Updates on the Management of Acute Myeloid Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. First-Line Treatments
2.1. First-Line Treatments for “Fit” AML Patients
2.1.1. Gemtuzumab Ozogamicin (GO)
2.1.2. Vyxeos (CPX-351)
2.1.3. FLT3 Inhibitors: Midostaurin and Others
2.1.4. Other Drugs
- Venetoclax (VEN) (bcl-2 inhibitor) has an emerging role in “unfit” AML patients. The CAVEAT study, a phase Ib dose-escalation study, showed that VEN combined with 5 + 2 induction chemotherapy (2 days idarubicin per 5 days cytarabine) was safe in fit, older (>65 years) patients. The high remission rate in de novo AML (ORR 97%; CR 68%, CRi 19%) warrants additional investigations [23] (NCT04070768 Venetoclax + GO; NCT04038437 Venetoclax + Vyxeos)
- Ivosidenib and enasidenib (IDH1/2 inhibitors), in combination with intensive induction and consolidation therapy, were well tolerated in patients with newly diagnosed IDH1 or IDH2 AML. The initial clinical activity was encouraging (ORR 77% in the ivosidenib-treated cohort and 63% in the enasidenib-treated cohort), and the benefit of adding these drugs to standard chemotherapy is being further evaluated in a phase 3 trial (HOVON150AML NCT03839771) [24].
2.2. First-Line Treatments for “Unfit” AML Patients
2.2.1. Venetoclax
2.2.2. Glasdegib
2.2.3. Ivosidenib
2.2.4. Other Drugs
- Magrolimab: magrolimab is a monoclonal anti-CD47 antibody. CD47 is a “do not eat me” signal, overexpressed in myeloid malignancies, that avoids the tumor cells’ phagocytosis. Blockade of CD47 causes inhibition of the negative phagocytic signal and induces the elimination of leukemic stem cells. Magrolimab has been granted Orphan Drug Designation by the FDA for MDS [38].The combination of magrolimab and AZA showed robust activity in a phase 1b clinical trial in 2019. It demonstrated exciting results in MDS and in untreated AML patients (CR/CRi 56%), being particularly effective in TP53-mutant AML, a treatment-refractory subgroup [39].Thus, in the EHA 2022 meeting, results for the phase 1b trial that evaluated the tolerability and efficacy of Magrolimab combined with AZA in high-risk, newly diagnosed, TP53-mutated AML unfit for intensive chemotherapy were presented. It showed durable responses (41.6% CR/CRi with a median duration of 7.7 months) and a median OS of 10.8 months with a manageable safety profile. The TP53 VAF (variant allele frequency) was reduced to <0.07 by cycle 5 (day 1) in 7/9 longitudinally evaluable responders. Magrolimab + AZA is currently being studied in patients with frontline TP53-mutated AML in a phase 3 trial (ENHANCE-2; NCT04778397) [40].
- APR-246 (Eprenetapopt): APR-246 is a novel, small molecule that induces apoptosis in TP53 mutated cancer cells. It stabilizes the TP53 protein and restores its function as a tumor suppressor gene [41]. TP53 mutation, especially in a multi-hit state, has been associated with a complex karyotype, secondary AML, high-risk presentation, and poor outcomes and used to be considered “undruggable” in the past [42]. APR-246 has been granted Orphan Drug Designation by the FDA for MDS.A phase Ib/II study has combined APR-246 with AZA in TP53-mutated MDS or AML with encouraging results (ORR 64% with a CR rate of 36% and a median OS of 10.8 months) [43].
- Finally, the preliminary results of the VEN-A-QUI trial were also shown at the EHA 2022 meeting. It was a phase I/II trial that assessed the safety and efficacy of the combination of AZA or LDAC with VEN and Quizartinib in newly-diagnosed AML patients aged ≥60 years old unfit for intensive treatment (59% secondary AML, 48% exposed to AZA before). It achieved an ORR of 54%; however, substantial toxicity was observed [44]. Deeper studies are necessary to determine the efficacy and security of these triplets.
3. Maintenance
4. Refractory and Relapsed AML
4.1. FLT3 Inhibitors: Gilteritinib
4.2. IDH 1/2 Inhibitors
4.2.1. Enasidenib
4.2.2. Ivosidenib
4.3. TP53 Inhibitors: Idasanutlin (MDM2 Inhibitor)
4.4. Monoclonal Antibodies: Gemtuzumab Ozogamicin (GO)
4.5. Emavusertib (CS-4948)
4.6. Uproleselan
4.7. MENIN Inhibitors
5. Other New Immunotherapies
5.1. TIM-3 Inhibitor: Sabatolimab
5.2. Other Monoclonal Antibodies
5.3. CAR-T Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thol, F. What to use to treat AML: The role of emerging therapies. Hematology 2021, 2021, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. Blood 2022, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
- Liu, H. Emerging agents and regimens for AML. J. Hematol. Oncol. 2021, 14, 49. [Google Scholar] [CrossRef]
- Sorror, M.L.; Storer, B.E.; Fathi, A.T.; Gerds, A.T.; Medeiros, B.C.; Shami, P.; Brunner, A.M.; Sekeres, M.A.; Mukherjee, S.; Peña, E.; et al. Development and Validation of a Novel Acute Myeloid Leukemia-Composite Model to Estimate Risks of Mortality. JAMA Oncol. 2017, 3, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Kayser, S.; Levis, M.J. Updates on targeted therapies for acute myeloid leukaemia. Br. J. Haematol. 2022, 196, 316–328. [Google Scholar] [CrossRef]
- Thol, F.; Schlenk, R.F. Gemtuzumab ozogamicin in acute myeloid leukemia revisited. Expert Opin. Biol. Ther. 2014, 14, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.-N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3 study. Lancet 2012, 379, 1508–1516. [Google Scholar] [CrossRef]
- Burnett, A.K.; Hills, R.K.; Milligan, D.; Kjeldsen, L.; Kell, J.; Russell, N.H.; Yin, J.A.L.; Hunter, A.; Goldstone, A.H.; Wheatley, K. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: Results of the MRC AML15 trial. J. Clin. Oncol. 2011, 29, 369–377. [Google Scholar] [CrossRef]
- Amadori, S.; Suciu, S.; Stasi, R.; Salih, H.R.; Selleslag, D.; Muus, P.; De Fabritiis, P.; Venditti, A.; Ho, A.D.; Lübbert, M.; et al. Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: Results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J. Clin. Oncol. 2013, 31, 4424–4430. [Google Scholar] [CrossRef]
- Löwenberg, B.; Beck, J.; Graux, C.; Van Putten, W.; Schouten, H.C.; Verdonck, L.F.; Ferrant, A.; Sonneveld, P.; Jongen-Lavrencic, M.; Von Lilienfeld-Toal, M.; et al. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: Results of a multicenter phase 3 study. Blood 2010, 115, 2586–2591. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, R.F.; Paschka, P.; Krzykalla, J.; Weber, D.; Kapp-Schwoerer, S.; Gaidzik, V.I.; Leis, C.; Fiedler, W.; Kindler, T.; Schroeder, T.; et al. Gemtuzumab Ozogamicin in NPM1-Mutated Acute Myeloid Leukemia: Early Results From the Prospective Randomized AMLSG 09-09 Phase III Study. J. Clin. Oncol. 2020, 38, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Kapp-Schwoerer, S.; Weber, D.; Corbacioglu, A.; Gaidzik, V.I.; Paschka, P.; Krönke, J.; Theis, F.; Rücker, F.G.; Teleanu, M.V.; Panina, E.; et al. Impact of gemtuzumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: Results from the AMLSG 09-09 trial. Blood 2020, 136, 3041–3050. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet. Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef]
- Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014, 123, 3239–3246. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Chiche, E.; Rahme, R.; Bertoli, S.; Dumas, P.Y.; Micol, J.B.; Hicheri, Y.; Pasquier, F.; Peterlin, P.; Chevallier, P.; Thomas, X.; et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort. Blood Adv. 2021, 5, 176–184. [Google Scholar] [CrossRef]
- Russell, N.; Wilhelm-Benartzi, C.; Knapper, S.; Batten, L.; Canham, J.; Hinson, E.; Malthe Overgaard, U.; Othman, J.; Dillon, R.; Mehta, P.; et al. A randomised comparison of cpx-351 and flag-ida in high risk acute myeloid leukaemia. Results from the ncri aml19 trial. HemaSphere 2022, 6, 29–30. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Dohner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Larson, R.A.; Mandrekar, S.J.; Huebner, L.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; et al. Midostaurin reduces relapse in FLT3-mutant acute myeloid leukemia: The Alliance CALGB 10603/RATIFY trial. Leukemia 2021, 35, 2539–2551. [Google Scholar] [CrossRef]
- Maziarz, R.T.; Levis, M.; Patnaik, M.M.; Scott, B.L.; Mohan, S.R.; Deol, A.; Rowley, S.D.; Kim, D.D.H.; Hernandez, D.; Rajkhowa, T.; et al. Midostaurin after allogeneic stem cell transplant in patients with FLT3-internal tandem duplication-positive acute myeloid leukemia. Bone Marrow Transplant. 2021, 56, 1180–1189. [Google Scholar] [CrossRef]
- Roboz, G.J.; Strickland, S.A.; Litzow, M.R.; Dalovisio, A.; Perl, A.E.; Bonifacio, G.; Haines, K.; Barbera, A.; Purkayastha, D.; Sweet, K. Updated safety of midostaurin plus chemotherapy in newly diagnosed FLT3 mutation-positive acute myeloid leukemia: The RADIUS-X expanded access program. Leuk. Lymphoma 2020, 61, 3146–3153. [Google Scholar] [CrossRef]
- Erba, H.; Montesinos, P.; Vrhovac, R.; Patkowska, E.; Kim, H.-J.; Zak, P.; Wang, P.-N.; Mitov, T.; Hanyok, J.; Liu, L.; et al. Quizartinib prolonged survival vs placebo plus intensive induction and consolidation therapy followed by single-agent continuation in patients aged 18–75 years with newly diagnosed FLT3-ITD+AML. HemaSphere 2022, 6, S100. [Google Scholar] [CrossRef]
- Chua, C.C.; Roberts, A.W.; Reynolds, J.; Fong, C.Y.; Ting, S.B.; Salmon, J.M.; MacRaild, S.; Ivey, A.; Tiong, I.S.; Fleming, S.; et al. Chemotherapy and Venetoclax in Elderly Acute Myeloid Leukemia Trial (CAVEAT): A Phase Ib Dose-Escalation Study of Venetoclax Combined With Modified Intensive Chemotherapy. J. Clin. Oncol. 2020, 38, 3506–3517. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; DiNardo, C.D.; Fathi, A.T.; Mims, A.S.; Pratz, K.W.; Savona, M.R.; Stein, A.S.; Stone, R.M.; Winer, E.S.; Seet, C.S.; et al. Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: A phase 1 study. Blood 2021, 137, 1792–1803. [Google Scholar] [CrossRef] [PubMed]
- Arellano, M.; Carlisle, J.W. How I treat older patients with acute myeloid leukemia. Cancer 2018, 124, 2472–2483. [Google Scholar] [CrossRef]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Wang, R.; Wang, X.; Shallis, R.M.; Podoltsev, N.A.; Bewersdorf, J.P.; Huntington, S.F.; Neparidze, N.; Giri, S.; Gore, S.D.; et al. Clinical outcomes of older patients with AML receiving hypomethylating agents: A large population-based study in the United States. Blood Adv. 2020, 4, 2192–2201. [Google Scholar] [CrossRef]
- Campos, L.; Rouault, J.P.; Sabido, O.; Oriol, P.; Roubi, N.; Vasselon, C.; Archimbaud, E.; Magaud, J.P.; Guyotat, D. High Expression of bcl-2 Protein in Acute Myeloid Leukemia Cells Is Associated With Poor Response to Chemotherapy. Blood 1993, 81, 3091–3096. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Dinardo, C.D.; Arellano, M.L.; Pigneux, A.; Fiedler, W.; Konopleva, M.; Rizzieri, D.A.; Smith, B.D.; Shinagawa, A.; Lemoli, R.M.; et al. Results of Venetoclax and Azacitidine Combination in Chemotherapy Ineligible Untreated Patients with Acute Myeloid Leukemia with IDH 1/2 Mutations. Blood 2020, 136, 5–7. [Google Scholar] [CrossRef]
- Pei, S.; Pollyea, D.A.; Gustafson, A.; Stevens, B.M.; Minhajuddin, M.; Fu, R.; Riemondy, K.A.; Gillen, A.E.; Sheridan, R.M.; Kim, J.; et al. Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. Cancer Discov. 2020, 10, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; Rausch, C.R.; Cortes, J.E.; Pemmaraju, N.; Daver, N.G.; Ravandi, F.; Garcia-Manero, G.; Borthakur, G.; Naqvi, K.; Ohanian, M.; et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica 2021, 106, 894–898. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Tiong, I.S.; Quaglieri, A.; MacRaild, S.; Loghavi, S.; Brown, F.C.; Thijssen, R.; Pomilio, G.; Ivey, A.; Salmon, J.M.; et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood 2020, 135, 791–803. [Google Scholar] [CrossRef]
- Cortes, J.E.; Heidel, F.H.; Hellmann, A.; Fiedler, W.; Smith, B.D.; Robak, T.; Montesinos, P.; Pollyea, D.A.; DesJardins, P.; Ottmann, O.; et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 2019, 33, 379–389. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, A.S.; Stein, E.M.; Fathi, A.T.; Frankfurt, O.; Schuh, A.C.; Döhner, H.; Martinelli, G.; Raffoux, E.; Tan, P.; et al. Mutant IDH1 Inhibitor Ivosidenib (IVO; AG-120) in Combination with Azacitidine (AZA) for Newly Diagnosed Acute Myeloid Leukemia (ND AML). Clin. Lymphoma Myeloma Leuk. 2019, 19, S217–S218. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Chao, M.P.; Takimoto, C.H.; Feng, D.D.; McKenna, K.; Gip, P.; Liu, J.; Volkmer, J.P.; Weissman, I.L.; Majeti, R. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front. Oncol. 2020, 9, 1380. [Google Scholar] [CrossRef]
- Sallman, D.A.; Asch, A.S.; Al Malki, M.M.; Lee, D.J.; Donnellan, W.B.; Marcucci, G.; Kambhampati, S.; Daver, N.G.; Garcia-Manero, G.; Komrokji, R.S.; et al. The First-in-Class Anti-CD47 Antibody Magrolimab (5F9) in Combination with Azacitidine Is Effective in MDS and AML Patients: Ongoing Phase 1b Results. Blood 2019, 134, 569. [Google Scholar] [CrossRef]
- Daver, N.G.; Vyas, P.; Kambhampati, S.; Al Malki, M.M.; Larson, R.; Asch, A.; Mannis, G.; Chai-Ho, W.; Tanaka, T.; Bradley, T.; et al. Tolerability and efficacy of the first-in-class anti-cd47 antibody magrolimab combined with azacitidine in frontline patients with tp53-mutated acute myeloid leukemia: Phase 1b results. HemaSphere 2022, 6, 33–34. [Google Scholar] [CrossRef]
- Lehmann, S.; Bykov, V.J.N.; Ali, D.; Andreń, O.; Cherif, H.; Tidefelt, U.; Uggla, B.; Yachnin, J.; Juliusson, G.; Moshfegh, A.; et al. Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 2012, 30, 3633–3639. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Nannya, Y.; Hasserjian, R.P.; Devlin, S.M.; Tuechler, H.; Medina-Martinez, J.S.; Yoshizato, T.; Shiozawa, Y.; Saiki, R.; Malcovati, L.; et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020, 26, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53 -Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Bergua-Burgues, J.M.; Rodríguez-Veiga, R.; Cano, I.; Vall-llovera, F.; García-Guiñon, A.; Gómez-Estruch, J.; Colorado, M.; Casas-Avilés, I.; Esteve-Reyner, J.; Verdugo, M.V.; et al. Preliminary results of ven-a-qui study: A phase 1-2 trial to assess the safety and efficacy of the combination of azacitidine or low-dose cytarabine with venetoclax and quizartinib in newly diagnosed. HemaSphere 2022, 6, 411–412. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Gore, S.D.; Kambhampati, S.; Scott, B.; Tefferi, A.; Cogle, C.R.; Edenfield, W.J.; Hetzer, J.; Kumar, K.; Laille, E.; et al. Efficacy and safety of extended dosing schedules of CC-486 (oral azacitidine) in patients with lower-risk myelodysplastic syndromes. Leukemia 2016, 30, 889–896. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Almeida, A.; Giagounidis, A.; Platzbecker, U.; Garcia, R.; Voso, M.T.; Larsen, S.R.; Valcarcel, D.; Silverman, L.R.; Skikne, B.; et al. Design and rationale of the QUAZAR Lower-Risk MDS (AZA-MDS-003) trial: A randomized phase 3 study of CC-486 (oral azacitidine) plus best supportive care vs placebo plus best supportive care in patients with IPSS lower-risk myelodysplastic syndromes and poor prognosis due to red blood cell transfusion-dependent anemia and thrombocytopenia. BMC Hematol. 2016, 16, 12. [Google Scholar] [CrossRef]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef]
- Roboz, G.J.; Ravandi, F.; Wei, A.H.; Dombret, H.; Döhner, H.; Thol, F.; Voso, M.T.; Schuh, A.C.; Porkka, K.; La Torre, I.; et al. CC-486 Prolongs Survival for Patients with Acute Myeloid Leukemia (AML) in Remission after Intensive Chemotherapy (IC) Independent of the Presence of Measurable Residual Disease (MRD) at Study Entry: Results from the QUAZAR AML-001 Maintenance Trial. Blood 2020, 136, 32–33. [Google Scholar] [CrossRef]
- de Lima, M.; Oran, B.; Champlin, R.E.; Papadopoulos, E.B.; Giralt, S.A.; Scott, B.L.; William, B.M.; Hetzer, J.; Laille, E.; Hubbell, B.; et al. CC-486 Maintenance after Stem Cell Transplantation in Patients with Acute Myeloid Leukemia or Myelodysplastic Syndromes. Biol. Blood Marrow Transplant. 2018, 24, 2017–2024. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Prebet, T.; Gowda, L. Azacitidine maintenance in AML post induction and posttransplant. Curr. Opin. Hematol. 2022, 29, 84–91. [Google Scholar] [CrossRef]
- Burchert, A.; Bug, G.; Fritz, L.V.; Finke, J.; Stelljes, M.; Röllig, C.; Wollmer, E.; Wäsch, R.; Bornhäuser, M.; Berg, T.; et al. Sorafenib Maintenance After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia With FLT3-Internal Tandem Duplication Mutation (SORMAIN). J. Clin. Oncol. 2020, 38, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Sanz, M.Á.; Montesinos, P. Salvage regimens using conventional chemotherapy agents for relapsed/refractory adult AML patients: A systematic literature review. Ann. Hematol. 2018, 97, 1115–1153. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Schlenk, R.F.; Heuser, M.; Ganser, A. How I treat refractory and early relapsed acute myeloid leukemia. Blood 2015, 126, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Hernandez, D.; Rajkhowa, T.; Smith, S.C.; Raman, J.R.; Nguyen, B.; Small, D.; Levis, M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood 2017, 129, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Perl, A.E.; Hosono, N.; Montesinos, P.; Podoltsev, N.; Martinelli, G.; Panoskaltsis, N.; Recher, C.; Smith, C.C.; Levis, M.J.; Strickland, S.; et al. Clinical outcomes in patients with relapsed/refractory FLT3-mutated acute myeloid leukemia treated with gilteritinib who received prior midostaurin or sorafenib. Blood Cancer J. 2022, 12, 84. [Google Scholar] [CrossRef]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1 -Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
- Kojima, K.; Konopleva, M.; Samudio, I.J.; Shikami, M.; Cabreira-Hansen, M.; McQueen, T.; Ruvolo, V.; Tsao, T.; Zeng, Z.; Vassilev, L.T.; et al. MDM2 antagonists induce p53-dependent apoptosis in AML: Implications for leukemia therapy. Blood 2005, 106, 3150–3159. [Google Scholar] [CrossRef]
- Yee, K.; Martinelli, G.; Vey, N.; Dickinson, M.J.; Seiter, K.; Assouline, S.; Drummond, M.; Yoon, S.-S.; Kasner, M.; Lee, J.-H.; et al. Phase 1/1b Study of RG7388, a Potent MDM2 Antagonist, in Acute Myelogenous Leukemia (AML) Patients (Pts). Blood 2014, 124, 116. [Google Scholar] [CrossRef]
- Konopleva, M.Y.; Röllig, C.; Cavenagh, J.; Deeren, D.; Girshova, L.; Krauter, J.; Martinelli, G.; Montesinos, P.; Schäfer, J.A.; Ottmann, O.G.; et al. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: Results of the MIRROS trial. Blood Adv. 2022, 6, 4147–4156. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Winer, E.S.; DeAngelo, D.J.; Tarantolo, S.; Sallman, D.A.; Dugan, J.; Groepper, S.; Giagounidis, A.; Götze, K.; Metzeler, K.H.; et al. Takeaim leukemia- a phase 1/2a study of the irak4 inhibitor emavusertib (ca-4948) as monotherapy or in combination with azacitidine or venetoclax in relapsed/refractory AML or mds. HemaSphere 2022, 6, 30–31. [Google Scholar] [CrossRef]
- DeAngelo, D.J.; Jonas, B.A.; Liesveld, J.L.; Bixby, D.L.; Advani, A.S.; Marlton, P.; Magnani, J.L.; Thackray, H.M.; Feldman, E.J.; O’Dwyer, M.E.; et al. Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood 2022, 139, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Klossowski, S.; Miao, H.; Kempinska, K.; Wu, T.; Purohit, T.; Kim, E.G.; Linhares, B.M.; Chen, D.; Jih, G.; Perkey, E.; et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J. Clin. Investig. 2020, 130, 981–997. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Kim, E.G.; Chen, D.; Purohit, T.; Kempinska, K.; Ropa, J.; Klossowski, S.; Trotman, W.; Danet-Desnoyers, G.; Cierpicki, T.; et al. Combinatorial treatment with menin and FLT3 inhibitors induces complete remission in AML models with activating FLT3 mutations. Blood 2020, 136, 2958–2963. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bewersdorf, J.P.; Stahl, M.; Zeidan, A.M. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Rev. 2019, 34, 67–83. [Google Scholar] [CrossRef]
- Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.M.; Esteve, J.; Porkka, K.; Knapper, S.; Vey, N.; Scholl, S.; Garcia-Manero, G.; Wermke, M.; Janssen, J.; Traer, E.; et al. Efficacy and Safety of Sabatolimab (MBG453) in Combination with Hypomethylating Agents (HMAs) in Patients with Acute Myeloid Leukemia (AML) and High-Risk Myelodysplastic Syndrome (HR-MDS): Updated Results from a Phase 1b Study. Blood 2020, 136, 1–2. [Google Scholar] [CrossRef]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef]
- Riether, C.; Pabst, T.; Höpner, S.; Bacher, U.; Hinterbrandner, M.; Banz, Y.; Müller, R.; Manz, M.G.; Gharib, W.H.; Francisco, D.; et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat. Med. 2020, 26, 1459–1467. [Google Scholar] [CrossRef]
- Hofmann, S.; Schubert, M.-L.; Wang, L.; He, B.; Neuber, B.; Dreger, P.; Müller-Tidow, C.; Schmitt, M. Chimeric Antigen Receptor (CAR) T Cell Therapy in Acute Myeloid Leukemia (AML). J. Clin. Med. 2019, 8, 200. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Lv, H.; Han, Q.; Fan, H.; Guo, B.; Wang, L.; Han, W. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 2015, 23, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béne, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Autor (Reference) | Design (Phase/Patients) | Targeted-Therapy | Efficacy | ||
---|---|---|---|---|---|
First-line for “fit” patients | Gemtuzumab ozogamicin (GO) | Castaigne S et al., 2012 [7] | CTX + GO vs. placebo (phase III/280) | CD33+ AML | 2-year OS: 53.2% vs. 41.9% (p = 0.037) RFS: 50.3% vs. 22.7% (p = 0.0003) 2-year EFS: 40.8% vs. 17.1% (p = 0.0003) |
Vyxeos (CPX-351) | Lancet JE et al., 2018 [15] | Vyxeos vs. 7 + 3 induction (phase III/309) | s-AML, t-AML, AML-MRC | OS: 9.5 vs. 5.9 m (p = 0.003) ORR: 47.7% vs. 33.3% (p = 0.016) | |
Midostaurin | Stone RM, et al., 2017 [18] | CTX + midostaurin vs. placebo (phase III/3277) | FLT3-mut AML | 4-year OS: 51.4% vs. 44.3% (p = 0.009) EFS: HR 0.78 (p = 0.002) | |
Quizartinib | Erba H, et al., 2022 [22] | CTX + quizartinib vs. placebo (phase 3/3468) | FLT3-mut AML | OS: 31.9 vs. 15.1 m (HR 0.77; 95% CI 0.61–0.97) RFS: HR 0.733; 95% CI 0.55–0.97 | |
Venetoclax | Chua CC, et al., 2020 [23] | Venetoclax + 5 + 2 induction (phase Ib/51) | Bcl-2 inhibitor | ORR: 72% (97% de novo, 43% secondary AML) | |
Ivosidenib/ enasidenib | Stein EM, et al., 2021 [24] | CTX + ivo/ena (phase 1/60–91) | IDH1/IDH2-mut AML | ORR/CR: 77%/55% (ivosidenib), 63%/47% (enasidenib) | |
First-line for “unfit” patients | Venetoclax | DiNardo CD, et al., 2020 [29] | AZA + venetoclax vs. placebo (phase III/431) | Bcl-2 inhibitor | OS: 14.7 vs. 9.6 m (p < 0.001) CR: 36.7 vs. 17.9% (p < 0.001) |
Wei AH, et al., 2020 [32] | LDAC + venetoclax vs. placebo (phase III/211) | OS: 8.4 vs. 4.1 m (p = 0.04) CR + CRi: 48% vs. 13% | |||
Glasdegib | Cortes JE, et al., 2019 [35] | LDAC + glasdegib (phase II/132) | Hedgehog inhibitor | OS: 8.8 vs. 4.9 m (p = 0.0004) CR: 17% vs. 2.3% | |
Ivosidenib | Montesinos P, et al., 2022 [37] | AZA+ ivosidenib vs. placebo (phase III/146) | IDH-1 mut AML | OS: 24 vs. 7.9 m (p = 0.001) 12-months EFS: 38% vs. 12% (p = 0.002) | |
Magrolimab | Daver NG, et al., 2022 [40] | Magrolimab + AZA (phase Ib/72) | TP53-mut AML | OS: 10.8 m; median duration of CR 7.7 m. ORR: 48.6% (CR 33.3%) | |
APR-246 (Eprenetapopt) | Sallman DA, et al., 2021 [43] | APR-246 + AZA (phase Ib-II/55) | TP53-mut AML | ORR: 64% (CR 36%) OS: 10.8 m. | |
Quizartinib | Bergua-Burgues JM, et al., 2022 [44] | AZA/LDAC + venetoclax + quizartinib (phase 1-2/45) | TKI-inhibitor | ORR: 54% Infections (n = 35) | |
Satabolimab | Brunner AM, et al., 2021 [68] | Sabatolimab + HMAs (phase I/48) | Anti-TIM3 antibody | ORR: 41.2% 12 m-PFS rate: 44% | |
Maintenance treatment | CC-486 | Wei AH, et al., 2020 [47] | CC-486 vs. placebo (phase III/472) | Oral azacitidine | OS: 24.7 vs. 14.8 m (p < 0.001) RFS: 10.2 vs. 4.8 m (p < 0.001) |
De Lima, et al., 2018 [49] | CC-486 as maintenance after allo-HCT (phase II/30) | Acute GHVD (10%), chronic GVHD (30%). 1-year EFS: 86% | |||
Sorafenib | Burchert A, et al., 2020 [51] | Sorafenib vs. placebo (phase II/83) | FLT3-mut AML | HR relapse or death 0.39 (95% CI 0.18–0.85; p = 0.013) 2-year RFS 85% vs. 53.3% (p = 0.002) | |
Refractory and relapsed AML | Gilteritinib | Perl AE, et al., 2019 [55] | Gilteritinib vs. salvage CXT (phase III/371) | FLT3-mut AML | OS: 9.3 vs. 5.6 m (p < 0.001) EFS: 2.8 vs. 0.7 m (HR 0.79; 95% CI 0.58–1.09) CR/CRi: 34% vs. 15.4% |
Enasidenib/ Ivosidenib | IDHENTIFY study (NCT02577406) | Enasidenib vs. salvage CXT (phase III) | IDH-1 mut AML | Failed to meet the primary endpoint (OS) | |
Idasanutlin | Konopleva MY, et al., 2022 [61] | Cytarabine + idasanutlin (phase III/447) | MDM2 inhibitor | Failed to meet the primary endpoint (OS) ORR (38.8% vs. 22%); OR (2.25 95% CI 1.36–3.72) | |
Emavusertib (CA-4948) | García-Manero G, et al., 2022 [62] | Emavusertib in monotherapy (phase Ia/49) | IRAK-4 inhibitor | 40% CR/CRi (AML with spliceosome mutations). | |
Uproleselan | DeAngelo DJ, et al., 2022 [63] | Uproleselan + MEC (phase 1-2/47) | E-selectin antagonist | CR/CRi 41% (CR 35%) OS: 8.8 m | |
MENIN inhibitors | Miao H, et al., 2020 [65] | NCT04067336 NCT04811560 | KMT2a rearranged and NPM1-mut AML | ||
Flotetuzumab (bispecific antibody) | Uy GL, et al., 2021 [69] | Flotetuzumab in monotherapy (phase 1-2/88) | CD123xCD3 | ORR: 30% (CR 26.7%) OS: 10.2 m. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerga-Domínguez, S.; Villar, S.; Prósper, F.; Alfonso-Piérola, A. Updates on the Management of Acute Myeloid Leukemia. Cancers 2022, 14, 4756. https://doi.org/10.3390/cancers14194756
Huerga-Domínguez S, Villar S, Prósper F, Alfonso-Piérola A. Updates on the Management of Acute Myeloid Leukemia. Cancers. 2022; 14(19):4756. https://doi.org/10.3390/cancers14194756
Chicago/Turabian StyleHuerga-Domínguez, Sofía, Sara Villar, Felipe Prósper, and Ana Alfonso-Piérola. 2022. "Updates on the Management of Acute Myeloid Leukemia" Cancers 14, no. 19: 4756. https://doi.org/10.3390/cancers14194756
APA StyleHuerga-Domínguez, S., Villar, S., Prósper, F., & Alfonso-Piérola, A. (2022). Updates on the Management of Acute Myeloid Leukemia. Cancers, 14(19), 4756. https://doi.org/10.3390/cancers14194756