Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Methodology
2.2. Study Selection
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Data Extraction
2.6. Quality Assessment
3. Results
3.1. Literature Search
3.2. Characteristics of the Included Studies
3.3. Quality Assessment of Studies
3.4. Hepcidin Assays
3.5. Hepcidin Levels in Childhood Leukemia
3.6. Hepcidin Levels in Adult Leukemia
3.7. Hepcidin Levels in HCT Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gore, J.M. Acute leukemias. JAAPA 2014, 27, 47–48. [Google Scholar] [CrossRef]
- Tebbi, C.K. Etiology of Acute Leukemia: A Review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Butler, E.; Ludwig, K.; Pacenta, H.L.; Klesse, L.J.; Watt, T.C.; Laetsch, T.W. Recent progress in the treatment of cancer in children. CA Cancer J. Clin. 2021, 71, 315–332. [Google Scholar] [CrossRef]
- Bittencourt, M.C.B.; Ciurea, S.O. Recent Advances in Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Biol. Blood Marrow Transpl. 2020, 26, e215–e221. [Google Scholar] [CrossRef]
- Wang, F.; Lv, H.; Zhao, B.; Zhou, L.; Wang, S.; Luo, J.; Liu, J.; Shang, P. Iron and leukemia: New insights for future treatments. J. Exp. Clin. Cancer Res. 2019, 38, 406. [Google Scholar] [CrossRef] [Green Version]
- Brissot, E.; Bernard, D.G.; Loreal, O.; Brissot, P.; Troadec, M.B. Too much iron: A masked foe for leukemias. Blood Rev. 2020, 39, 100617. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Kim, H.T.; Cutler, C.S.; Ho, V.T.; Koreth, J.; Alyea, E.P.; Soiffer, R.J.; Antin, J.H. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood 2007, 109, 4586–4588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebon, D.; Vergez, F.; Bertoli, S.; Harrivel, V.; De Botton, S.; Micol, J.B.; Marolleau, J.P.; Recher, C. Hyperferritinemia at diagnosis predicts relapse and overall survival in younger AML patients with intermediate-risk cytogenetics. Leuk. Res. 2015, 39, 818–821. [Google Scholar] [CrossRef]
- Cacciotti, C.; Athale, U. Transfusion-related Iron Overload in Children with Leukemia. J. Pediatr. Hematol. Oncol. 2021, 43, 18–23. [Google Scholar] [CrossRef]
- Weber, S.; Parmon, A.; Kurrle, N.; Schnutgen, F.; Serve, H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front. Immunol. 2020, 11, 627662. [Google Scholar] [CrossRef]
- Bertoli, S.; Paubelle, E.; Berard, E.; Saland, E.; Thomas, X.; Tavitian, S.; Larcher, M.V.; Vergez, F.; Delabesse, E.; Sarry, A.; et al. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur. J. Haematol. 2019, 102, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.C.; Bertoli, L.F. Transfusion iron overload in adults with acute leukemia: Manifestations and therapy. Am. J. Med. Sci. 2000, 319, 73–78. [Google Scholar] [CrossRef]
- Łęcka, M.; Czyżewski, K.; Dębski, R.; Wysocki, M.; Styczyński, J. Impact of ferritin serum concentration on survival in children with acute leukemia: A long-term follow-up. Acta Haematol. Pol. 2021, 52, 54–60. [Google Scholar] [CrossRef]
- Demidowicz, E.; Bartoszewicz, N.; Czyżewski, K.; Cisek, J.; Dąbrowska, A.; Dębski, R.; Dziedzic, M.; Ewertowska, M.; Grześk, E.; Jatczak-Gaca, A.; et al. Acute non-hematological toxicity of intensive chemotherapy of acute lymphoblastic leukemia in children. Acta Haematol. Pol. 2020, 51, 164–171. [Google Scholar] [CrossRef]
- Bazuaye, G.N.; Buser, A.; Gerull, S.; Tichelli, A.; Stern, M. Prognostic impact of iron parameters in patients undergoing allo-SCT. Bone Marrow Transpl. 2012, 47, 60–64. [Google Scholar] [CrossRef]
- Armand, P.; Sainvil, M.M.; Kim, H.T.; Rhodes, J.; Cutler, C.; Ho, V.T.; Koreth, J.; Alyea, E.P.; Neufeld, E.J.; Kwong, R.Y.; et al. Does iron overload really matter in stem cell transplantation? Am. J. Hematol. 2012, 87, 569–572. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Chen, X.; Wang, H.; Chen, Y.; Chen, L.; Wu, P.; Wang, W. Effect of pre-transplantation serum ferritin on outcomes in patients undergoing allogeneic hematopoietic stem cell transplantation: A meta-analysis. Medicine 2018, 97, e10310. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021, 22, 6493. [Google Scholar] [CrossRef]
- Cheng, P.P.; Sun, Z.Z.; Jiang, F.; Tang, Y.T.; Jiao, X.Y. Hepcidin expression in patients with acute leukaemia. Eur. J. Clin. Investig. 2012, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Lecka, M.; Slomka, A.; Albrecht, K.; Zekanowska, E.; Romiszewski, M.; Styczynski, J. Unbalance in Iron Metabolism in Childhood Leukemia Converges with Treatment Intensity: Biochemical and Clinical Analysis. Cancers 2021, 13, 3029. [Google Scholar] [CrossRef]
- Kanda, J.; Mizumoto, C.; Kawabata, H.; Ichinohe, T.; Tsuchida, H.; Tomosugi, N.; Matsuo, K.; Yamashita, K.; Kondo, T.; Ishikawa, T.; et al. Clinical significance of serum hepcidin levels on early infectious complications in allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 2009, 15, 956–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bock, M.; Beguin, Y.; Leprince, P.; Willems, E.; Baron, F.; Deroyer, C.; Seidel, L.; Cavalier, E.; de Seny, D.; Malaise, M.; et al. Comprehensive plasma profiling for the characterization of graft-versus-host disease biomarkers. Talanta 2014, 125, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Kawabata, H.; Kanda, J.; Uchiyama, T.; Mizumoto, C.; Kitano, T.; Kondo, T.; Hishizawa, M.; Tomosugi, N.; Takaori-Kondo, A. High pretransplant hepcidin levels are associated with poor overall survival and delayed platelet engraftment after allogeneic hematopoietic stem cell transplantation. Cancer Med. 2017, 6, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 6 July 2022).
- Herzog, R.; Alvarez-Pasquin, M.J.; Diaz, C.; Del Barrio, J.L.; Estrada, J.M.; Gil, A. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013, 13, 154. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhang, Y.; Kwong, J.S.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review. J. Evid. Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef]
- Slomka, A.; Kowalewski, M.; Zekanowska, E.; Suwalski, P.; Lorusso, R.; Eikelboom, J.W. Plasma Levels of Protein Z in Ischemic Stroke: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Kanda, J.; Mizumoto, C.; Kawabata, H.; Tsuchida, H.; Tomosugi, N.; Matsuo, K.; Uchiyama, T. Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation. Haematologica 2008, 93, 1550–1554. [Google Scholar] [CrossRef] [PubMed]
- Eisfeld, A.K.; Westerman, M.; Krahl, R.; Leiblein, S.; Liebert, U.G.; Hehme, M.; Teupser, D.; Niederwieser, D.; Al-Ali, H.K. Highly Elevated Serum Hepcidin in Patients with Acute Myeloid Leukemia prior to and after Allogeneic Hematopoietic Cell Transplantation: Does This Protect from Excessive Parenchymal Iron Loading? Adv. Hematol. 2011, 2011, 491058. [Google Scholar] [CrossRef] [Green Version]
- Armand, P.; Kim, H.T.; Rhodes, J.; Sainvil, M.M.; Cutler, C.; Ho, V.T.; Koreth, J.; Alyea, E.P.; Hearsey, D.; Neufeld, E.J.; et al. Iron overload in patients with acute leukemia or MDS undergoing myeloablative stem cell transplantation. Biol. Blood Marrow Transplant. 2011, 17, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhong, L. Clinical significance of serum hepcidin-25 levels in predicting invasive fungal disease in patients after transplantation. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1769–1773. [Google Scholar]
- Naoum, F.A.; Esposito, B.P.; Cancado, R.D. Impact of conditioning and engraftment on iron status in hematopoietic stem cell transplantation: Contribution of labile plasma iron. Hematol. Oncol. Stem Cell Ther. 2016, 9, 165–167. [Google Scholar] [CrossRef] [Green Version]
- Ragab, S.; Safan, M.; Tayel, S.; Genena, S.; Ghanayem, N. Serum hepcidin level evaluation in children with acute lymphoblastic leukemia during different treatment phases; the influence of erythroid activity and iron stores. Clin. Cancer. Investig. J. 2016, 5, 25–31. [Google Scholar] [CrossRef]
- Yavuz, G.; Unal, E.; Tacyildiz, N.; Kose, S.; Gokce, H.; Gordu, Z.; Pekpak, E.; Aksoy, B.; Ilarslan, E.; Gunay, F.; et al. Comparative Analysis of Iron Metabolism and Its Adjustment Changes at Cancer Patients in Childhood. Iran. J. Pediatr. 2017, 27, e10092. [Google Scholar] [CrossRef] [Green Version]
- Wermke, M.; Eckoldt, J.; Gotze, K.S.; Klein, S.A.; Bug, G.; de Wreede, L.C.; Kramer, M.; Stolzel, F.; von Bonin, M.; Schetelig, J.; et al. Enhanced labile plasma iron and outcome in acute myeloid leukaemia and myelodysplastic syndrome after allogeneic haemopoietic cell transplantation (ALLIVE): A prospective, multicentre, observational trial. Lancet Haematol. 2018, 5, e201–e210. [Google Scholar] [CrossRef]
- Wande, I.N.; Hernaningsih, Y.; Ariawati, K.; Notopurobudiono, P.; Linawati, N.M.; Dewi, P.P.A.P. Serum hepcidin level in patients with acute lymphoblastic leukemia (ALL) during the treatment phase: Their effects on erythropoisis activity and iron reserves. Int. J. Pharm. Res. 2020, 12, 2304–2307. [Google Scholar] [CrossRef]
- Green, R.; Charlton, R.; Seftel, H.; Bothwell, T.; Mayet, F.; Adams, B.; Finch, C.; Layrisse, M. Body iron excretion in man: A collaborative study. Am. J. Med. 1968, 45, 336–353. [Google Scholar] [CrossRef]
- Gupta, A.; Damania, R.C.; Talati, R.; O’Riordan, M.A.; Matloub, Y.H.; Ahuja, S.P. Increased Toxicity Among Adolescents and Young Adults Compared with Children Hospitalized with Acute Lymphoblastic Leukemia at Children’s Hospitals in the United States. J. Adolesc. Young Adult Oncol. 2021, 10, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Curran, E.; Stock, W. How I treat acute lymphoblastic leukemia in older adolescents and young adults. Blood 2015, 125, 3702–3710. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kang, H.J.; Choi, J.Y.; Kim, N.H.; Jang, M.K.; Yeo, C.W.; Lee, S.S.; Kim, H.; Park, J.D.; Park, K.D.; et al. Pharmacogenetic study of deferasirox, an iron chelating agent. PLoS ONE 2013, 8, e64114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirotte, M.; Fillet, M.; Seidel, L.; Jaspers, A.; Baron, F.; Beguin, Y. Erythroferrone and hepcidin as mediators between erythropoiesis and iron metabolism during allogeneic hematopoietic stem cell transplant. Am. J. Hematol. 2021, 96, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Region of Origin | Number of Patients | Mean or Median Age of Patients [Years] | Clinical Diagnosis | HCT | Hepcidin Assay | Type of Biological Material | Mean or Median Hepcidin Levels in Patients | Number of Controls | The Mean or Median Age of Controls [Years] | Mean or Median Hepcidin Levels in Controls | Main Study Results |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kanda et al., 2008 [31] | Asia (Japan) | 31 (W: ND M: ND) | 51 | 13 AML, 8 NHL, 3 MDS, 3 ATL, 2 ALL, 1 HL, 1 MM | Yes (5 autologous; 26 allogeneic) | LC/ESI-MS/MS | Blood (serum) | 42.8 ng/mL (one week pre-HCT) | 17 (W:1 M:16) | 31 | 19.05 ng/mL | (1) hepcidin levels were higher in patients than in controls (2) hepcidin levels increased until the first week post-HCT, then decreased to the fourth week after HCT |
232.5 ng/mL (one week post-HCT) | ||||||||||||
Eisfeld et al., 2011 [32] | Europe (Germany) | 42 (W:19 M: 23) | 57 | AML | Yes (42 allogeneic) | ELISA (Intrinsic Hepcidin IDx™ ELISA Kit, Intrinsic Life Sciences, La Jolla, CA, USA) | Blood (serum) | 358 ng/mL (ten days pre-HCT) | 21 (W:15 M:6) | 57 | 52.1 ng/mL | (1) hepcidin levels were higher in patients than in controls (2) pre- and post-HCT hepcidin levels were similar |
398 ng/mL (three months post-HCT | ||||||||||||
Cheng et al., 2012 [20] | Asia (China) | 32 (W:13 M:19) | Three groups of patients *: A—29 (n = 10) B—33 (n = 15) C—34 (n = 7) | AL † | No | ELISA (Uscn Life Science Inc, Wuhan, China) | Blood (serum) | A—343.447 ng/mL B—523.758 ng/mL C—486.176 ng/mL (all before treatment) | 11 (W:4 M:7) | 35 | 141.098 ng/mL | (1) hepcidin levels were higher in patients than in controls, regardless of patients’ iron storage (2) hepcidin levels decreased during complete or partial remission |
685.633 ng/mL (before treatment; n = 20) | ||||||||||||
485.438 ng/mL (during complete or partial remission; n = 20) | ||||||||||||
Chen et al., 2013 [34] | Asia (China) | 57 (W: 26 M: 31) | 49 | 27 HCT (due to hematologic tumors), 18 liver transplantation, 12 kidney transplantation | Yes (27 autologous or allogeneic) | ELISA (DRG Instruments GmbH, Marburg, Germany) | Blood (serum) | 38.31 ng/mL (pretransplant) | 50 (W:ND M: ND) | ND | 18.70 ng/mL | (1) hepcidin levels were higher in patients than in controls (2) hepcidin levels increased until the first week after transplantation, then decreased to the fourth week after transplantation (3) pretransplant hepcidin as a biomarker of invasive fungal disease |
51.82 ng/mL (one week before transplantation in the high-hepcidin group; n = 19) ‡ | ||||||||||||
129.60 ng/mL (one week after transplantation in the high-hepcidin group; n = 19) | ||||||||||||
Ragab et al., 2016 [36] | Africa (Egypt) | 40 (W: 13 M: 27) | Two groups of patients #: I—5 (n = 20) II—5 (n = 20) | ALL | No | ELISA (EIAab® Human Hepcidin ELISA kit, EIAab Science INC, Wuhan, China) | Blood (serum) | Group I: 387.6 ng/mL (at diagnosis) 221.5 ng/mL (after remission) | 20 (W:6 M:14) | 6 | 69.8 ng/mL | (1) hepcidin levels were higher in patients than in controls, regardless of the stage of the disease (2) hepcidin levels decreased during remission (3) hepcidin levels were the lowest during maintenance therapy |
Group II: 181.9 ng/mL (during maintenance therapy) | ||||||||||||
Yavuz et al., 2017 [37] | Asia (Turkey) | 58 (W: 26 M: 32) | 10 | 28 sarcomas, 11 ALL, 10 solid tumors, 9 lymphomas $ | No | ELISA (DRG Instruments GmbH, Marburg, Germany) | Blood (serum) | Sarcomas 34.51 ng/mL (at diagnosis) 17.92 ng/mL (at remission) | 17 (W: 8 M:9) | 9 | 6.98 ng/mL | (1) hepcidin levels were higher in patients than in controls, regardless of the stage of the disease |
Lymphomas 24.83 ng/mL (at diagnosis) 21.13 ng/mL (at remission) | ||||||||||||
ALL 58.45 ng/mL (at diagnosis) 50.81 ng/mL (at remission) | ||||||||||||
Solid tumors 43.82 ng/mL (at diagnosis) 35.60 ng/mL (at remission) | ||||||||||||
Łęcka et al., 2021 [21] | Europe (Poland) | 67 (W: 30 M: 37) | 7 | 21 AL de novo, 25 AL after intensive treatment, 21 HCT € | Yes (3 autologous; 18 allogeneic) | ELISA (Intrinsic Hepcidin IDx™ ELISA Kit, Intrinsic Life Sciences, La Jolla, CA, USA) | Blood (serum) | 158.50 ng/mL (AL de novo) | 18 (W:10 M: 8) | 8 | 30.61 ng/mL | (1) hepcidin levels were higher in patients than in controls, regardless of the stage of the disease (2) hepcidin levels were the highest post-HCT |
106.60 ng/mL (AL after intensive therapy) | ||||||||||||
278.30 ng/mL (one month post-HCT) |
First Author, Year | Region of Origin | Number of Patients | Mean or Median Age of Patients [Years] | Clinical Diagnosis | HCT | Hepcidin Assay | Type of Biological Material | Mean or Median Hepcidin Levels in Patients | Follow-Up | Main Study Results |
---|---|---|---|---|---|---|---|---|---|---|
Kanda et al., 2009 [22] | Asia (Japan) | 55 (W: 28 M: 27) | 47 (whole cohort) Two groups of patients *: Low-hepcidin—47.5 (n = 38) High-hepcidn—47 (n = 17) | 23 AML, 9 MDS/ MPN, 9 NHL, 8 ALL, 5 ATL, 1 HL | Yes (47 allogeneic) | LC/ESI-MS/MS | Blood (serum) | 21.6 ng/mL (pre-HCT) | 100 days post-HCT | (1) high hepcidin levels (≥ 50 ng/mL) are associated with an increased risk of bacterial infection post-HCT (2) hepcidin as a biomarker of bacterial infection post-HCT |
Armand et al., 2011 [33] | North America (USA) | 48 (ND) | 47 | 29 AML, 11 ALL, 8 MDS | Yes (48 allogeneic) | MALDI-TOF MS | Blood (plasma or serum) † Urine | 59 ng/mL (blood, pre-HCT, n = 39) | - | (1) blood hepcidin levels are correlated to other iron parameters |
110 ng/mg creatinine (urine, n = 33) | ||||||||||
Naoum et al., 2016 [35] | South America (Brazil) | 25 (W: 15 M: 10) | 46 | 13 MM, 8 ML, 3 AL, 1 seminoma | Yes (25 autologous) | ELISA (DRG Instruments GmbH, Marburg, Germany) | Blood (serum) | 25.1 ng/mL (before the start of conditioning) | engraftment # | (1) hepcidin levels were higher before SC infusion and on engraftment than before the start of conditioning |
40.0 ng/mL (before SC infusion) | ||||||||||
39.1 ng/mL (on engraftment) | ||||||||||
Sakamoto et al., 2017 [24] | Asia (Japan) | 166 (W: 74 M: 92) | 49.5 (whole cohort) Two groups of patients ‡: Low-hepcidin—47 (n = 83) High-hepcidn—51 (n = 83) ‡ | 103 MMa, 63 LM | Yes (166 allogeneic) | SELDI-TOF MS | Blood (serum) | 7.8 ng/mL $ | 46.8 months (median) | (1) high hepcidin levels (≥35 ng/mL) are associated with lower overall survival post-HCT (2) high hepcidin levels are associated with a lower incidence of platelet engraftment post-HCT |
35.0 ng/mL (pre-HCT) | ||||||||||
Wermke et al., 2018 [38] | Europe (Germany) | 112 (W: 47 M:65) | 62 (whole cohort) Two groups of patients €: eLPI μmol/L ≤ 0.4—62 (n = 85) eLPI μmol/L > 0.4 —62 (n = 27) | 90 AML, 22 MDS | Yes (112 allogeneic) | ELISA (DRG Instruments GmbH, Marburg, Germany) | Blood (serum) | 77 ng/mL (whole cohort; pre-HCT) | 373 days (median) | (1) hepcidin levels were higher in the eLPI > 0.4 μmol/L group pre-HCT and on day 21 post-HCT |
eLPI ≤ 0.4 μmol/L: 70 ng/mL (pre-HCT) 64 ng/mL (on the day of HCT) 81 ng/mL (on day 21 post-HCT) | ||||||||||
eLPI > 0.4 μmol/L: 103 ng/mL (pre-HCT) 83 ng/mL (on the day of HCT) 127 ng/mL (on day 21 post-HCT) | ||||||||||
Wande et al., 2020 [39] | Asia (Indonesia) | 48 (W: 17 M: 31) | Three groups of patients: induction phase—6.8 (n = 16) consolidation phase—9.7 (n = 16) maintenance phase—7.8 (n = 16) | 48 ALL | No | ELISA (Bioassay Technology Laboratory, Jiaxing, China) | Blood (serum) | 7.545 ng/mL (induction phase) | - | (1) hepcidin levels vary depending on disease state |
1.728 ng/mL (consolidation phase) | ||||||||||
0.210 ng/mL (maintenance phase) |
First Author, Year | Mean or Median Hepcidin Levels in Patients * | Mean or Median Ferritin Levels in Patients † Reference Range: 1.2–20.0 μg/dL | Mean or Median Units of PRBCs |
---|---|---|---|
Kanda et al., 2008 [31] | 42.8 ng/mL (one week pre-HCT) | 726.3 μg/dL (one week pre-HCT) | ND |
232.5 ng/mL (one week post-HCT) | |||
Kanda et al., 2009 [22] | 21.6 ng/mL (pre-HCT) | 664 μg/dL (low hepcidin group) | ND |
1551 μg/dL (high hepcidin group) | |||
Eisfeld et al., 2011 [32] | 358 ng/mL (ten days pre-HCT) | 194.5 μg/dL (pre-HCT) | 22 (pre-HCT) |
398 ng/mL (three months post-HCT) | 226 μg/dL (post-HCT) | 30 (post-HCT) | |
Armand et al., 2011 [33] | 59 ng/mL (pre-HCT) | 154.9 μg/dL | 20 (pre-HCT) |
Cheng et al., 2012 [20] | A—343.447 ng/mL B—523.758 ng/mL C—486.176 ng/mL (all before treatment) | A—62. 806 μg/dL B—94.964 μg/dL C—77.381 μg/dL (all before treatment) | ND |
685.633 ng/mL (before treatment) | 105.082 μg/dL (before treatment) | ||
485.438 ng/mL (during complete or partial remission) | 61.437 μg/dL (during complete or partial remission) | ||
Chen et al., 2013 [34] | 38.31 ng/mL (pretransplant) ‡ | The authors did not present numerical values for ferritin but observed its high serum levels. | ND |
51.82 ng/mL (one week before transplantation in the high-hepcidin group) | |||
129.60 ng/mL (one week after transplantation in the high-hepcidin group) | |||
Naoum et al., 2016 [35] | 25.1 ng/mL (before the start of conditioning) | 73.3 μg/dL (before the start of conditioning) | 3 (from SC infusion to engraftment) |
40.0 ng/mL (before SC infusion) | 78.2 μg/dL (before SC infusion) | ||
39.1 ng/mL (on engraftment) | 77.8 μg/dL (on engraftment) | ||
Sakamoto et al., 2017 [24] | 35.0 ng/mL (pre-HCT) | 69.4 μg/dL (pre-HCT) | |
Ragab et al., 2016 [36] | Group I: 387.6 ng/mL (at diagnosis) 221.5 ng/mL (after remission) | Group I: 126.5 μg/dL (at diagnosis) 79.3 μg/dL (after remission) | ND |
Group II: 181.9 ng/mL (during maintenance therapy) | Group II: 60.4 μg/dL (during maintenance therapy) | ||
Yavuz et al., 2017 [37] | Sarcomas 34.51 ng/mL (at diagnosis) 17.92 ng/mL (at remission) | ND | ND |
Lymphomas 24.83 ng/mL (at diagnosis) 21.13 ng/mL (at remission) | |||
ALL 58.45 ng/mL (at diagnosis) 50.81 ng/mL (at remission) | |||
Solid tumors 43.82 ng/mL (at diagnosis) 35.60 ng/mL (at remission) | |||
Wermke et al., 2018 [38] | 77 ng/mL (whole cohort; pre-HCT) | 1731 μmol/L # (whole cohort) | 18 (whole cohort) |
eLPI ≤ 0.4 μmol/L: 70 ng/mL (pre-HCT) 64 ng/mL (on the day of HCT) 81 ng/mL (on day 21 post-HCT) | eLPI ≤ 0.4 μmol/L: 1563 μmol/L | eLPI ≤ 0.4 μmol/L: 18 | |
eLPI > 0.4 μmol/L: 103 ng/mL (pre-HCT) 83 ng/mL (on the day of HCT) 127 ng/mL (on day 21 post-HCT) | eLPI > 0.4 μmol/L: 2425 μmol/L | eLPI > 0.4 μmol/L: 22 | |
Wande et al., 2020 [39] | 7.545 ng/mL (induction phase) | 135.307 μg/dL (induction phase) | ND |
1.728 ng/mL (consolidation phase) | 175.826 μg/dL (consolidation phase) | ||
0.210 ng/mL (maintenance phase) | 74.977 μg/dL (maintenance phase) | ||
Łęcka et al., 2021 [21] | 158.50 ng/mL (AL de novo) | 23.85 μg/dL (AL de novo) | 1 |
106.60 ng/mL (AL after intensive therapy) | 73.9 μg/dL (AL after intensive therapy) | 9 | |
278.30 ng/mL (one month post-HCT) | 367.0 μg/dL (one month post-HCT) | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słomka, A.; Łęcka, M.; Styczyński, J. Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review. Cancers 2022, 14, 4936. https://doi.org/10.3390/cancers14194936
Słomka A, Łęcka M, Styczyński J. Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review. Cancers. 2022; 14(19):4936. https://doi.org/10.3390/cancers14194936
Chicago/Turabian StyleSłomka, Artur, Monika Łęcka, and Jan Styczyński. 2022. "Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review" Cancers 14, no. 19: 4936. https://doi.org/10.3390/cancers14194936
APA StyleSłomka, A., Łęcka, M., & Styczyński, J. (2022). Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review. Cancers, 14(19), 4936. https://doi.org/10.3390/cancers14194936