab | Stage III | EFS |
NCT03006705 Attraction-5 | III | Adjuvant | CAPOX or S1 CAPOX or S1 + Nivolumab | Stage III and Surgery R0 | RFS |
TARGETED AGENTS ± ICI * | |||||
EORTC- Innovation | II | Perioperative | CT CT + Trastuzumab CT + Trastuzumab + Pertuzumab | HER2-positive | pCR |
NCT04661150 | II | Perioperative | CAPOX + Trastuzumab CAPOX + Trastuzumab + Atezolizumab | pCR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassadonia, A.; De Luca, A.; Carletti, E.; Vici, P.; Di Lisa, F.S.; Filomeno, L.; Cicero, G.; De Lellis, L.; Veschi, S.; Florio, R.; et al. Optimizing the Choice for Adjuvant Chemotherapy in Gastric Cancer. Cancers 2022, 14, 4670. https://doi.org/10.3390/cancers14194670
Grassadonia A, De Luca A, Carletti E, Vici P, Di Lisa FS, Filomeno L, Cicero G, De Lellis L, Veschi S, Florio R, et al. Optimizing the Choice for Adjuvant Chemotherapy in Gastric Cancer. Cancers. 2022; 14(19):4670. https://doi.org/10.3390/cancers14194670
Chicago/Turabian StyleGrassadonia, Antonino, Antonella De Luca, Erminia Carletti, Patrizia Vici, Francesca Sofia Di Lisa, Lorena Filomeno, Giuseppe Cicero, Laura De Lellis, Serena Veschi, Rosalba Florio, and et al. 2022. "Optimizing the Choice for Adjuvant Chemotherapy in Gastric Cancer" Cancers 14, no. 19: 4670. https://doi.org/10.3390/cancers14194670
APA StyleGrassadonia, A., De Luca, A., Carletti, E., Vici, P., Di Lisa, F. S., Filomeno, L., Cicero, G., De Lellis, L., Veschi, S., Florio, R., Brocco, D., Alberti, S., Cama, A., & Tinari, N. (2022). Optimizing the Choice for Adjuvant Chemotherapy in Gastric Cancer. Cancers, 14(19), 4670. https://doi.org/10.3390/cancers14194670