Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CT Imaging Characteristics and Scanning Protocol
2.3. Segmentation Pipeline
2.4. Classification Pipeline
3. Results
3.1. Study Population
3.2. Classification Performance Using the Spleen Mask
3.3. Classification Performance Using the Whole Abdominal Volume (Dense-Abd)
3.4. Occlusion Sensitivity Maps Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saboo, S.S.; Krajewski, K.M.; O’Regan, K.N.; Giardino, A.; Brown, J.R.; Ramaiya, N.; Jagannathan, J.P. Spleen in Haematological Malignancies: Spectrum of Imaging Findings. Br. J. Radiol. 2012, 85, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronte, V.; Pittet, M.J. The Spleen in Local and Systemic Regulation of Immunity. Immunity 2013, 39, 806–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasi, M.D.; Cavanna, L.; Fornari, F.; Vallisa, D.; Buscarini, E.; Civardi, G.; Rossi, S.; Bertè, R.; Tansini, P.; Buscarini, L. Splenic Lesions in Hodgkin’s and Non-Hodgkin’s Lymphomas. An Ultrasonographic Study. Eur. J. Ultrasound 1995, 2, 117–124. [Google Scholar] [CrossRef]
- Pozo, A.L.; Godfrey, E.M.; Bowles, K.M. Splenomegaly: Investigation, Diagnosis and Management. Blood Rev. 2009, 23, 105–111. [Google Scholar] [CrossRef]
- Jaffe, E.S. The 2008 WHO Classification of Lymphomas: Implications for Clinical Practice and Translational Research. Hematology 2009, 2009, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Leite, N.P.; Kased, N.; Hanna, R.F.; Brown, M.A.; Pereira, J.M.; Cunha, R.; Sirlin, C.B. Cross-Sectional Imaging of Extranodal Involvement in Abdominopelvic Lymphoproliferative Malignancies1. Radiographics 2007, 27, 1613–1634. [Google Scholar] [CrossRef]
- Guermazi, A.; Brice, P.; de Kerviler, E.; Fermé, C.; Hennequin, C.; Meignin, V.; Frija, J. Extranodal Hodgkin Disease: Spectrum of Disease. Radiographics 2001, 21, 161–179. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, Q.; Duan, L.; Tian, T.; Zhang, X.; Li, J.; Qiu, H. The Significance of Pre-Therapeutic F-18-FDG PET–CT in Lymphoma-Associated Hemophagocytic Lymphohistiocytosis When Pathological Evidence Is Unavailable. J. Cancer Res. Clin. 2016, 142, 859–871. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, R.A. Splenomegaly in 2,505 Patients in a Large University Medical Center from 1913 to 1995. 1913 to 1962: 2,056 Patients. West J. Med. 1998, 169, 78–87. [Google Scholar]
- Swaroop, J.; O’Reilly, R.A. Splenomegaly at a University Hospital Compared to a Nearby County Hospital in 317 Patients. Acta Haematol. 1999, 102, 83–88. [Google Scholar] [CrossRef]
- O’Reilly, R.A. Splenomegaly at a United States County Hospital: Diagnostic Evaluation of 170 Patients. Am. J. Med. Sci. 1996, 312, 160–165. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A.; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J. Clin. Oncol. 2014, 32, 3059–3067. [Google Scholar] [CrossRef] [PubMed]
- Meddeb, A.; Kossen, T.; Bressem, K.K.; Hamm, B.; Nagel, S.N. Evaluation of a Deep Learning Algorithm for Automated Spleen Segmentation in Patients with Conditions Directly or Indirectly Affecting the Spleen. Tomography 2021, 7, 950–960. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Croock, M.S.; Salman, A.D.; Al-khafaji, H.F.; Yahya, Z.A.; Ghoraani, B. Intracranial Hemorrhage Segmentation Using a Deep Convolutional Model. Data 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Yogananda, C.G.B.; Shah, B.R.; Vejdani-Jahromi, M.; Nalawade, S.S.; Murugesan, G.K.; Yu, F.F.; Pinho, M.C.; Wagner, B.C.; Emblem, K.E.; Bjørnerud, A.; et al. A Fully Automated Deep Learning Network for Brain Tumor Segmentation. Tomography 2020, 6, 186–193. [Google Scholar] [CrossRef]
- Altini, N.; Prencipe, B.; Cascarano, G.D.; Brunetti, A.; Brunetti, G.; Triggiani, V.; Carnimeo, L.; Marino, F.; Guerriero, A.; Villani, L.; et al. Liver, Kidney and Spleen Segmentation from CT Scans and MRI with Deep Learning: A Survey. Neurocomputing 2022, 490, 30–53. [Google Scholar] [CrossRef]
- Krasoń, A.; Woloshuk, A.; Spinczyk, D. Segmentation of Abdominal Organs in Computed Tomography Using a Generalized Statistical Shape Model. Comput. Med. Imag. Grap. 2019, 78, 101672. [Google Scholar] [CrossRef]
- Rickmann, A.-M.; Senapati, J.; Kovalenko, O.; Peters, A.; Bamberg, F.; Wachinger, C. AbdomenNet: Deep Neural Network for Abdominal Organ Segmentation in Epidemiologic Imaging Studies. BMC Med. Imaging 2022, 22, 168. [Google Scholar] [CrossRef]
- Humpire-Mamani, G.E.; Bukala, J.; Scholten, E.T.; Prokop, M.; van Ginneken, B.; Jacobs, C. Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning. Radiol. Artif. Intell. 2020, 2, e190102. [Google Scholar] [CrossRef]
- Huo, Y.; Xu, Z.; Bao, S.; Bermudez, C.; Moon, H.; Parvathaneni, P.; Moyo, T.K.; Savona, M.R.; Assad, A.; Abramson, R.G.; et al. Splenomegaly Segmentation on Multi-Modal MRI Using Deep Convolutional Networks. IEEE T. Med. Imaging 2019, 38, 1185–1196. [Google Scholar] [CrossRef] [Green Version]
- Reinert, C.P.; Kloth, C.; Fritz, J.; Nikolaou, K.; Horger, M. Discriminatory CT-Textural Features in Splenic Infiltration of Lymphoma versus Splenomegaly in Liver Cirrhosis versus Normal Spleens in Controls and Evaluation of Their Role for Longitudinal Lymphoma Monitoring. Eur. J. Radiol. 2018, 104, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Fang, M.; Huang, Y.; He, L.; Chen, X.; Liang, C.; Huang, X.; Cheng, Z.; Dong, D.; Liang, C.; et al. CT-Based Radiomics Signature for Differentiating Borrmann Type IV Gastric Cancer from Primary Gastric Lymphoma. Eur. J. Radiol. 2017, 91, 142–147. [Google Scholar] [CrossRef]
- Lisson, C.S.; Lisson, C.G.; Mezger, M.F.; Wolf, D.; Schmidt, S.A.; Thaiss, W.M.; Tausch, E.; Beer, A.J.; Stilgenbauer, S.; Beer, M.; et al. Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma. Cancers 2022, 14, 2008. [Google Scholar] [CrossRef] [PubMed]
- The MONAI Consortium. Project MONAI. 2020. Available online: https://zenodo.org/record/7245821#.Y2mzNORBxPY (accessed on 20 April 2021).
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2016. [Google Scholar]
- Iqbal, H. PlotNeuralNet. Available online: https://github.com/HarisIqbal88/PlotNeuralNet (accessed on 22 October 2022).
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J. Digit Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Nowak, S.; Faron, A.; Luetkens, J.A.; Geißler, H.L.; Praktiknjo, M.; Block, W.; Thomas, D.; Sprinkart, A.M. Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis: A Deep Learning Approach. Invest. Radiol. 2020, 55, 357–366. [Google Scholar] [CrossRef]
- Nishio, M.; Kobayashi, D.; Nishioka, E.; Matsuo, H.; Urase, Y.; Onoue, K.; Ishikura, R.; Kitamura, Y.; Sakai, E.; Tomita, M.; et al. Deep Learning Model for the Automatic Classification of COVID-19 Pneumonia, Non-COVID-19 Pneumonia, and the Healthy: A Multi-Center Retrospective Study. Sci. Rep. 2022, 12, 8214. [Google Scholar] [CrossRef]
- Li, L.; Duan, M.; Chen, W.; Jiang, A.; Li, X.; Yang, J.; Li, Z. The Spleen in Liver Cirrhosis: Revisiting an Old Enemy with Novel Targets. J. Transl. Med. 2017, 15, 111. [Google Scholar] [CrossRef] [Green Version]
- Palmiere, C.; Tettamanti, C.; Scarpelli, M.P.; Tse, R. The Forensic Spleen: Morphological, Radiological, and Toxicological Investigations. Forensic. Sci. Int. 2018, 291, 94–99. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Wang, X.; Sun, J.; Zhang, W.; Yang, X.; Zhu, C.; Pan, B.; Zeng, Y.; Xu, J.; Chen, X.; Shen, X. Use of Radiomics to Extract Splenic Features to Predict Prognosis of Patients with Gastric Cancer. Eur. J. Surg. Oncol. 2020, 46, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, L.; Li, Z.; Li, J.; Ye, W.; Shi, Z.; Xu, Z.; Zhu, C.; Ye, H.; Liu, Z.; et al. Spleen Radiomics Signature: A Potential Biomarker for Prediction of Early and Late Recurrences of Hepatocellular Carcinoma After Resection. Front. Oncol. 2021, 11, 716849. [Google Scholar] [CrossRef] [PubMed]
- Enke, J.S.; Moltz, J.H.; D’Anastasi, M.; Kunz, W.G.; Schmidt, C.; Maurus, S.; Mühlberg, A.; Katzmann, A.; Sühling, M.; Hahn, H.; et al. Radiomics Features of the Spleen as Surrogates for CT-Based Lymphoma Diagnosis and Subtype Differentiation. Cancers 2022, 14, 713. [Google Scholar] [CrossRef]
- Lu, L.; Liang, Y.; Schwartz, L.H.; Zhao, B. Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom. Tomography 2019, 5, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Kim, D.; Elgeti, T.; Steffen, I.G.; Hamm, B.; Nagel, S.N. Stability of Radiomic Features across Different Region of Interest Sizes—A CT and MR Phantom Study. Tomography 2021, 7, 238–252. [Google Scholar] [CrossRef]
- Gulzar, Y.; Khan, S.A. Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A Comparative Study. Appl. Sci. 2022, 12, 5990. [Google Scholar] [CrossRef]
- Luetkens, J.A.; Nowak, S.; Mesropyan, N.; Block, W.; Praktiknjo, M.; Chang, J.; Bauckhage, C.; Sifa, R.; Sprinkart, A.M.; Faron, A.; et al. Deep Learning Supports the Differentiation of Alcoholic and Other-than-Alcoholic Cirrhosis Based on MRI. Sci. Rep. 2022, 12, 8297. [Google Scholar] [CrossRef]
- Hwang, E.J.; Park, C.M. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges. Korean J. Radiol. 2020, 21, 511–525. [Google Scholar] [CrossRef] [Green Version]
- Even-Sapir, E.; Lievshitz, G.; Perry, C.; Herishanu, Y.; Lerman, H.; Metser, U. Fluorine-18 Fluorodeoxyglucose PET/CT Patterns of Extranodal Involvement in Patients with Non-Hodgkin Lymphoma and Hodgkin’s Disease. Radiol. Clin. N. A. 2007, 45, 697–709. [Google Scholar] [CrossRef]
Clinical Factors | Training and Validation Cohort | Testing Cohort |
---|---|---|
Number of patients | 124 | 25 |
Female | 47 (38%) | 12 (48%) |
Age * | 58.3 ± 14.7 | 56.2 ± 16 |
Cirrhosis with portal hypertension | 64 | 13 |
Three most frequent lymphoma subtypes: | ||
DLBCL | 13 | 6 |
FL | 14 | 3 |
TCL | 5 | 2 |
Other ** | 30 | 2 |
DL Models | Training Cohort (n = 124) | Testing Cohort (n = 25) | ||||||
---|---|---|---|---|---|---|---|---|
AUC | ACC | SEN | SPE | AUC | ACC | SEN | SPE | |
Dense-Spl | 0.84 | 0.84 | 0.77 | 0.91 | 0.81 | 0.76 | 0.69 | 0.83 |
ResNet-Spl | 0.82 | 0.79 | 0.62 | 0.90 | 0.77 | 0.64 | 0.3 | 1 |
Dense-Abd | 0.88 | 0.88 | 0.85 | 0.92 | 0.88 | 0.88 | 1 | 0.75 |
ResNet-Abd | 0.86 | 0.84 | 0.76 | 0.91 | 0.80 | 0.80 | 0.69 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meddeb, A.; Kossen, T.; Bressem, K.K.; Molinski, N.; Hamm, B.; Nagel, S.N. Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly. Cancers 2022, 14, 5476. https://doi.org/10.3390/cancers14225476
Meddeb A, Kossen T, Bressem KK, Molinski N, Hamm B, Nagel SN. Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly. Cancers. 2022; 14(22):5476. https://doi.org/10.3390/cancers14225476
Chicago/Turabian StyleMeddeb, Aymen, Tabea Kossen, Keno K. Bressem, Noah Molinski, Bernd Hamm, and Sebastian N. Nagel. 2022. "Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly" Cancers 14, no. 22: 5476. https://doi.org/10.3390/cancers14225476
APA StyleMeddeb, A., Kossen, T., Bressem, K. K., Molinski, N., Hamm, B., & Nagel, S. N. (2022). Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly. Cancers, 14(22), 5476. https://doi.org/10.3390/cancers14225476