Two Doses of BNT162b2 mRNA Vaccine in Patients after Hematopoietic Stem Cell Transplantation: Humoral Response and Serological Conversion Predictors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Flow Cytometry
2.3. Method of Anti-SARS-CoV-2 Antibody Evaluation
2.4. Total Immunoglobulin Concentation Evaluation
2.5. Vaccination Safety Assessment
2.6. Statistical Analysis
3. Results
3.1. Patients and HCT Procedures
3.2. The Presence of Anti-SARS-CoV-2 Antibodies at Baseline Prevaccination Testing
3.3. Anti-SARS-CoV-2 Antibodies at Post-Vaccination Testing
3.4. Analysis of Humoral Response Predictors
3.5. Analysis of Post-Vaccination Serological Conversion
3.6. Changes in Complete Blood Count and Differential Leukocyte Count after Vaccination
3.7. Post-Vaccination Graft-Versus-Host Disease Clinical Course
3.8. Adverse Events
3.9. Breakthrough SARS-CoV-2 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Weekly Operational Update on COVID-19; World Health Organization: Geneva, Switzerland, 2021; pp. 1–15.
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-L.; Lee, N.-Y.; Cia, C.-T.; Ko, W.-C.; Hsueh, P.-R. A Review of Treatment of Coronavirus Disease 2019 (COVID-19): Therapeutic Repurposing and Unmet Clinical Needs. Front. Pharmacol. 2020, 11, 584956. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef]
- De Ramón, C.; Hernandez-Rivas, J.A.; García, J.A.R.; Ocio, E.M.; Gómez-Casares, M.T.; Jiménez, J.L.; Solano, C.; Martínez-López, J.; Sureda, A.; Jurado, M.; et al. Impact of SARS-CoV-2 Infection on 491 Hematological Patients: The Ecovidehe Multicenter Study. Blood 2020, 136, 5–6. [Google Scholar] [CrossRef]
- Biernat, M.M.; Zińczuk, A.; Biernat, P.; Bogucka-Fedorczuk, A.; Kwiatkowski, J.; Kalicińska, E.; Marciniak, D.; Simon, K.; Wróbel, T. Nosocomial outbreak of SARS-CoV-2 infection in a haematological unit–High mortality rate in infected patients with haematologic malignancies. J. Clin. Virol. 2020, 130, 104574. [Google Scholar] [CrossRef]
- Tzarfati, K.H.; Gutwein, O.; Apel, A.; Rahimi-Levene, N.; Sadovnik, M.; Harel, L.; Benveniste-Levkovitz, P.; Bar Chaim, A.; Koren-Michowitz, M. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am. J. Hematol. 2021, 96, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.K.; Zhang, T.; Wang, A.Z.; Li, Z. COVID-19 vaccines for patients with cancer: Benefits likely outweigh risks. J. Hematol. Oncol. 2021, 14, 38. [Google Scholar] [CrossRef]
- Greenberger, L.M.; Saltzman, L.A.; Senefeld, J.W.; Johnson, P.W.; DeGennaro, L.J.; Nichols, G.L. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell 2021, 39, 1031–1033. [Google Scholar] [CrossRef]
- Ljungman, P.; Transplantation, F.T.E.S.F.B.A.M.; Mikulska, M.; de la Camara, R.; Basak, G.W.; Chabannon, C.; Corbacioglu, S.; Duarte, R.; Dolstra, H.; Lankester, A.C.; et al. Correction: The challenge of COVID-19 and hematopoietic cell transplantation: EBMT recommendations for management of hematopoietic cell transplant recipients, their donors, and patients undergoing CAR T-cell therapy. Bone Marrow Transplant. 2020, 55, 2071–2076. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier-Vargas, G.; Cognard, N.; Olagne, J.; Heibel, F.; Braun-Parvez, L.; Martzloff, J.; Perrin, P.; Moulin, B.; Fafi-Kremer, S.; et al. Weak anti–SARS-CoV-2 antibody response after the first injection of an mRNA COVID-19 vaccine in kidney transplant recipients. Kidney Int. 2021, 99, 1487–1489. [Google Scholar] [CrossRef]
- Redjoul, R.; Le Bouter, A.; Beckerich, F.; Fourati, S.; Maury, S. Antibody response after second BNT162b2 dose in allogeneic HSCT recipients. Lancet 2021, 398, 298–299. [Google Scholar] [CrossRef]
- Leukemia & Lymphoma Society. COVID-19 Vaccine Safety among Blood Cancer Patients. Available online: https://www.lls.org/news/study-leukemia-lymphoma-society-shows-covid-19-vaccine-safe-25-blood-cancer-patients-do-not (accessed on 21 November 2021).
- Armand, P.; Kim, H.T.; Logan, B.R.; Wang, Z.; Alyea, E.P.; Kalaycio, M.E.; Maziarz, R.T.; Antin, J.H.; Soiffer, R.J.; Weisdorf, D.J.; et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 2014, 123, 3664–3671. [Google Scholar] [CrossRef]
- Spyridonidis, A.; Labopin, M.; Savani, B.N.; Niittyvuopio, R.; Blaise, D.; Craddock, C.; Socié, G.; Platzbecker, U.; Beelen, D.; Milpied, N.; et al. Redefining and measuring transplant conditioning intensity in current era: A study in acute myeloid leukemia patients. Bone Marrow Transplant. 2020, 55, 1114–1125. [Google Scholar] [CrossRef]
- Steensels, D.; Pierlet, N.; Penders, J.; Mesotten, D.; Heylen, L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination With BNT162b2 and mRNA-1273. JAMA 2021, 326, 1533. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Service. Common Terminology Criteria for Adverse Events (CTCAE) Common Terminology Criteria for Adverse Events (CTCAE) v5.0. 2017. Available online: https://www.meddra.org/ (accessed on 5 November 2021).
- Shah, G.L.; DeWolf, S.; Lee, Y.J.; Tamari, R.; Dahi, P.B.; Lavery, J.A.; Ruiz, J.D.; Devlin, S.M.; Cho, C.; Peled, J.U.; et al. Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation. J. Clin. Investig. 2020, 130, 6656–6667. [Google Scholar] [CrossRef]
- Buonfrate, D.; Piubelli, C.; Gobbi, F.; Martini, D.; Bertoli, G.; Ursini, T.; Moro, L.; Ronzoni, N.; Angheben, A.; Rodari, P.; et al. Antibody response induced by the BNT162b2 mRNA COVID-19 vaccine in a cohort of health-care workers, with or without prior SARS-CoV-2 infection: A prospective study. Clin. Microbiol. Infect. 2021, 27, 1845–1850. [Google Scholar] [CrossRef]
- Le Bourgeois, A.; Coste-Burel, M.; Guillaume, T.; Peterlin, P.; Garnier, A.; Béné, M.C.; Chevallier, P. Safety and Antibody Response After 1 and 2 Doses of BNT162b2 mRNA Vaccine in Recipients of Allogeneic Hematopoietic Stem Cell Transplant. JAMA Netw. Open 2021, 4, e2126344. [Google Scholar] [CrossRef] [PubMed]
- Matkowska-Kocjan, A.; Owoc-Lempach, J.; Chruszcz, J.; Kuźnik, E.; Szenborn, F.; Jurczenko, L.; Wójcik, M.; Banyś, D.; Szenborn, L.; Ussowicz, M. The COVID-19 mRNA BNT163b2 Vaccine Was Well Tolerated and Highly Immunogenic in Young Adults in Long Follow-Up after Haematopoietic Stem Cell Transplantation. Vaccines 2021, 9, 1209. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Ferreira, I.A.T.M.; Kotagiri, P.; Datir, R.; Lim, E.; Touizer, E.; Meng, B.; Abdullahi, A.; CITIID-NIHR BioResource COVID-19 Collaboration; Elmer, A.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef]
- Müller, L.; Andrée, M.; Moskorz, W.; Drexler, I.; Walotka, L.; Grothmann, R.; Ptok, J.; Hillebrandt, J.; Ritchie, A.; Rabl, D.; et al. Age-dependent Immune Response to the Biontech/Pfizer BNT162b2 Coronavirus Disease 2019 Vaccination. Clin. Infect. Dis. 2021, 73, 2065–2072. [Google Scholar] [CrossRef]
- Chiarucci, M.; Paolasini, S.; Isidori, A.; Guiducci, B.; Loscocco, F.; Capalbo, M.; Visani, G. Immunological Response Against SARS-CoV-2 After BNT162b2 Vaccine Administration Is Impaired in Allogeneic but Not in Autologous Stem Cell Transplant Recipients. Front. Oncol. 2021, 11, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Piñana, J.L.; López-Corral, L.; Martino, R.; Montoro, J.; Vazquez, L.; Pérez, A.; Martin-Martin, G.; Facal-Malvar, A.; Ferrer, E.; Pascual, M.; et al. SARS-CoV-2-reactive antibody detection after SARS-CoV-2 vaccination in hematopoietic stem cell transplant recipients: Prospective survey from the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am. J. Hematol. 2021, 97, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Mrak, D.; Tobudic, S.; Koblischke, M.; Graninger, M.; Radner, H.; Sieghart, D.; Hofer, P.; Perkmann, T.; Haslacher, H.; Thalhammer, R.; et al. SARS-CoV-2 vaccination in rituximab-treated patients: B cells promote humoral immune responses in the presence of T-cell-mediated immunity. Ann. Rheum. Dis. 2021, 80, 1345–1350. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA J. Am. Med Assoc. 2021, 325, 2204–2206. [Google Scholar] [CrossRef]
- Mazzola, A.; Todesco, E.; Drouin, S.; Hazan, F.; Marot, S.; Thabut, D.; Varnous, S.; Soulié, C.; Barrou, B.; Marcelin, A.-G.; et al. Poor Antibody Response after Two Doses of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine in Transplant Recipients. Clin. Infect. Dis. 2021, ciab580. [Google Scholar] [CrossRef]
- Cordonnier, C.; Einarsdottir, S.; Cesaro, S.; Di Blasi, R.; Mikulska, M.; Rieger, C.; de Lavallade, H.; Gallo, G.; Lehrnbecher, T.; Engelhard, D.; et al. Vaccination of haemopoietic stem cell transplant recipients: Guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 2019, 19, e200–e212. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Del Bello, A. Three Doses of an mRNA COVID-19 Vaccine in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef]
- Werbel, W.A.; Boyarsky, B.J.; Ou, B.M.T.; Massie, A.B.; Tobian, A.A.; Garonzik-Wang, J.M.; Segev, D.L. Safety and Immunogenicity of a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. Ann. Intern. Med. 2021, 174, 1330–1332. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Interim Public Health Considerations for the Provision of Additional COVID-19 Vaccine Doses. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Interim-public-health-considerations-for-the-provision-of-additional-COVID-19-vaccine-doses.pdf (accessed on 21 November 2021).
- Bertrand, D.; Hamzaoui, M.; Lemée, V.; Lamulle, J.; Hanoy, M.; Laurent, C.; Lebourg, L.; Etienne, I.; Lemoine, M.; Le Roy, F.; et al. Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. J. Am. Soc. Nephrol. 2021, 32, 2147–2152. [Google Scholar] [CrossRef]
- Wadei, H.M.; Gonwa, T.A.; Leoni, J.C.; Shah, S.Z.; Aslam, N.; Speicher, L.L. COVID-19 infection in solid organ transplant recipients after SARS-CoV-2 vaccination. Arab. Archaeol. Epigr. 2021, 21, 3496–3499. [Google Scholar] [CrossRef]
- Abbasi, J. The Flawed Science of Antibody Testing for SARS-CoV-2 Immunity. JAMA 2021, 326, 1781. [Google Scholar] [CrossRef]
- Pasin, F.; Calabrese, A.; Pelagatti, L. Immune thrombocytopenia following COVID-19 mRNA vaccine: Casuality or causality? Intern. Emerg. Med. 2021, 2021, 1–3. [Google Scholar] [CrossRef]
- Brito, S.; Ferreira, N.; Mateus, S.; Bernardo, M.; Pinto, B.; Lourenço, A.; Grenho, F. A Case of Autoimmune Hemolytic Anemia Following COVID-19 Messenger Ribonucleic Acid Vaccination. Cureus 2021, 13, e15035. [Google Scholar] [CrossRef]
- Hess, N.J.; Brown, M.E.; Capitini, C.M. GVHD Pathogenesis, Prevention and Treatment: Lessons from Humanized Mouse Transplant Models. Front. Immunol. 2021, 12, 3082–3097. [Google Scholar] [CrossRef]
- Mohty, B.; Bel, M.; Vukicevic, M.; Nagy, M.; Levrat, E.; Meier, S.; Grillet, S.; Combescure, C.; Kaiser, L.; Chalandon, Y.; et al. Graft-versus-host disease is the major determinant of humoral responses to the AS03-adjuvanted influenza A/09/H1N1 vaccine in allogeneic hematopoietic stem cell transplant recipients. Haematologica 2011, 96, 896–904. [Google Scholar] [CrossRef]
- Carpenter, P.A.; Englund, J.A. How I vaccinate blood and marrow transplant recipients. Blood 2016, 127, 2824–2832. [Google Scholar] [CrossRef] [Green Version]
Antigen | CD3 | CD4 | CD8 | CD14 | CD19 | CD16/CD56 | CD45 | HLA-DR | CD20 |
---|---|---|---|---|---|---|---|---|---|
Fluorochrome | APC | PerCP-Cy5.5 | FITC | APC-H7 | PC7 | PE | V500 | V450 | PerCP-Cy5.5 |
Clone | SK7 | SK3 | SK1 | MφP9 | J3-119 | B73.1/MY31 | 2D1 | L243 | 2H7 |
Producer | BD | BD | BD | BD | BC | BD/BD | BD | BD | BD |
Characteristic | autoHCT | alloHCT |
---|---|---|
Number of patients | 29 | 64 |
Median (range) age in years | 58 (26–69) | 52 (20–68) |
Patient gender | ||
Female | 13 (45%) | 30 (48%) |
Male | 16 (55%) | 34 (52%) |
Diagnosis | ||
AML | 0 | 36 (55%) |
MDS | 0 | 7 (11%) |
ALL | 0 | 5 (9%) |
NHL | 11 (38%) | 6 (9%) |
HL | 4 (14%) | 3 (5%) |
MM | 14 (48%) | 0 |
Other | 0 | 7 (11%) |
Median (range) time between HCT and vaccination in months | 10 (4–38) | 23 (3–112) |
Donor type | ||
HLA-identical sibling | NA | 7 (11%) |
HLA-matched unrelated (9/10 or 10/10) | NA | 52 (81.5%) |
Haploidentical | NA | 5 (7.5%) |
Stem cell source | ||
Peripheral blood | 29 (100%) | 64 (100%) |
ATG in GvHD prophylaxis | ||
Yes | NA | 51 (80%) |
No | NA | 13 (20%) |
Post-transplant Cy | ||
Yes | NA | 6 (10%) |
No | NA | 58 (90%) |
Progressive disease at HCT | ||
Yes | 0 | 0 |
No | 29(100%) | 64 (100%) |
Patient on IS at vaccination | ||
Yes | NA | 18 23% |
No | NA | 46 (77%) |
Characteristics | All Patients | Patients with Seroconversion | ||||||
---|---|---|---|---|---|---|---|---|
N | Anti-SARS-CoV-2 (Anti-S Protein) Antibody Concentration after Vaccination | p | N | Anti-SARS-CoV-2 (Anti-S Protein) Antibody Concentration after Vaccination | p | |||
GMC | Median (Range) | GMC | Median (Range) | |||||
Age | ||||||||
≤60 years | 57 | 1738.58 | 3818.85 (0–18,599.00) | 0.079 | 54 | 2631.52 | 3843.92 (23.02–18,599.00) | 0.24 |
>60 years | 32 | 561.12 | 1476.43 (0–56,729.00) | 27 | 1796.62 | 2236.19 (33.20–56,729.00) | ||
Gender | ||||||||
Female | 42 | 1787.52 | 3859.54 (0–56,729.00) | 0.05 | 39 | 3017.57 | 3951.14 (43.14–56,729.00) | 0.05 |
Male | 47 | 785.29 | 2536.46 (0–14,115.00) | 42 | 1701.15 | 2932.93 (23.02–14,115.00) | ||
Anti-SARS-CoV-2 antibodies before vaccination | ||||||||
Positive * | 22 | 6628.27 | 7340.50 (394.76–56,729.00) | <0.001 | 22 | 6628.27 | 7340.50 (394.76–56,729.00) | <0.001 |
Negative ** | 67 | 549.73 | 2472.15 (0.00–18,599.00) | 59 | 1565.87 | 2900.82 (23.02–18,599.00) | ||
Type of HCT | ||||||||
AlloHCT | 63 | 919.97 | 3123.73 (0–56,729.00) | 0.82 | 56 | 2063.64 | 3741.02 (23.02–56,729.00) | 0.82 |
AutoHCT | 26 | 2020.74 | 3677.95 (0–24,160.00) | 25 | 2739.88 | 3682.09 (43.14–24,160.00) | ||
Time between HCT and vaccination | ||||||||
≤12 months | 39 | 366.89 | 1190.39 (0–24,160.00) | <0.001 | 33 | 1066.10 | 2236.19 (23.02–24,160.00) | <0.001 |
>12 months | 50 | 2837.14 | 4066.18 (0–56,729.00) | 48 | 3951.40 | 4197.57 (252.42–56,729.00) | ||
Transplant Conditioning Intensity score in alloHCT group | ||||||||
Low | 20 | 180.11 | 947.90 (0–56,729.00) | 0.16 | 14 | 1599.67 | 2194.96 (33.20–56,729.00) | 0.16 |
Intermediate/ high | 39 | 1822.67 | 3858.99 (0.7–18,599.00) | 38 | 2241.78 | 3908.55 (23.02–18,599.00) | ||
Missing data | 4 | 4 | ||||||
GvHD at vaccination in alloHCT group | ||||||||
No | 51 | 2064.80 | 3858.99 (0–56,729) | <0.001 | 49 | 2739.05 | 3958.12 (71.62–56,729.00) | <0.001 |
Yes | 12 | 29.62 | 28.11 (0–5393.84) | 7 | 383.90 | 328.38 (23.02–5393.84) | ||
Post-alloHCT IS treatment at vaccination | ||||||||
Yes | 18 | 57.24 | 76.79 (0–5393.84) | <0.001 | 12 | 424.90 | 529.31 (23.02–5393.84) | <0.001 |
No | 45 | 2793.79 | 3991.25 (0–56,729.00) | 44 | 3345.92 | 40167.2 (90.50–56,729.00) | ||
Post-alloHCT treatment with calcineurin inhibitor at vaccination | ||||||||
Yes | 10 | 8.79 | 2.05 (0–4314.63) | <0.001 | 4 | 216.52 | 84.37 (71.62–4314.63) | <0.001 |
No | 53 | 2212.24 | 3818.85 (0–56,729.00) | 52 | 2401.63 | 3779.93 (23.02–56,729.00) |
Characteristics | N | All Patients | p | N | Patients after alloHCT | |||
---|---|---|---|---|---|---|---|---|
Patients with Seroconversion N | Patients without Seroconversion N | Patients with Seroconversion N | Patients without Seroconversion N | p | ||||
89 | 81 | 8 | NA | 63 | 56 | 7 | ||
Median (range) age in years | 53 (20–69) | 63 (33–68) | 0.1 | 49 (20–69) | 63 (33–68) | 0.1 | ||
Gender | ||||||||
Female | 42 | 39 (48%) | 3 (37.5%) | 0.72 | 30 | 27 (48%) | 3 (43%) | 0.80 |
Male | 47 | 42 (52%) | 5 (62.5%) | 33 | 29 (52%) | 4 (57%) | ||
Median (range) time since HCT to the vaccination in months | 14.3 (3.3–111.9) | 7.8 (3.3–15.8) | 0.02 | 27.3 (4.9–111.8) | 7.7 (3.3–15.8) | 0.02 | ||
Type of transplant | ||||||||
AutoHCT | 26 | 25 (31%) | 1 (12.5%) | 0.43 | NA | NA | ||
AlloHCT | 63 | 56 (69%) | 7 (87.5%) | |||||
Transplant conditioning intensity (TCI) in the alloHCT group | ||||||||
Low | NA | NA | 20 | 14 (27%) | 6 (86%) | 0.005 | ||
Intermediate/high | 39 | 38 (73%) | 1 (14%) | |||||
missing | 4 | |||||||
Active acute or chronic GvHD at vaccination | ||||||||
Yes | NA | NA | 12 | 7 (12.5%) | 5 (29%) | <0.001 | ||
No | 51 | 49 (87.5%) | 2 (71%) | |||||
Patients on post-alloHCT IS treatment at vaccination | ||||||||
Yes | NA | NA | 18 | 12 (21%) | 6 (86%) | 0.002 | ||
No | 45 | 44 (79%) | 1 (14%) | |||||
Patients on post-alloHCT treatment with CNI at vaccination | ||||||||
Yes | NA | NA | 10 | 4 (7%) | 6 (86%) | <0.001 | ||
No | 53 | 52 (93%) | 1 (14%) |
Lymphocyte Subpopulations | All Pts | p | Pts after alloHCT | |||
---|---|---|---|---|---|---|
Pts with Seroconversion N | Pts without Seroconversion N | Pts with Seroconversion N | Pts without Seroconversion N | p | ||
77 | 7 | 53 | 6 | |||
Median (range) of lymphocyte count in blood (G/L) | 1.36 (0.33–6.67) | 1.13 (0.79–3.77) | 0.69 | 1.38 (0.33–6.67) | 1.32 (0.79–3.77) | 0.89 |
Median (range) of B-cell count in blood (G/L) | 0.21 (0.00–1.11) | 0.01 (0.00–0.35) | 0.014 | 0.22 (0.0–1.11) | 0.07 (0.0–0.35) | 0.038 |
Median (range) percentage of B cells in blood (%) | 13.5 (0.1–41.0) | 1.5 (0.0–10.0) | <0.001 | 14.5 (1.40–41.0) | 4.50 (0.04–10.00) | <.001 |
Median (range) of T-cell count in blood (G/L) | 0.89 (0.23–5.86) | 1.08 (0.42–2.90) | 0.66 | 0.87 (0.23–5.86) | 1.03 (0.42–2.89) | 0.83 |
Median (range) percentage of T cells in blood (%) | 66.9 (23.0–95.9) | 76.8 (53.3–95.9) | 0.098 | 65.9 (23.0–95.9) | 23.95 (13.90–38.50) | 0.27 |
Median (range) of CD4+ T-cell count in blood (G/L) | 0.23 (0.04–0.73) | 0.21 (0.1–0.64) | 0.92 | 0.22 (0.04–0.73) | 0.21 (0.09–0.64) | 0.64 |
Median (range) percentage of CD4+ T cells in blood (%) | 28.0 (9.4–70.1) | 25.8 (13.9–38.5) | 0.76 | 28.0 (9.4–70.1) | 23.95 (13.9–38.5) | 0.57 |
Median (range) of CD8+ T-cell count in blood (G/L) | 0.61 (0.11–5.34) | 0.64 (0.24–2.21) | 0.80 | 0.57 (0.11–5.34) | 0.64 (0.24–2.21) | 0.72 |
Median (range) percentage of CD8+ T cells in blood (%) | 70.4 (27.9- 91.1) | 64.1 (56.8–82.3) | 0.66 | 70.3 (27.9–91.1) | 70.2 (56.8–82.3) | 0.98 |
Median (range) of NK-cell count in blood (G/L) | 0.13 (0.02–0.71) | 0.15 (0.04–0.37) | 0.50 | 0.12 (0.02–0.71) | 0.17 (0.12–0.37) | 0.10 |
Median (range) percentage of NK cells in blood (%) | 15.2 (2.1–54.3) | 12.8 (3.9–45.8) | 0.99 | 13.9 (2.1–54.3) | 18.7 (8.1–45.8) | 0.47 |
Predictor | Univariate | Multivariate | ||
---|---|---|---|---|
Unadjusted OR (95% CI) | p | Adjusted OR (95% CI) | p | |
Age | 0.92 (0.85–1.01) | ns | ns | |
Time since transplantation to vaccination | 1.27 (1.01–1.59) | 0.042 | ns | |
B-cell count at vaccination | 1.01 (1.00–1.01) | 0.09 | ns | |
GvHD at the vaccination | 0.25 (0.11–0.39) | 0.0004 | ns | |
CNI treatment at the vaccination | 0.01 (0.00–0.13) | 0.0003 | 0.03 (0.00–0.79) | 0.03 |
Conditioning intensity according to TCI score | 16.29 (1.80–147.55) | 0.013 | ns |
Laboratory Parameters | CBC and WBC with Differential before Vaccination n = 82 | CBC and WBC with Differential after Vaccination n = 82 | p |
---|---|---|---|
Mean ± SD of WBC (G/L) | 5.02 ± 1.78 | 5.14 ± 1.85 | 0.10 |
Mean ± SD of absolute neutrophil count (G/L) | 3.04 ± 1.23 | 2.92 ± 1.37 | 0.31 |
Mean ± SD of absolute lymphocyte count (G/L) | 1.60 ± 0.96 | 1.79 ± 1.17 | <0.001 |
Mean ± SD of absolute monocyte count (G/L) | 0.38 ± 0.14 | 0.43 ± 0.17 | <0.001 |
Mean ± SD of platelet count (G/L) | 163 ± 67 | 165 ± 76 | 0.52 |
Mean ± SD of Hb concentration (g/dl) | 14.1 ± 8.6 | 14.3 ± 13.4 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majcherek, M.; Matkowska-Kocjan, A.; Szymczak, D.; Karasek, M.; Szeremet, A.; Kiraga, A.; Milanowska, A.; Kuznik, E.; Kujawa, K.; Wrobel, T.; et al. Two Doses of BNT162b2 mRNA Vaccine in Patients after Hematopoietic Stem Cell Transplantation: Humoral Response and Serological Conversion Predictors. Cancers 2022, 14, 325. https://doi.org/10.3390/cancers14020325
Majcherek M, Matkowska-Kocjan A, Szymczak D, Karasek M, Szeremet A, Kiraga A, Milanowska A, Kuznik E, Kujawa K, Wrobel T, et al. Two Doses of BNT162b2 mRNA Vaccine in Patients after Hematopoietic Stem Cell Transplantation: Humoral Response and Serological Conversion Predictors. Cancers. 2022; 14(2):325. https://doi.org/10.3390/cancers14020325
Chicago/Turabian StyleMajcherek, Maciej, Agnieszka Matkowska-Kocjan, Donata Szymczak, Magdalena Karasek, Agnieszka Szeremet, Aleksandra Kiraga, Aneta Milanowska, Edwin Kuznik, Krzysztof Kujawa, Tomasz Wrobel, and et al. 2022. "Two Doses of BNT162b2 mRNA Vaccine in Patients after Hematopoietic Stem Cell Transplantation: Humoral Response and Serological Conversion Predictors" Cancers 14, no. 2: 325. https://doi.org/10.3390/cancers14020325
APA StyleMajcherek, M., Matkowska-Kocjan, A., Szymczak, D., Karasek, M., Szeremet, A., Kiraga, A., Milanowska, A., Kuznik, E., Kujawa, K., Wrobel, T., Szenborn, L., & Czyz, A. (2022). Two Doses of BNT162b2 mRNA Vaccine in Patients after Hematopoietic Stem Cell Transplantation: Humoral Response and Serological Conversion Predictors. Cancers, 14(2), 325. https://doi.org/10.3390/cancers14020325