The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Early Detection
2.1. Genomic and Epigenomes
2.1.1. Methylation
2.1.2. miRNAs
2.2. Proteomic Early Detection
3. Actionable Markers for Treatment
3.1. Genomics Biomarkers
3.1.1. The PI3K Pathway in NSCLC
3.1.2. Current Status of Novel Biomarkers for Response to Immunotherapy
3.1.3. Tumor Mutation Burden (TMB) and Circulating Tumor DNA (ctDNA)
3.2. Proteomics
4. AI Machine Learning-Driven Discovery of Biomarkers for NSCLC
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Kotwal, A.A.; Schonberg, M.A. Cancer Screening in the Elderly: A Review of Breast, Colorectal, Lung, and Prostate Cancer Screening. Cancer J. 2017, 23, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Walters, S.; Maringe, C.; Coleman, M.P.; Peake, M.D.; Butler, J.; Young, N.; Bergström, S.; Hanna, L.; Jakobsen, E.; Kölbeck, K.; et al. Lung Cancer Survival and Stage at Diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: A Population-Based Study, 2004–2007. Thorax 2013, 68, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Flehinger, B.J.; Melamed, M.R.; Heelan, R.T.; McGinnis, C.M.; Zaman, M.B.; Martini, N. Accuracy of Chest Film Screening by Technologists in the New York Early Lung Cancer Detection Program. Am. J. Roentgenol. 1978, 131, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Tockman, M.S. Survival and Mortality from Lung Cancer in a Screened Population. Chest 1986, 89, 324S–325S. [Google Scholar] [CrossRef]
- Henschke, C.I.; McCauley, D.I.; Yankelevitz, D.F.; Naidich, D.P.; McGuinness, G.; Miettinen, O.S.; Libby, D.M.; Pasmantier, M.W.; Koizumi, J.; Altorki, N.K.; et al. Early Lung Cancer Action Project: Overall Design and Findings from Baseline Screening. Lancet 1999, 354, 99–105. [Google Scholar] [CrossRef]
- The National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Wigle, D.A.; Jurisica, I.; Radulovich, N.; Pintilie, M.; Rossant, J.; Liu, N.; Lu, C.; Woodgett, J.; Seiden, I.; Johnston, M.; et al. Molecular Profiling of Non-Small Cell Lung Cancer and Correlation with Disease-Free Survival. Cancer Res. 2002, 62, 3005–3008. [Google Scholar]
- The Cancer Genome Atlas Research Network. Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Fan, J.; He, Y.; Xiong, A.; Yu, J.; Li, Y.; Zhang, Y.; Zhao, W.; Zhou, F.; Li, W.; et al. Single-Cell Profiling of Tumor Heterogeneity and the Microenvironment in Advanced Non-Small Cell Lung Cancer. Nat. Commun. 2021, 12, 2540. [Google Scholar] [CrossRef]
- Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; et al. Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer. N. Engl. J. Med. 2009, 361, 958–967. [Google Scholar] [CrossRef]
- Yoh, K.; Matsumoto, S.; Tsuchihara, K.; Kohno, T.; Ishii, G.; Tsuta, K.; Nishio, M.; Yamamoto, N.; Murakami, H.; Satouchi, M.; et al. The Lung Cancer Genomic Screening Project for Individualized Medicine in Japan (LC-SCRUM-Japan): Screening for RET and ROS1 Fusions in Advanced EGFR Mutation-Negative Nonsquamous Lung Cancer and Development of Molecular Targeted Therapy. J. Clin. Oncol. 2014, 32, 8055. [Google Scholar] [CrossRef]
- Kohno, T.; Nakaoku, T.; Tsuta, K.; Tsuchihara, K.; Matsumoto, S.; Yoh, K.; Goto, K. Beyond ALK-RET, ROS1 and Other Oncogene Fusions in Lung Cancer. Transl. Lung Cancer Res. 2015, 4, 156–164. [Google Scholar]
- Passaro, A.; Attili, I.; Rappa, A.; Vacirca, D.; Ranghiero, A.; Fumagalli, C.; Guarize, J.; Spaggiari, L.; de Marinis, F.; Barberis, M.; et al. Genomic Characterization of Concurrent Alterations in Non-Small Cell Lung Cancer (NSCLC) Harboring Actionable Mutations. Cancers 2021, 13, 2172. [Google Scholar] [CrossRef]
- Macklin, A.; Khan, S.; Kislinger, T. Recent Advances in Mass Spectrometry Based Clinical Proteomics: Applications to Cancer Research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef]
- Yu, L.; Shen, J.; Mannoor, K.; Guarnera, M.; Jiang, F. Identification of ENO1 as a Potential Sputum Biomarker for Early-Stage Lung Cancer by Shotgun Proteomics. Clin. Lung Cancer 2014, 15, 372–378.e1. [Google Scholar] [CrossRef] [Green Version]
- Baran, K.; Brzeziańska-Lasota, E. Proteomic Biomarkers of Non-Small Cell Lung Cancer Patients. Adv. Respir. Med. 2021, 89, 419–426. [Google Scholar] [CrossRef]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef]
- Sobhani, N.; Sirico, M.; Generali, D.; Zanconati, F.; Scaggiante, B. Circulating Cell-Free Nucleic Acids as Prognostic and Therapy Predictive Tools for Metastatic Castrate-Resistant Prostate Cancer. World J. Clin. Oncol. 2020, 11, 450–463. [Google Scholar] [CrossRef]
- Sobhani, N.; Generali, D.; Zanconati, F.; Bortul, M.; Scaggiante, B. Cell-Free DNA Integrity for the Monitoring of Breast Cancer: Future Perspectives? World J. Clin. Oncol. 2018, 9, 26–32. [Google Scholar] [CrossRef]
- Mondelo-Macía, P.; García-González, J.; León-Mateos, L.; Castillo-García, A.; López-López, R.; Muinelo-Romay, L.; Díaz-Peña, R. Current Status and Future Perspectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Joosten, S.C.; Feng, Z.; de Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.; Van Neste, L.; et al. Author Correction: Analysis of DNA Methylation in Cancer: Location Revisited. Nat. Rev. Clin. Oncol. 2018, 15, 467. [Google Scholar] [CrossRef] [PubMed]
- Gouil, Q.; Keniry, A. Latest Techniques to Study DNA Methylation. Essays Biochem. 2019, 63, 639–648. [Google Scholar] [PubMed]
- Maier, S.; Olek, A. Diabetes: A Candidate Disease for Efficient DNA Methylation Profiling. J. Nutr. 2002, 132, 2440S–2443S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, B. DNA Methylation and Autoimmune Disease. Clin. Immunol. 2003, 109, 72–79. [Google Scholar] [CrossRef]
- Celarain, N.; Tomas-Roig, J. Aberrant DNA Methylation Profile Exacerbates Inflammation and Neurodegeneration in Multiple Sclerosis Patients. J. Neuroinflamm. 2020, 17, 21. [Google Scholar] [CrossRef]
- Paska, A.V.; Hudler, P. Aberrant Methylation Patterns in Cancer: A Clinical View. Biochem. Med. 2015, 25, 161–176. [Google Scholar] [CrossRef]
- Tavares, N.T.; Gumauskaitė, S.; Lobo, J.; Jerónimo, C.; Henrique, R. DNA Methylation Biomarkers for Prediction of Response to Platinum-Based Chemotherapy: Where Do We Stand? Cancers 2022, 14, 2918. [Google Scholar] [CrossRef]
- Liang, R.; Li, X.; Li, W.; Zhu, X.; Li, C. DNA Methylation in Lung Cancer Patients: Opening a “Window of Life” under Precision Medicine. Biomed. Pharmacother. 2021, 144, 112202. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Wang, T.; Zhang, J.; Hong, L.; Chen, L. Identification of Epigenetic Aberrant Promoter Methylation of RASSF1A in Serum DNA and Its Clinicopathological Significance in Lung Cancer. Lung Cancer 2007, 56, 289–294. [Google Scholar] [CrossRef]
- Schotten, L.M.; Darwiche, K.; Seweryn, M.; Yildiz, V.; Kneuertz, P.J.; Eberhardt, W.E.E.; Eisenmann, S.; Welter, S.; Sisson, B.E.; Pietrzak, M.; et al. DNA Methylation of PTGER4 in Peripheral Blood Plasma Helps to Distinguish between Lung Cancer, Benign Pulmonary Nodules and Chronic Obstructive Pulmonary Disease Patients. Eur. J. Cancer 2021, 147, 142–150. [Google Scholar] [CrossRef]
- Raos, D.; Ulamec, M.; Bojanac, A.K.; Bulic-Jakus, F.; Jezek, D.; Sincic, N. Epigenetically Inactivated RASSF1A as a Tumor Biomarker. Bosn. J. Basic Med. Sci. 2020, 21, 386–397. [Google Scholar] [CrossRef]
- Hulbert, A.; Jusue-Torres, I.; Stark, A.; Chen, C.; Rodgers, K.; Lee, B.; Griffin, C.; Yang, A.; Huang, P.; Wrangle, J.; et al. Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clin. Cancer Res. 2017, 23, 1998–2005. [Google Scholar] [CrossRef] [Green Version]
- Ooki, A.; Maleki, Z.; Tsay, J.-C.J.; Goparaju, C.; Brait, M.; Turaga, N.; Nam, H.-S.; Rom, W.N.; Pass, H.I.; Sidransky, D.; et al. A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non–Small Cell Lung Cancer and Serum DNA. Clin. Cancer Res. 2017, 23, 7141–7152. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, H.; Lu, S.; Wu, Z.; Zhou, L.; Cheng, Z.; Bai, Y.; Zhao, J.; Zhang, Q.; Mao, H. Quantitative Assessment of Gene Promoter Methylation in Non-small Cell Lung Cancer Using Methylation-sensitive High-resolution Melting. Oncol. Lett. 2018, 15, 7639–7648. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-H.; Li, Y.-Y.; Han, J.-Z.; Zhou, L.-Y.; Lv, Y.-Q.; Zhang, H.-L.; Zhao, L. Gene Methylation as a Powerful Biomarker for Detection and Screening of Non-Small Cell Lung Cancer in Blood. Oncotarget 2017, 8, 31692–31704. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, R.; Song, H.; Huang, G.; Yi, J.; Zheng, Y.; Wang, J.; Chen, L. Methylation of Multiple Genes as a Candidate Biomarker in Non-Small Cell Lung Cancer. Cancer Lett. 2011, 303, 21–28. [Google Scholar] [CrossRef]
- Ponomaryova, A.A.; Rykova, E.Y.; Cherdyntseva, N.V.; Skvortsova, T.E.; Dobrodeev, A.Y.; Zav’yalov, A.A.; Bryzgalov, L.O.; Tuzikov, S.A.; Vlassov, V.V.; Laktionov, P.P. Potentialities of Aberrantly Methylated Circulating DNA for Diagnostics and Post-Treatment Follow-up of Lung Cancer Patients. Lung Cancer 2013, 81, 397–403. [Google Scholar] [CrossRef]
- Kneip, C.; Schmidt, B.; Seegebarth, A.; Weickmann, S.; Fleischhacker, M.; Liebenberg, V.; Field, J.K.; Dietrich, D. SHOX2 DNA Methylation is a Biomarker for the Diagnosis of Lung Cancer in Plasma. J. Thorac. Oncol. 2011, 6, 1632–1638. [Google Scholar] [CrossRef] [Green Version]
- Powrózek, T.; Krawczyk, P.; Nicoś, M.; Kuźnar-Kamińska, B.; Batura-Gabryel, H.; Milanowski, J. Methylation of the DCLK1 Promoter Region in Circulating Free DNA and Its Prognostic Value in Lung Cancer Patients. Clin. Transl. Oncol. 2016, 18, 398–404. [Google Scholar] [CrossRef]
- Powrózek, T.; Krawczyk, P.; Kucharczyk, T.; Milanowski, J. Septin 9 Promoter Region Methylation in Free Circulating DNA—Potential Role in Noninvasive Diagnosis of Lung Cancer: Preliminary Report. Med. Oncol. 2014, 31, 917. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Lagares, A.; Mendez-Gonzalez, J.; Hervas, D.; Saigi, M.; Pajares, M.J.; Garcia, D.; Crujerias, A.B.; Pio, R.; Montuenga, L.M.; Zulueta, J.; et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin. Cancer Res. 2016, 22, 3361–3371. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, J.Y.; Kim, D.S. Methylation of TMEFF2 Gene in Tissue and Serum DNA from Patients with Non-Small Cell Lung Cancer. Mol. Cells 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, N.; Chahwan, R.; Roudi, R.; Morris, R.; Volinia, S.; Chai, D.; D’Angelo, A.; Generali, D. Predictive and Prognostic Value of Non-Coding RNA in Breast Cancer. Cancers 2022, 14, 2952. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Liu, C.; Zhang, X.; Wu, Y.; Diao, M.; Tan, S.; Huang, S.; Cheng, Y.; You, T. MicroRNA-21 as a Diagnostic and Prognostic Biomarker of Lung Cancer: A Systematic Review and Meta-Analysis. Biosci. Rep. 2022, 42, BSR20211653. [Google Scholar] [CrossRef]
- Lu, S.; Kong, H.; Hou, Y.; Ge, D.; Huang, W.; Ou, J.; Yang, D.; Zhang, L.; Wu, G.; Song, Y.; et al. Two Plasma microRNA Panels for Diagnosis and Subtype Discrimination of Lung Cancer. Lung Cancer 2018, 123, 44–51. [Google Scholar] [CrossRef]
- Wang, P.; Yang, D.; Zhang, H.; Wei, X.; Ma, T.; Cheng, Z.; Hong, Q.; Hu, J.; Zhuo, H.; Song, Y.; et al. Early Detection of Lung Cancer in Serum by a Panel of MicroRNA Biomarkers. Clin. Lung Cancer 2015, 16, 313–319.e1. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, C.; Zhao, X.; He, J.; Tian, H.; Shen, W.; Han, Y.; Chen, J.; Fang, S.; Meng, X.; et al. A Two-miRNA Signature (miR-33a-5p and miR-128-3p) in Whole Blood as Potential Biomarker for Early Diagnosis of Lung Cancer. Sci. Rep. 2018, 8, 16699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehlmann, T.; Kahraman, M.; Ludwig, N.; Backes, C.; Galata, V.; Keller, V.; Geffers, L.; Mercaldo, N.; Hornung, D.; Weis, T.; et al. Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients. JAMA Oncol. 2020, 6, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A.; Seam, R.K.; Gupta, M.; Rana, M.K.; Prakash, H.; Vasquez, K.M.; Jain, A. Circulating Micro RNA-590-5p Functions as a Liquid Biopsy Marker in Non-small Cell Lung Cancer. Cancer Sci. 2020, 111, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, G.; Boeri, M.; Rossi, M.; Verri, C.; Suatoni, P.; Bravi, F.; Roz, L.; Conte, D.; Grassi, M.; Sverzellati, N.; et al. Clinical Utility of a Plasma-Based miRNA Signature Classifier Within Computed Tomography Lung Cancer Screening: A Correlative MILD Trial Study. J. Clin. Oncol. 2014, 32, 768–773. [Google Scholar] [CrossRef]
- Li, N.; Ma, J.; Guarnera, M.A.; Fang, H.; Cai, L.; Jiang, F. Digital PCR Quantification of miRNAs in Sputum for Diagnosis of Lung Cancer. J. Cancer Res. Clin. Oncol. 2014, 140, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Roa, W.H.; Kim, J.O.; Razzak, R.; Du, H.; Guo, L.; Singh, R.; Gazala, S.; Ghosh, S.; Wong, E.; Joy, A.A.; et al. Sputum MicroRNA Profiling: A Novel Approach for the Early Detection of Non-Small Cell Lung Cancer. Clin. Investig. Med. 2012, 35, 271. [Google Scholar] [CrossRef] [Green Version]
- Arab, A.; Karimipoor, M.; Irani, S.; Kiani, A.; Zeinali, S.; Tafsiri, E.; Sheikhy, K. Potential Circulating miRNA Signature for Early Detection of NSCLC. Cancer Genet. 2017, 216–217, 150–158. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Zhang, Q.; Tang, L.; Liu, X.; Dai, Y.; Xiao, L.; Huang, S.; Chen, L.; Guo, Z.; et al. MicroRNA-486 as a Biomarker for Early Diagnosis and Recurrence of Non-Small Cell Lung Cancer. PLoS ONE 2015, 10, e0134220. [Google Scholar] [CrossRef] [Green Version]
- Leng, Q.; Lin, Y.; Jiang, F.; Lee, C.-J.; Zhan, M.; Fang, H.; Wang, Y.; Jiang, F. A Plasma miRNA Signature for Lung Cancer Early Detection. Oncotarget 2017, 8, 111902–111911. [Google Scholar] [CrossRef] [Green Version]
- Foss, K.M.; Sima, C.; Ugolini, D.; Neri, M.; Allen, K.E.; Weiss, G.J. miR-1254 and miR-574-5p: Serum-Based microRNA Biomarkers for Early-Stage Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Tyers, M.; Mann, M. From Genomics to Proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef]
- Yu, J.; Zhai, X.; Li, X.; Zhong, C.; Guo, C.; Yang, F.; Yuan, Y.; Zheng, S. Identification of MST1 as a Potential Early Detection Biomarker for Colorectal Cancer through a Proteomic Approach. Sci. Rep. 2017, 7, 14265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petricoin, E.F.; Ardekani, A.M.; Hitt, B.A.; Levine, P.J.; Fusaro, V.A.; Steinberg, S.M.; Mills, G.B.; Simone, C.; Fishman, D.A.; Kohn, E.C.; et al. Use of Proteomic Patterns in Serum to Identify Ovarian Cancer. Lancet 2002, 359, 572–577. [Google Scholar] [CrossRef]
- Petricoin, E.F., 3rd; Ornstein, D.K.; Paweletz, C.P.; Ardekani, A.; Hackett, P.S.; Hitt, B.A.; Velassco, A.; Trucco, C.; Wiegand, L.; Wood, K.; et al. Serum Proteomic Patterns for Detection of Prostate Cancer. J. Natl. Cancer Inst. 2002, 94, 1576–1578. [Google Scholar] [CrossRef]
- Beretov, J.; Wasinger, V.C.; Millar, E.K.A.; Schwartz, P.; Graham, P.H.; Li, Y. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach. PLoS ONE 2015, 10, e0141876. [Google Scholar] [CrossRef]
- Zhou, L.; Beuerman, R.W. The Power of Tears: How Tear Proteomics Research Could Revolutionize the Clinic. Expert Rev. Proteom. 2017, 14, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Erozenci, L.A.; Böttger, F.; Bijnsdorp, I.V.; Jimenez, C.R. Urinary Exosomal Proteins as (pan-)cancer Biomarkers: Insights from the Proteome. FEBS Lett. 2019, 593, 1580–1597. [Google Scholar] [CrossRef] [Green Version]
- Geyer, P.E.; Voytik, E.; Treit, P.V.; Doll, S.; Kleinhempel, A.; Niu, L.; Müller, J.B.; Buchholtz, M.; Bader, J.M.; Teupser, D.; et al. Plasma Proteome Profiling to Detect and Avoid Sample-related Biases in Biomarker Studies. EMBO Mol. Med. 2019, 11, e10427. [Google Scholar] [CrossRef]
- Youssef, O.; Sarhadi, V.K.; Armengol, G.; Piirilä, P.; Knuuttila, A.; Knuutila, S. Exhaled Breath Condensate as a Source of Biomarkers for Lung Carcinomas. A Focus on Genetic and Epigenetic Markers-A Mini-Review. Genes Chromosomes Cancer 2016, 55, 905–914. [Google Scholar] [CrossRef]
- Zhang, C.; Leng, W.; Sun, C.; Lu, T.; Chen, Z.; Men, X.; Wang, Y.; Wang, G.; Zhen, B.; Qin, J. Urine Proteome Profiling Predicts Lung Cancer from Control Cases and Other Tumors. EBioMedicine 2018, 30, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-H.; Hsu, C.-W.; Hsueh, C.; Wang, C.-L.; Wu, Y.-C.; Wu, C.-C.; Liu, C.-C.; Yu, J.-S.; Chang, Y.-S.; Yu, C.-J. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma. Mol. Cell. Proteom. 2016, 15, 2396–2410. [Google Scholar] [CrossRef] [Green Version]
- Ortea, I.; Rodríguez-Ariza, A.; Chicano-Gálvez, E.; Arenas Vacas, M.S.; Jurado Gámez, B. Discovery of Potential Protein Biomarkers of Lung Adenocarcinoma in Bronchoalveolar Lavage Fluid by SWATH MS Data-Independent Acquisition and Targeted Data Extraction. J. Proteom. 2016, 138, 106–114. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Cuco, C.M.; Lavareda, C.; Miguel, F.; Ventura, M.; Almeida, S.; Pinto, P.; de Abreu, T.T.; Rodrigues, L.V.; Seixas, S.; et al. Bronchoalveolar Lavage Proteomics in Patients with Suspected Lung Cancer. Sci. Rep. 2017, 7, srep42190. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Wang, J.; Ye, X.; Su, Y.; Yu, G.; Yang, Q.; Liu, W.; Yu, W.; Cai, J.; Chen, X.; et al. Identification of GlcNAcylated Alpha-1-Antichymotrypsin as an Early Biomarker in Human Non-Small-Cell Lung Cancer by Quantitative Proteomic Analysis with Two Lectins. Br. J. Cancer 2016, 114, 532–544. [Google Scholar] [CrossRef]
- Boccellino, M.; Pinto, F.; Ieluzzi, V.; Giovane, A.; Quagliuolo, L.; Fariello, C.; Coppola, M.; Carlucci, A.; Santini, M.; Ferati, K.; et al. Proteomics Analysis of Human Serum of Patients with Non-small-cell Lung Cancer Reveals Proteins as Diagnostic Biomarker Candidates. J. Cell. Physiol. 2019, 234, 23798–23806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Kong, Y.; Wang, X.; Li, W.; Chen, S.; Wang, L.; Wang, C.; Zhang, Q. LC-MS/MS-Based Quantitative Proteomics Analysis of Different Stages of Non-Small-Cell Lung Cancer. Biomed. Res. Int. 2021, 2021, 5561569. [Google Scholar] [CrossRef] [PubMed]
- Codreanu, S.G.; Hoeksema, M.D.; Slebos, R.J.C.; Zimmerman, L.J.; Rahman, S.M.J.; Li, M.; Chen, S.-C.; Chen, H.; Eisenberg, R.; Liebler, D.C.; et al. Identification of Proteomic Features To Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma. J. Proteome Res. 2017, 16, 3266–3276. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. Review The Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge. Współczesna Onkol. 2015, 1A, 68–77. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lu, Y.; Akbani, R.; Ju, Z.; Roebuck, P.L.; Liu, W.; Yang, J.-Y.; Broom, B.M.; Verhaak, R.G.W.; Kane, D.W.; et al. TCPA: A Resource for Cancer Functional Proteomics Data. Nat. Methods 2013, 10, 1046–1047. [Google Scholar] [CrossRef] [Green Version]
- Forbes, S.A.; Bhamra, G.; Bamford, S.; Dawson, E.; Kok, C.; Clements, J.; Menzies, A.; Teague, J.W.; Futreal, P.A.; Stratton, M.R. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum. Genet. 2008, 57, D941–D947. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Baran, J.; Cros, A.; Guberman, J.M.; Haider, S.; Hsu, J.; Liang, Y.; Rivkin, E.; Wang, J.; Whitty, B.; et al. International Cancer Genome Consortium Data Portal—A One-Stop Shop for Cancer Genomics Data. Database 2011, 2011, bar026. [Google Scholar] [CrossRef] [Green Version]
- ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-Cancer Analysis of Whole Genomes. Nature 2020, 578, 82–93. [CrossRef] [Green Version]
- Roudi, R.; Beikzadeh, B.; Roviello, G.; D’angelo, A.; Hadizadeh, M. Identification of Hub Genes, Modules and Biological Pathways Associated with Lung Adenocarcinoma: A System Biology Approach. Gene Rep. 2022, 27, 101638. [Google Scholar] [CrossRef]
- Brennan, P.; Hainaut, P.; Boffetta, P. Genetics of Lung-Cancer Susceptibility. Lancet Oncol. 2011, 12, 399–408. [Google Scholar] [CrossRef]
- Abbasian, M.H.; Abbasi, B.; Ansarinejad, N.; Ardekani, A.M.; Samizadeh, E.; Moghaddam, K.G.; Hashemi, M.R. Association of Interleukin-1 Gene Polymorphism with Risk of Gastric and Colorectal Cancers in an Iranian Population. Iran. J. Immunol. 2018, 15, 321–328. [Google Scholar]
- Abbasian, M.H.; Ansarinejad, N.; Abbasi, B.; Iravani, M.; Ramim, T.; Hamedi, F.; Ardekani, A.M. The Role of and Polymorphisms in Fluoropyrimidine-Based Cancer Chemotherapy in an Iranian Population. Avicenna J. Med. Biotechnol. 2020, 12, 157–164. [Google Scholar]
- Santarpia, M.; Rolfo, C.; Peters, G.J.; Leon, L.G.; Giovannetti, E. On the Pharmacogenetics of Non-Small Cell Lung Cancer Treatment. Expert Opin. Drug Metab. Toxicol. 2016, 12, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, K.; Soda, M.; Togashi, Y.; Suzuki, R.; Sakata, S.; Hatano, S.; Asaka, R.; Hamanaka, W.; Ninomiya, H.; Uehara, H.; et al. RET, ROS1 and ALK Fusions in Lung Cancer. Nat. Med. 2012, 18, 378–381. [Google Scholar] [CrossRef]
- Rotow, J.; Bivona, T.G. Understanding and Targeting Resistance Mechanisms in NSCLC. Nat. Rev. Cancer 2017, 17, 637–658. [Google Scholar] [CrossRef]
- Fathi, Z.; Mousavi, S.A.J.; Roudi, R.; Ghazi, F. Distribution of KRAS, DDR2, and TP53 Gene Mutations in Lung Cancer: An Analysis of Iranian Patients. PLoS ONE 2018, 13, e0200633. [Google Scholar] [CrossRef]
- Roudi, R.; Haji, G.; Madjd, Z.; Shariftabrizi, A.; Mehrazma, M. Evaluation of Anaplastic Lymphoma Kinase Expression in Nonsmall Cell Lung Cancer; a Tissue Microarray Analysis. J. Cancer Res. Ther. 2016, 12, 1065–1069. [Google Scholar]
- Khalil, F.K.; Altiok, S. Advances in EGFR as a Predictive Marker in Lung Adenocarcinoma. Cancer Control 2015, 22, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, T.L.; Lertpiriyapong, K.; Cocco, L.; Martelli, A.M.; Libra, M.; Candido, S.; Montalto, G.; Cervello, M.; Steelman, L.; Abrams, S.L.; et al. Roles of EGFR and KRAS and Their Downstream Signaling Pathways in Pancreatic Cancer and Pancreatic Cancer Stem Cells. Adv. Biol. Regul. 2015, 59, 65–81. [Google Scholar] [CrossRef]
- Eskilsson, E.; Røsland, G.V.; Solecki, G.; Wang, Q.; Harter, P.N.; Graziani, G.; Verhaak, R.G.W.; Winkler, F.; Bjerkvig, R.; Miletic, H. EGFR Heterogeneity and Implications for Therapeutic Intervention in Glioblastoma. Neuro-Oncol. 2018, 20, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Byeon, H.K.; Ku, M.; Yang, J. Beyond EGFR Inhibition: Multilateral Combat Strategies to Stop the Progression of Head and Neck Cancer. Exp. Mol. Med. 2019, 51, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Valeri, N.; Dearman, C.; Rao, S.; Watkins, D.; Starling, N.; Chau, I.; Cunningham, D. Targeting EGFR Pathway in Metastatic Colorectal Cancer- Tumour Heterogeniety and Convergent Evolution. Crit. Rev. Oncol. Hematol. 2019, 143, 153–163. [Google Scholar] [CrossRef]
- Maennling, A.E.; Tur, M.K.; Niebert, M.; Klockenbring, T.; Zeppernick, F.; Gattenlöhner, S.; Meinhold-Heerlein, I.; Hussain, A.F. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers 2019, 11, 1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandis, J.R.; Sok, J.C. Signaling through the Epidermal Growth Factor Receptor during the Development of Malignancy. Pharmacol. Ther. 2004, 102, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Merrick, D.T.; Kittelson, J.; Winterhalder, R.; Kotantoulas, G.; Ingeberg, S.; Keith, R.L.; Kennedy, T.C.; Miller, Y.E.; Franklin, W.A.; Hirsch, F.R. Analysis of c-ErbB1/Epidermal Growth Factor Receptor and c-ErbB2/HER-2 Expression in Bronchial Dysplasia: Evaluation of Potential Targets for Chemoprevention of Lung Cancer. Clin. Cancer Res. 2006, 12, 2281–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, B.A.; Hughes, B.G.M. Targeted Therapy for Non-Small Cell Lung Cancer: Current Standards and the Promise of the Future. Transl. Lung Cancer Res. 2015, 4, 36–54. [Google Scholar]
- Wu, S.-G.; Shih, J.-Y. Management of Acquired Resistance to EGFR TKI–targeted Therapy in Advanced Non-Small Cell Lung Cancer. Mol. Cancer 2018, 17, 38. [Google Scholar] [CrossRef] [Green Version]
- Stewart, E.L.; Mascaux, C.; Shakashita, S.; Panchal, D.; Wang, D.; Li, M.; Pham, N.-A.; Leighl, N.; Liu, G.; Shepherd, F.A.; et al. Abstract 1184: Modeling Mechanisms of Resistance of Epidermal Growth Factor Receptor (EGFR) Mutations to Targeted Drugs through Patient-Derived Xenografts (PDX) of Non-Small Cell Lung Cancer (NSCLC). Cancer Res. 2014, 74, 1184. [Google Scholar] [CrossRef]
- Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of Resistance to EGFR-Targeted Drugs: Lung Cancer. ESMO Open 2016, 1, e000060. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, A.; Felicioni, L.; Malatesta, S.; Sciarrotta, M.G.; Guetti, L.; Chella, A.; Viola, P.; Pullara, C.; Mucilli, F.; Buttitta, F. Clinical Features and Outcome of Patients with Non–Small-Cell Lung Cancer Harboring BRAF Mutations. J. Clin. Oncol. 2011, 29, 3574–3579. [Google Scholar] [CrossRef]
- Kim, H.C.; Kang, Y.R.; Ji, W.; Kim, Y.J.; Yoon, S.; Lee, J.C.; Choi, C.-M. Frequency and Clinical Features of BRAF Mutations among Patients with Stage III/IV Lung Adenocarcinoma without EGFR/ALK Aberrations. OncoTargets Ther. 2019, 12, 6045–6052. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, S.E.; Kang, S.Y.; Do, I.-G.; Lee, S.; Ha, S.Y.; Cho, J.; Kang, W.K.; Jang, J.; Ou, S.-H.I.; et al. Identification of ROS1 rearrangement in Gastric Adenocarcinoma. Cancer 2013, 119, 1627–1635. [Google Scholar] [CrossRef]
- Birch, A.H.; Arcand, S.L.; Oros, K.K.; Rahimi, K.; Watters, A.K.; Provencher, D.; Greenwood, C.M.; Mes-Masson, A.-M.; Tonin, P.N. Chromosome 3 Anomalies Investigated by Genome Wide SNP Analysis of Benign, Low Malignant Potential and Low Grade Ovarian Serous Tumours. PLoS ONE 2011, 6, e28250. [Google Scholar] [CrossRef]
- Aisner, D.L.; Nguyen, T.T.; Paskulin, D.D.; Le, A.T.; Haney, J.; Schulte, N.; Chionh, F.; Hardingham, J.; Mariadason, J.; Tebbutt, N.; et al. ROS1 and ALK Fusions in Colorectal Cancer, with Evidence of Intratumoral Heterogeneity for Molecular Drivers. Mol. Cancer Res. 2014, 12, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, G.I.; Rodon, J.; Bedell, C.; Kwak, E.L.; Baselga, J.; Braña, I.; Pandya, S.S.; Scheffold, C.; Douglas Laird, A.; Nguyen, L.T.; et al. Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of SAR245408 (XL147), an Oral Pan-Class I PI3K Inhibitor, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014, 20, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Marks, E.I.; Pamarthy, S.; Dizon, D.; Birnbaum, A.; Yakirevich, E.; Safran, H.; Carneiro, B.A. ROS1-GOPC/FIG: A Novel Gene Fusion in Hepatic Angiosarcoma. Oncotarget 2019, 10, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Bergethon, K.; Shaw, A.T.; Ou, S.-H.I.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; et al. ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers. J. Clin. Oncol. 2012, 30, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, A.; Kohno, T.; Tsuta, K.; Wakai, S.; Arai, Y.; Shimada, Y.; Asamura, H.; Furuta, K.; Shibata, T.; Tsuda, H. ROS1-Rearranged Lung Cancer. Am. J. Surg. Pathol. 2013, 37, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-Q.; Wang, M.; Zhou, W.; Mao, M.-X.; Chen, Y.-Y.; Li, N.; Peng, X.-C.; Cai, J.; Cai, Z.-Q. ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Biology, Diagnostics, Therapeutics and Resistance. J. Drug Target. 2022, 30, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Polivka, J.; Janku, F. Molecular Targets for Cancer Therapy in the PI3K/AKT/mTOR Pathway. Pharmacol. Ther. 2014, 142, 164–175. [Google Scholar] [CrossRef]
- Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR Signaling Pathway for Targeted Therapeutic Treatment in Human Cancer. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Kempf, E.; Rousseau, B.; Besse, B.; Paz-Ares, L. KRAS oncogene in Lung Cancer: Focus on Molecularly Driven Clinical Trials. Eur. Respir. Rev. 2016, 25, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Bockorny, B.; Rusan, M.; Chen, W.; Liao, R.G.; Li, Y.; Piccioni, F.; Wang, J.; Tan, L.; Thorner, A.R.; Li, T.; et al. RAS–MAPK Reactivation Facilitates Acquired Resistance in FGFR1-Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR–MEK Blockade. Mol. Cancer Ther. 2018, 17, 1526–1539. [Google Scholar] [CrossRef] [Green Version]
- Iksen; Pothongsrisit, S.; Pongrakhananon, V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules 2021, 26, 4100. [Google Scholar] [CrossRef]
- Scheffler, M.; Bos, M.; Gardizi, M.; König, K.; Michels, S.; Fassunke, J.; Heydt, C.; Künstlinger, H.; Ihle, M.; Ueckeroth, F.; et al. PIK3CA Mutations in Non-Small Cell Lung Cancer (NSCLC): Genetic Heterogeneity, Prognostic Impact and Incidence of Prior Malignancies. Oncotarget 2015, 6, 1315–1326. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Shigematsu, H.; Nomura, M.; Lockwood, W.W.; Sato, M.; Okumura, N.; Soh, J.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; et al. PIK3CA Mutations and Copy Number Gains in Human Lung Cancers. Cancer Res. 2008, 68, 6913–6921. [Google Scholar] [CrossRef] [Green Version]
- Le, X.; Puri, S.; Negrao, M.V.; Nilsson, M.B.; Robichaux, J.; Boyle, T.; Hicks, J.K.; Lovinger, K.L.; Roarty, E.; Rinsurongkawong, W.; et al. Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clin. Cancer Res. 2018, 24, 6195–6203. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, S.; Trapani, J.A.; Neeson, P.J. Challenges of PD-L1 Testing in Non-Small Cell Lung Cancer and beyond. J. Thorac. Dis. 2020, 12, 4541–4548. [Google Scholar] [CrossRef]
- Song, Z.; Yu, X.; Zhang, Y. Mutation and Prognostic Analyses of PIK 3 CA in Patients with Completely Resected Lung Adenocarcinoma. Cancer Med. 2016, 5, 2694–2700. [Google Scholar] [CrossRef]
- Ando, Y.; Iwasa, S.; Takahashi, S.; Saka, H.; Kakizume, T.; Natsume, K.; Suenaga, N.; Quadt, C.; Yamada, Y. Phase I Study of Alpelisib (BYL719), an α-Specific PI3K Inhibitor, in Japanese Patients with Advanced Solid Tumors. Cancer Sci. 2019, 110, 1021–1031. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.M.; Morrison, C.; Gold, E.J.; Tradonsky, A.; Layton, A.J. Multiple Biomarker Testing Tissue Consumption and Completion Rates With Single-Gene Tests and Investigational Use of Oncomine Dx Target Test for Advanced Non–Small-Cell Lung Cancer: A Single-Center Analysis. Clin. Lung Cancer 2019, 20, 20–29.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udar, N.; Iyer, A.; Porter, M.; Haigis, R.; Smith, S.; Dhillon, S.; Meier, K.; Ward, D.; Lu, J.; Wenz, P.; et al. Development and Analytical Validation of a DNA Dual-Strand Approach for the US Food and Drug Administration–Approved Next-Generation Sequencing–Based Praxis Extended RAS Panel for Metastatic Colorectal Cancer Samples. J. Mol. Diagn. 2020, 22, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.T.; Mitchell, T.N.; Zehir, A.; Shah, R.H.; Benayed, R.; Syed, A.; Chandramohan, R.; Liu, Z.Y.; Won, H.H.; Scott, S.N.; et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT). J. Mol. Diagn. 2015, 17, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Takahama, T.; Sakai, K.; Shimizu, S.; Watanabe, S.; Kawakami, H.; Tanaka, K.; Sato, C.; Hayashi, H.; Nonagase, Y.; et al. Clinical Application of the FoundationOne CDx Assay to Therapeutic Decision-Making for Patients with Advanced Solid Tumors. Oncologist 2021, 26, e588–e596. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Ou, S.-H.I.; Bang, Y.-J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-L.; Yang, J.C.-H.; Kim, D.-W.; Lu, S.; Zhou, J.; Seto, T.; Yang, J.-J.; Yamamoto, N.; Ahn, M.-J.; Takahashi, T.; et al. Phase II Study of Crizotinib in East Asian Patients with ROS1-Positive Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 1405–1411. [Google Scholar] [CrossRef]
- Patil, T.; Smith, D.E.; Bunn, P.A.; Aisner, D.L.; Le, A.T.; Hancock, M.; Purcell, W.T.; Bowles, D.W.; Camidge, D.R.; Doebele, R.C. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non–Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J. Thorac. Oncol. 2018, 13, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yu, H.; Chang, J.; Chen, H.; Li, Y.; Zhao, W.; Zhao, K.; Zhu, Z.; Sun, S.; Fan, M.; et al. Crizotinib in Chinese Patients with ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer in Routine Clinical Practice. Target. Oncol. 2019, 14, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Tartarone, A.; Roviello, G.; Lerose, R.; Roudi, R.; Aieta, M.; Zoppoli, P. Anti-PD-1 versus Anti-PD-L1 Therapy in Patients with Pretreated Advanced Non-Small-Cell Lung Cancer: A Meta-Analysis. Future Oncol. 2019, 15, 2423–2433. [Google Scholar] [CrossRef]
- Petrelli, F.; Ferrara, R.; Signorelli, D.; Ghidini, A.; Proto, C.; Roudi, R.; Sabet, M.N.; Facelli, S.; Garassino, M.C.; Luciani, A.; et al. Immune Checkpoint Inhibitors and Chemotherapy in First-Line NSCLC: A Meta-Analysis. Immunotherapy 2021, 13, 621–631. [Google Scholar] [CrossRef]
- Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti–PD-1 Therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus Docetaxel for Patients with Previously Treated Non-Small-Cell Lung Cancer (POPLAR): A Multicentre, Open-Label, Phase 2 Randomised Controlled Trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014, 371, 2189–2199. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Routh, E.D.; Pullikuth, A.; Jin, G.; Su, J.; Chou, J.W.; Hoadley, K.A.; Print, C.; Knowlton, N.; Black, M.A.; et al. Tumor Mutational Burden is a Determinant of Immune-Mediated Survival in Breast Cancer. OncoImmunology 2018, 7, e1490854. [Google Scholar] [CrossRef]
- Kim, E.S.; Velcheti, V.; Mekhail, T.; Yun, C.; Shagan, S.M.; Hu, S.; Chae, Y.K.; Leal, T.A.; Dowell, J.E.; Tsai, M.L.; et al. Blood-Based Tumor Mutational Burden as a Biomarker for Atezolizumab in Non-Small Cell Lung Cancer: The Phase 2 B-F1RST Trial. Nat. Med. 2022, 28, 939–945. [Google Scholar] [CrossRef]
- Gandara, D.R.; Paul, S.M.; Kowanetz, M.; Schleifman, E.; Zou, W.; Li, Y.; Rittmeyer, A.; Fehrenbacher, L.; Otto, G.; Malboeuf, C.; et al. Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nat. Med. 2018, 24, 1441–1448. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, J.; Cai, S.; Han, M.; Dong, H.; Zhao, J.; Zhu, B.; Wang, S.; Zhuo, M.; Sun, J.; et al. Assessment of Blood Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Patients With Non–Small Cell Lung Cancer With Use of a Next-Generation Sequencing Cancer Gene Panel. JAMA Oncol. 2019, 5, 696–702. [Google Scholar] [CrossRef]
- Iijima, Y.; Hirotsu, Y.; Amemiya, K.; Ooka, Y.; Mochizuki, H.; Oyama, T.; Nakagomi, T.; Uchida, Y.; Kobayashi, Y.; Tsutsui, T.; et al. Very Early Response of Circulating Tumour–derived DNA in Plasma Predicts Efficacy of Nivolumab Treatment in Patients with Non–small Cell Lung Cancer. Eur. J. Cancer 2017, 86, 349–357. [Google Scholar] [CrossRef]
- Raja, R.; Kuziora, M.; Brohawn, P.Z.; Higgs, B.W.; Gupta, A.; Dennis, P.A.; Ranade, K. Early Reduction in ctDNA Predicts Survival in Patients with Lung and Bladder Cancer Treated with Durvalumab. Clin. Cancer Res. 2018, 24, 6212–6222. [Google Scholar] [CrossRef] [Green Version]
- Socinski, M.; Velcheti, V.; Mekhail, T.; Chae, Y.K.; Leal, T.A.; Dowell, J.E.; Tsai, M.L.; Dakhil, C.S.; Stella, P.; Shen, V.; et al. Final Efficacy Results from B-F1RST, a Prospective Phase II Trial Evaluating Blood-Based Tumour Mutational Burden (bTMB) as a Predictive Biomarker for Atezolizumab (atezo) in 1L Non-Small Cell Lung Cancer (NSCLC). Ann. Oncol. 2019, 30, v919–v920. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Meng, G.; Liu, X.; Ma, T.; Lv, D.; Sun, G. Predictive Value of Tumor Mutational Burden for Immunotherapy in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0263629. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kronbichler, A.; Eisenhut, M.; Hong, S.H.; van der Vliet, H.J.; Kang, J.; Shin, J.I.; Gamerith, G. Tumor Mutational Burden and Efficacy of Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2019, 11, 1798. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.C.; Yee, S.S.; Troxel, A.B.; Savitch, S.L.; Fan, R.; Balli, D.; Lieberman, D.B.; Morrissette, J.D.; Evans, T.L.; Bauml, J.; et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin. Cancer Res. 2016, 22, 5772–5782. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Dephoure, N.; Sun, H.; Zhang, H.; Fan, F.; Liu, J.; Ning, X.; Dai, S.; Liu, B.; Gao, M.; et al. Proteomic Profiling of Paclitaxel Treated Cells Identifies a Novel Mechanism of Drug Resistance Mediated by PDCD4. J. Proteome Res. 2015, 14, 2480–2491. [Google Scholar] [CrossRef] [PubMed]
- Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Baek, R.; Jakobsen, K.R.; Meldgaard, P.; Folkersen, B.H.; Rasmussen, T.R.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal Proteins as Prognostic Biomarkers in Non-Small Cell Lung Cancer. Mol. Oncol. 2016, 10, 1595–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandfeld-Paulsen, B.; Jakobsen, K.R.; Bæk, R.; Folkersen, B.H.; Rasmussen, T.R.; Meldgaard, P.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal Proteins as Diagnostic Biomarkers in Lung Cancer. J. Thorac. Oncol. 2016, 11, 1701–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorc, V.; Novello, S.; Lazzari, C.; Barni, S.; Aieta, M.; Mencoboni, M.; Grossi, F.; De Pas, T.; de Marinis, F.; Bearz, A.; et al. Predictive Value of a Proteomic Signature in Patients with Non-Small-Cell Lung Cancer Treated with Second-Line Erlotinib or Chemotherapy (PROSE): A Biomarker-Stratified, Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 713–721. [Google Scholar] [CrossRef]
- Salmon, S.; Chen, H.; Chen, S.; Herbst, R.; Tsao, A.; Tran, H.; Sandler, A.; Billheimer, D.; Shyr, Y.; Lee, J.-W.; et al. Classification by Mass Spectrometry Can Accurately and Reliably Predict Outcome in Patients with Non-Small Cell Lung Cancer Treated with Erlotinib-Containing Regimen. J. Thorac. Oncol. 2009, 4, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.H.; Seeley, E.H.; Roder, H.; Grigorieva, J.; Tsypin, M.; Roder, J.; Burtness, B.A.; Argiris, A.; Forastiere, A.A.; Gilbert, J.; et al. Detection of Tumor Epidermal Growth Factor Receptor Pathway Dependence by Serum Mass Spectrometry in Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2010, 19, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, F.; Solomon, B.; Gregorc, V.; Roder, H.; Gray, R.; Kasahara, K.; Nishio, M.; Brahmer, J.; Spreafico, A.; Ludovini, V.; et al. Mass Spectrometry to Classify Non–Small-Cell Lung Cancer Patients for Clinical Outcome After Treatment With Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Multicohort Cross-Institutional Study. JNCI J. Natl. Cancer Inst. 2007, 99, 838–846. [Google Scholar] [CrossRef]
- Lazzari, C.; Spreafico, A.; Bachi, A.; Roder, H.; Floriani, I.; Garavaglia, D.; Cattaneo, A.; Grigorieva, J.; Viganò, M.G.; Sorlini, C.; et al. Changes in Plasma Mass-Spectral Profile in Course of Treatment of Non-Small Cell Lung Cancer Patients with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2012, 7, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Carbone, D.P.; Ding, K.; Roder, H.; Grigorieva, J.; Roder, J.; Tsao, M.-S.; Seymour, L.; Shepherd, F.A. Prognostic and Predictive Role of the VeriStrat Plasma Test in Patients with Advanced Non–Small-Cell Lung Cancer Treated with Erlotinib or Placebo in the NCIC Clinical Trials Group BR.21 Trial. J. Thorac. Oncol. 2012, 7, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Fidler, M.J.; Fhied, C.L.; Roder, J.; Basu, S.; Sayidine, S.; Fughhi, I.; Pool, M.; Batus, M.; Bonomi, P.; Borgia, J.A. The Serum-Based VeriStrat® Test Is Associated with Proinflammatory Reactants and Clinical Outcome in Non-Small Cell Lung Cancer Patients. BMC Cancer 2018, 18, 310. [Google Scholar] [CrossRef]
- Grossi, F.; Genova, C.; Rijavec, E.; Barletta, G.; Biello, F.; Bello, M.G.D.; Meyer, K.; Roder, J.; Roder, H.; Grigorieva, J. Prognostic Role of the VeriStrat Test in First Line Patients with Non-Small Cell Lung Cancer Treated with Platinum-Based Chemotherapy. Lung Cancer 2018, 117, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Mintz, Y.; Brodie, R. Introduction to Artificial Intelligence in Medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Campbell, J.P.; Beers, A.; Chang, K.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; et al. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018, 136, 803–810. [Google Scholar] [CrossRef]
- Baltruschat, I.M.; Nickisch, H.; Grass, M.; Knopp, T.; Saalbach, A. Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. Sci. Rep. 2019, 9, 6381. [Google Scholar] [CrossRef] [Green Version]
- Bibault, J.-E.; Burgun, A.; Fournier, L.; Dekker, A.; Lambin, P. Artificial Intelligence in Oncology. Artif. Intell. Med. 2021, 361–381. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.J.; Kesselheim, A.S.; Vokinger, K.N. Lifecycle Regulation of Artificial Intelligence- and Machine Learning-Based Software Devices in Medicine. JAMA 2019, 322, 2285. [Google Scholar] [CrossRef]
- Jiang, Y.; Edwards, A.V.; Newstead, G.M. Artificial Intelligence Applied to Breast MRI for Improved Diagnosis. Radiology 2021, 298, 38–46. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Aerts, H.J.W.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S.R.; Verlingue, L.; Brandao, D.; Lancia, A.; Ammari, S.; et al. A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-PD-1 or Anti-PD-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. Lancet Oncol. 2018, 19, 1180–1191. [Google Scholar] [CrossRef]
- Chiu, H.-Y.; Chao, H.-S.; Chen, Y.-M. Application of Artificial Intelligence in Lung Cancer. Cancers 2022, 14, 1370. [Google Scholar] [CrossRef]
- Poore, G.D.; Kopylova, E.; Zhu, Q.; Carpenter, C.; Fraraccio, S.; Wandro, S.; Kosciolek, T.; Janssen, S.; Metcalf, J.; Song, S.J.; et al. Microbiome Analyses of Blood and Tissues Suggest Cancer Diagnostic Approach. Nature 2020, 579, 567–574. [Google Scholar] [CrossRef]
- Tirzïte, M.; Bukovskis, M.; Strazda, G.; Jurka, N.; Taivans, I. Detection of Lung Cancer with Electronic Nose and Logistic Regression Analysis. J. Breath Res. 2018, 13, 016006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and Mutation Prediction from Non–small Cell Lung Cancer Histopathology Images Using Deep Learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Shao, J.; Zhang, S.; Liu, Z.; Yu, Y.; Li, W. Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images. Front. Immunol. 2022, 13, 813072. [Google Scholar] [CrossRef]
- Choi, S.; Cho, S.I.; Ma, M.; Park, S.; Pereira, S.; Aum, B.J.; Shin, S.; Paeng, K.; Yoo, D.; Jung, W.; et al. Artificial Intelligence–powered Programmed Death Ligand 1 Analyser Reduces Interobserver Variation in Tumour Proportion Score for Non–small Cell Lung Cancer with Better Prediction of Immunotherapy Response. Eur. J. Cancer 2022, 170, 17–26. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, F.; Xing, Y.; Hu, X.; Zhang, H.; Chen, S.; Li, M.; Peng, C.; Ding, G.; Zhang, D.; et al. Artificial Intelligence-Assisted Score Analysis for Predicting the Expression of the Immunotherapy Biomarker PD-L1 in Lung Cancer. Front. Immunol. 2022, 13, 893198. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, C.; Liu, X.; Sun, W.; Li, L.; Gao, N.; Zhang, Y.; Yang, X.; Zhang, J.; Wang, H.; et al. Artificial Intelligence-Assisted System for Precision Diagnosis of PD-L1 Expression in Non-Small Cell Lung Cancer. Mod. Pathol. 2022, 35, 403–411. [Google Scholar] [CrossRef] [PubMed]
Biomarker (S) | Method | Specimen | Population | Sensitivity and Specificity (%) | Reference |
---|---|---|---|---|---|
MGMT, p16, RASSF1A, DAPK, and RAR-β | Meta-analysis | Blood | 37 case-control studies | NA | [36] |
APC, CDH13, KLK10, DLEC1, RASSF1A, EFEMP1, SFRP1, RARβ and p16INK4A | MSP | Tissues | 78 paired NSCLC specimens and adjacent normal tissues 110 stage I/II NSCLC and 50 plasmas cancer-free | 83.64 and 74.0 | [37] |
RARB2, RASSF1A | Quantitative methylation-specific PCR | Cell-Free DNA circulating in the blood (cirDNA) | 32 healthy donors and 60 patients with lung cancer | 87 and 75 | [38] |
SHOX2 | Quantitative real-time polymerase chain reaction | Plasma | 371 samples from patients with lung cancer and controls | 60 and 90 | [39] |
DCLK1 | qMSP-PCR | Plasma | 65 patients with lung cancer and 95 healthy donors | NA | [39,40] |
SEPT9 | Real-time PCR with the use of specific SEPT9 promoter methylation probe | Plasma | 70 lung cancer patients and 100 healthy individuals | 44.3 and 92.3 | [41] |
CDO1, BCAT1, TRIM58, ZNF177 | Pyrosequencing | Paraffin- embedded tissues Bronchial aspirates and bronchoalveolar lavages | 237 stage I NSCLC and 25 nontumoral matched lung tissues | NA | [42] |
TMEFF2 | Methylation-specific PCR | Serum | 316 NSCLC, 50 NC | 9.2 and 100 | [43] |
Biomarkers | Specimen | Population | Result | Sensitivity and Specificity (%) | Reference |
---|---|---|---|---|---|
13 miRNA | Plasma | 939 participants, including 69 patients with lung cancer and 870 healthy control subjects | Screening | 87 and 81 | [53] |
miR-31 and miR-210 | Sputum | 35 patients with lung cancer and 40 healthy control subjects | Screening | 65.71 and 85.00 | [53,54] |
miR-125a-5p, miR-25, and miR-126 | Serum | 24 early stage lung cancer patients and 24 healthy control subjects | Early Detection | 87.5 and 87.5 | [49] |
miR-21, miR-143, miR- 155, miR-210, miR-372 | Sputum | 24 NSCLC cases and 6 negative controls | Early Detection | 83.3 and 100 | [55] |
miR-141 | Plasma | NSCLC patients (n: 72) and N.C. (n: 50) | Early Detection | 82.7 and 98 | [56] |
miRNA (miR)-486 and miR-150 | Peripheral Blood | Early Diagnosis and Recurrence | 90.9 and 81.8 for miR-486 and 81.8 for miR-150 | [57] | |
miRs-126, 145, 210, and 205-5p | Plasma | 64 individuals comprising 34 lung cancer patients and 30 healthy control smokers | Early Detection | 91.5 and 96.2 | [58] |
I-miR-1254 and hsamiR-574-5p | Serum | 22 individuals (11 healthy control subjects and 11 patients with early stage NSCLC). | Early Detection | 82 and 77 | [58,59] |
Biomarker | Method | Specimen | Population | Sensitivity and Specificity (%) | Reference |
---|---|---|---|---|---|
FTL, FGB, RAB33B, RAB15 | LC-MS/MS | Urine | Lung cancers from healthy control subjects | 90 and 90 | [69] |
ERO1L, NARS, PABPC4, RCC1, RPS25, TARS | (iTRAQ) labeling combined with 2D-LCMS/M.S. | Tumor and Lung Tissues | ADC tumors without L.N. metastasis and adjacent normal tissues | NA | [70] |
44 proteins showed a fold-change > 3.75 | (L.C.–MS/MS) | Bronchoalveolar Lavage Fluid (BALF) | Adenocarcinoma vs. healthy control subjects | NA | [71] |
133 biomarkers | LC-MS | Bronchoalveolar Lavage (BAL) | Lung cancer versus nonlung cancer | NA | [71,72] |
GlcNAcylated AACT | iTRAQ labeling and LC-MS/MS. | Serum | NSCLC patients, benign lung diseases subjects, and healthy individuals | 90.8 and 76.9 | [73] |
α2 macroglobulin, αmicroglobulin/bikunin, and SERPINA1 | MRM | Serum | NSCLC lung adenocarcinoma cancer and healthy control subjects | NA | [74] |
Elongation factor 1- alpha 2, proteasome subunit alpha type, and spermatogenesis-associated protein | LC-MS/MS | Serum | Lung cancer and healthy control subjects | NA | [75] |
ALOX5, ALOX5AP, SLC2A3, CEACAM6, ITGAX, CRABP2, LAD1 | LC-MS, PMR-MS, and immunohistochemistry | Tissues and Normal Bronchial Biopsies | Adenocarcinoma samples and benign nodules | NA | [76] |
NCT Number | Clinical Phase | Types of Patients | Purpose | Primary End Points | Intervention/s |
---|---|---|---|---|---|
NCT04467801 | II | 60 metastatic/advanced NSCLC | Treatment | Progression-free survival | Ipatasertib |
NCT04184921 | NA | 350 advanced lung cancer patients | NA | Progression-free survival | Osimertinib |
NCT03543683 | NA | 330 metastatic NSCLC | NA | 1-year median progression-free survival | Osimertinib |
NCT03532698 | NA | 100 stage IIIB and IV NSCLC | NA | Objective response rate (ORR) | Osimertinib |
NCT03845270 | II | 46 stage III or IV NSCLC | Treatment | Overall response | Pertuzumab + Trastuzumab + Docetaxel |
NCT01306045 | II | 471 advanced NSCLC, SCLC, and thymic malignancies | Treatment | Estimate the response rate and feasibility of the use of tumor molecular profiling and targeted therapies in the treatment of NSCLC, SCLC, and thymic malignancies | AZD6244 MK-2206 Lapatinib Erlotinib Sunitinib |
NCT02664935 | II | 423 NSCLC stage III or stage IV | Treatment | Objective response (OR), progression-free survival time (PFS), and durable clinical benefit (DCB) | AZD4547 Vistusertib Palbociclib Crizotinib Selumetinib Docetaxel AZD5363 Osimertinib Durvalumab Sitravatinib AZD6738 |
NCT02117167 | II | 999 metastatic relapse or stage IV | Treatment | Progression-free survival | AZD2014 AZD4547 AZD5363 AZD8931 Selumetinib Vandetanib Pemetrexed Durvalumab Savolitinib Olaparib |
NCT04591431 | II | 384 recurrent/metastatic breast, gastrointestinal cancer, non-small-cell lung cancer, or others | Treatment | Overall response rate (ORR) | Erlotinib Trastuzumab Trastuzumab emtansine Pertuzumab Lapatinib Everolimus Vemurafenib Cobimetinib Alectinib Brigatinib Palbociclib Ponatinib Vismogedib Itacitinib Ipatasertib Entrectinib Atezolizumab Nivolumab Ipilimumab Pemigatinib |
NCT04467801 | II | 60 metastatic/advanced NSCLC | Treatment | Progression Free Survival | Ipatasertib |
NCT04184921 | NA | 350 advanced lung cancer | NA | Progression-free survival | Osimertinib |
NCT03543683 | NA | 330 metastatic NSCLC | NA | 1-year median progression-free survival (PFS) | Osimertinib |
NCT03532698 | NA | 100 metastatic NSCLC | NA | Objective response rate (ORR) | Osimertinib |
NCT03845270 | II | 46 stage III and metastatic | Treatment | Overall response | Pertuzumab + Trastuzumab + Docetaxel |
NCT01306045 | II | AZD6244 MK-2206 Lapatinib Erlotinib Sunitinib | |||
NCT02664935 | II | AZD4547 Vistusertib Palbociclib Crizotinib Selumetinib Docetaxel AZD5363 Osimertinib Durvalumab Sitravatinib AZD6738 | |||
NCT02117167 | II | AZD2014 AZD4547 AZD5363 AZD8931 Selumetinib Vandetanib Pemetrexed Durvalumab Savolitinib Olaparib | |||
NCT04591431 | II | Erlotinib Trastuzumab Trastuzumab emtansine Pertuzumab Lapatinib Everolimus Vemurafenib Cobimetinib Alectinib Brigatinib Palbociclib Ponatinib Vismogedib Itacitinib Ipatasertib Entrectinib Atezolizumab Nivolumab Ipilimumab Pemigatinib | |||
NCT01737502 | I and II | 47 lung cancer (squamous, Ras-mutated adenocarcinoma, or small-cell lung cancer) | Treatment | Maximum tolerated dose of Auranofin, number and severity of all adverse events, and progression-free survival | Auranofin Sirolimus |
NCT05445791 | III | Metformin Hydrochloride | |||
NCT02664935 | II | AZD4547 Vistusertib Palbociclib Crizotinib Selumetinib Docetaxel AZD5363 Osimertinib Durvalumab Sitravatinib AZD6738 | |||
NCT02117167 | II | AZD2014 AZD4547 AZD5363 AZD8931 Selumetinib Vandetanib Pemetrexed Durvalumab Savolitinib Olaparib | |||
NCT04591431 | II | Erlotinib Trastuzumab Pertuzumab Lapatinib Everolimus Vemurafenib Cobimetinib Alectinib Brigatinib Palbociclib Ponatinib Vismogedib Itacitinib Ipatasertib Entrectinib Atezolizumab Nivolumab Ipilimumab Pemigatinib | |||
NCT05144698 | II | 22 advanced metastatic, recurrent, and unresectable solid tumors | Treatment | Safety of RAPA-201 Cell Therapy | RAPA-201 Rapamycin-Resistant T Cells Chemotherapy Prior to RAPA-201 Therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasian, M.H.; Ardekani, A.M.; Sobhani, N.; Roudi, R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers 2022, 14, 5144. https://doi.org/10.3390/cancers14205144
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers. 2022; 14(20):5144. https://doi.org/10.3390/cancers14205144
Chicago/Turabian StyleAbbasian, Mohammad Hadi, Ali M. Ardekani, Navid Sobhani, and Raheleh Roudi. 2022. "The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment" Cancers 14, no. 20: 5144. https://doi.org/10.3390/cancers14205144
APA StyleAbbasian, M. H., Ardekani, A. M., Sobhani, N., & Roudi, R. (2022). The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers, 14(20), 5144. https://doi.org/10.3390/cancers14205144