Flow Cytometric Analysis of Bone Marrow Particle Cells for Measuring Minimal Residual Disease in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples and Characteristics
2.2. Hemodilution Assessment of Bone Marrow Aspirates
2.3. Enrichment of Bone Marrow Particle Cells (BMPLs)
2.4. Flow Cytometric MRD Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Characteristics of MM Patients
3.2. Hemodilution Assessment in Patients with Multiple Myeloma
3.3. MRD Detection by Flow Cytometry
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pawlyn, C.; Davies, F.E. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 2019, 133, 660–675. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Mikhael, J.R.; Dingli, D.; Roy, V.; Reeder, C.B.; Buadi, F.K.; Hayman, S.R.; Dispenzieri, A.; Fonseca, R.; Sher, T.; Kyle, R.A.; et al. Management of newly diagnosed symptomatic multiple myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin. Proc. 2013, 88, 360–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef]
- Anderson, K.C.; Auclair, D.; Kelloff, G.J.; Sigman, C.C.; Avet-Loiseau, H.; Farrell, A.T.; Gormley, N.J.; Kumar, S.K.; Landgren, O.; Munshi, N.C.; et al. The Role of Minimal Residual Disease Testing in Myeloma Treatment Selection and Drug Development: Current Value and Future Applications. Clin. Cancer Res. 2017, 23, 3980–3993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Romano, A.; Palumbo, G.A.; Parrinello, N.L.; Conticello, C.; Martello, M.; Terragna, C. Minimal Residual Disease Assessment Within the Bone Marrow of Multiple Myeloma: A Review of Caveats, Clinical Significance and Future Perspectives. Front. Oncol. 2019, 9, 699. [Google Scholar] [CrossRef]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 2019, 33, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Puig, N.; García-Sanz, R.; Miguel, J.F.S.; Grupo Español de Mieloma (GEM)/Programa para el Estudio de la Terapéutica en Hemopatías Malignas (PETHEMA) cooperative study groups. Is this the time to introduce minimal residual disease in multiple myeloma clinical practice? Clin Cancer Res. 2015, 21, 2001–2008. [Google Scholar] [CrossRef] [Green Version]
- Puig, N.; Sarasquete, M.E.; Balanzategui, A.; Martínez, J.; Paiva, B.D.L.; García, H.; Fumero, S.; Jiménez, C.; Alcoceba, M.; Chillon, M.C.; et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 2014, 28, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, J.; Lahuerta, J.J.; Pepin, F.; González, M.; Barrio, S.; Ayala, R.; Puig, N.; Montalban, M.A.; Paiva, B.D.L.; Weng, L.; et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014, 123, 3073–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalina, T.; Flores-Montero, J.; Van der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig, N.; Flores-Montero, J.; Burgos, L.; Cedena, M.-T.; Cordón, L.; Pérez, J.-J.; Sanoja-Flores, L.; Manrique, I.; Rodríguez-Otero, P.; Rosiñol, L.; et al. Reference Values to Assess Hemodilution and Warn of Potential False-Negative Minimal Residual Disease Results in Myeloma. Cancers 2021, 13, 4924. [Google Scholar] [CrossRef]
- Costa, L.J.; Derman, B.A.; Bal, S.; Sidana, S.; Chhabra, S.; Silbermann, R.; Ye, J.C.; Cook, G.; Cornell, R.F.; Holstein, S.A.; et al. International harmonization in performing and reporting minimal residual disease assessment in multiple myeloma trials. Leukemia 2021, 35, 18–30. [Google Scholar] [CrossRef]
- Torlakovic, E.E.; Brynes, R.K.; Hyjek, E.; Lee, S.-H.; Kreipe, H.; Kremer, M.; McKenna, R.; Sadahira, Y.; Tzankov, A.; Reis, M.; et al. ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int. J. Lab. Hematol. 2015, 37, 431–449. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y. Bone marrow particle enrichment analysis for the laboratory diagnosis of multiple myeloma: A case study. J. Clin. Lab. Anal. 2020, 34, e23372. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Patel, A.; Goh, C.Y.; Moscvin, M.; Zhang, L.; Bianchi, G. Changing paradigms in diagnosis and treatment of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). Leukemia 2020, 34, 3111–3125. [Google Scholar] [CrossRef]
- Gener, G.; Espasa, A.; Raya, M.; Vergara, S.; Juncà, J.; Sorigue, M. Brief communication: Distribution of bone marrow cell subsets and hemodilution in patients with acute Leukemia. Int. J. Lab. Hematol. 2020, 42, e192–e195. [Google Scholar] [CrossRef] [PubMed]
- Pont, J.; Souvignet, A.; Campos, L.; Plesa, A.; Bulabois, B.; Pernollet, M.; Raskovalova, T.; Dumestre-Perard, C.; Cesbron, J.-Y.; Jacob, M.-C. Accurate quantification of fourteen normal bone marrow cell subsets in infants to the elderly by flow cytometry. Cytom. B Clin. Cytom. 2018, 94, 627–636. [Google Scholar] [CrossRef]
- Delgado, J.A.; Guillén-Grima, F.; Moreno, C.; Panizo, C.; Pérez-Robles, C.; Mata, J.J.; Moreno, L.; Arana, P.; Chocarro, S.; Merino, J. A simple flow-cytometry method to evaluate peripheral blood contamination of bone marrow aspirates. J. Immunol. Methods 2017, 442, 54–58. [Google Scholar] [CrossRef]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; Van Der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stetler-Stevenson, M.; Paiva, B.D.L.; Stoolman, L.; Lin, P.; Jorgensen, J.L.; Orfao, A.; Van Dongen, J.; Rawstron, A. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytom. B Clin. Cytom. 2016, 90, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Arroz, M.; Came, N.; Lin, P.; Chen, W.; Yuan, C.; Lagoo, A.; Monreal, M.; De Tute, R.; Vergilio, J.-A.; Rawstron, A.C.; et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytom. B Clin. Cytom. 2016, 90, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Pérez-Andrés, M.; Vídriales, M.-B.; Almeida, J.; Heras, N.D.L.; Mateos, M.-V.; López-Corral, L.; Gutiérrez, N.C.; Blanco, J.; Oriol, A.; et al. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia 2011, 25, 697–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, B.D.L.; Gutierrez, N.; Rosiñol, L.; Vidriales, M.-B.; Montalbán, M.; Martínez-López, J.; Mateos, M.-V.; Cibeira, M.-T.; Cordón, L.; Oriol, A.; et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 2012, 119, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Dold, S.M.; Riebl, V.; Wider, D.; Follo, M.; Pantic, M.; Ihorst, G.; Duyster, J.; Zeiser, R.; Wäsch, R.; Engelhardt, M. Validated single-tube multiparameter flow cytometry approach for the assessment of minimal residual disease in multiple myeloma. Haematologica 2020, 105, e523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Gambella, M.; Omedé, P.; Spada, S.; Muccio, V.E.; Gilestro, M.; Saraci, E.; Grammatico, S.; LaRocca, A.; Conticello, C.; Bernardini, A.; et al. Minimal residual disease by flow cytometry and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction in patients with myeloma receiving lenalidomide maintenance: A pooled analysis. Cancer 2019, 125, 750–760. [Google Scholar] [CrossRef]
- Paiva, B.; Puig, N.; Cedena, M.-T.; Rosiñol, L.; Cordón, L.; Vidriales, M.-B.; Burgos, L.; Flores-Montero, J.; Sanoja-Flores, L.; Lopez-Anglada, L.; et al. Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 784–792. [Google Scholar] [CrossRef]
- Lahuerta, J.-J.; Paiva, B.; Vidriales, M.-B.; Cordón, L.; Cedena, M.-T.; Puig, N.; Martinez-Lopez, J.; Rosiñol, L.; Gutierrez, N.C.; Martín-Ramos, M.-L.; et al. Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials. J. Clin. Oncol. 2017, 35, 2900–2910. [Google Scholar] [CrossRef]
- Wheeler, M.; White, G.; Brockie, S.; Dickson, M.; Weinkove, R. Flow Cytometric Analysis of Mechanically Disaggregated Bone Marrow Trephine Biopsies. Cytom. B Clin Cytom. 2018, 94, 935–940. [Google Scholar] [CrossRef] [PubMed]
Patient’s Parameters | Total Cohort (n = 103) a | p Value | MRD Cohort (n = 78) a | p Value | ||
---|---|---|---|---|---|---|
BM (n = 99) | BMPLs (n = 77) | BM (n = 74) | BMPLs (n = 60) | |||
Disease setting (%) | 0.98 | 0.74 | ||||
MM | 90 (91) | 71 (92) | - | - | ||
NDMM | 16 (16) | 11 (14) | - | - | ||
Post CTx | 30 (30) | 26 (34) | 30 (41) | 26 (43) | ||
Post auto-SCT | 44 (45) | 34 (44) | 44 (59) | 34 (57) | ||
SMM/MGUS | 9 (9) | 6 (8) | - | - | ||
Median age (range) | 59 (34–79) | 58 (34–78) | 0.70 | 58 (34–78) | 59 (34–78) | 0.82 |
Sex (%) | 0.35 | 0.35 | ||||
Female | 42 (42) | 27 (36) | 33 (45) | 22 (37) | ||
Male | 57 (58) | 49 (64) | 41 (55) | 38 (63) | ||
Durie-Salmon (%) | 0.64 | 0.92 | ||||
I | 12 (12) | 7 (9) | 3 (4) | 3 (5) | ||
II | 22 (22) | 21 (28) | 17 (23) | 15 (25) | ||
III | 65 (66) | 48 (63) | 54 (73) | 42 (70) | ||
R-ISS (%) | 0.87 | 0.91 | ||||
I | 13 (13) | 8 (11) | 4 (5) | 3 (5) | ||
II | 44 (45) | 35 (46) | 33 (45) | 29 (48) | ||
III | 42 (42) | 33 (43) | 37 (50) | 28 (47) | ||
MM type (%) | 0.88 | 0.92 | ||||
IgG | 58 (59) | 45 (59) | 40 (54) | 32 (53) | ||
IgA | 24 (24) | 21 (28) | 20 (27) | 19 (32) | ||
IgD | 2 (2) | 2 (3) | 2 (3) | 2 (3) | ||
Light chain only | 14 (14) | 7 (9) | 11 (15) | 6 (10) | ||
Biclonal | 1 (1) | 1 (1) | 1 (1) | 1 (2) | ||
Light chain (%) | 0.84 | 0.78 | ||||
Kappa | 46 (46) | 32 (42) | 34 (46) | 24 (40) | ||
Lambda | 52 (53) | 43 (57) | 39 (53) | 35 (58) | ||
Biclonal | 1 (1) | 1 (1) | 1 (1) | 1 (2) | ||
MM Progression (%) | 0.59 | 0.89 | ||||
Yes | 14 (14) | 13 (17) | 13 (18) | 10 (17) | ||
No | 85 (86) | 63 (83) | 61 (82) | 50 (83) | ||
Vital status (%) | 0.97 | 0.91 | ||||
Dead | 4 (4) | 3 (4) | 4 (5) | 3 (5) | ||
Alive | 95 (96) | 73 (96) | 70 (95) | 57 (95) | ||
% PC of BM (range) | - | - | 1(0–21) | 2 (0–14) | 0.016 | |
Cytogenetics b (%) | 0.94 | |||||
High-risk | - | - | 22 (30) | 18 30) | ||
Intermediate-risk | - | - | 9 (12) | 8 (13) | ||
Standard-risk | - | - | 33 (45) | 28 (47) | ||
Missing | - | - | 10 (13) | 6 (10) | ||
Remission c (%) | 0.98 | |||||
CR | - | - | 17 (23) | 14 (23) | ||
VGPR | - | - | 47 (64) | 39 (65) | ||
PR | - | - | 8 (11) | 6 (10) | ||
SD | - | - | 2 (2) | 1 (2) |
n | Median | Interquartile Range | Correlation with Holdrinet Index | p Value | |
---|---|---|---|---|---|
Holdrinet index a | 90 | 0.41 | 0.21–0.62 | - | |
IGRA/N ratio b | 96 | 1.14 | 0.73–1.94 | −0.65 | <0.01 |
PBCI c | 56 | −1.02 | −1.92 to 0.23 | 0.58 | 0.023 |
%CD34 cells | 60 | 0.37% | 0.06–1.68% | −0.37 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Zhang, Y.; Tan, S.; Liu, J.; Li, X.; Zhang, C. Flow Cytometric Analysis of Bone Marrow Particle Cells for Measuring Minimal Residual Disease in Multiple Myeloma. Cancers 2022, 14, 4937. https://doi.org/10.3390/cancers14194937
Jiang D, Zhang Y, Tan S, Liu J, Li X, Zhang C. Flow Cytometric Analysis of Bone Marrow Particle Cells for Measuring Minimal Residual Disease in Multiple Myeloma. Cancers. 2022; 14(19):4937. https://doi.org/10.3390/cancers14194937
Chicago/Turabian StyleJiang, Duanfeng, Yanan Zhang, Shiming Tan, Jing Liu, Xin Li, and Congming Zhang. 2022. "Flow Cytometric Analysis of Bone Marrow Particle Cells for Measuring Minimal Residual Disease in Multiple Myeloma" Cancers 14, no. 19: 4937. https://doi.org/10.3390/cancers14194937
APA StyleJiang, D., Zhang, Y., Tan, S., Liu, J., Li, X., & Zhang, C. (2022). Flow Cytometric Analysis of Bone Marrow Particle Cells for Measuring Minimal Residual Disease in Multiple Myeloma. Cancers, 14(19), 4937. https://doi.org/10.3390/cancers14194937