Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Mice
2.2. Construction, Expression, and Purification of ROR1 Fusion Proteins
2.3. Mouse Vaccination and Sample Collection
2.3.1. Humoral Responses to Fusion Proteins
2.3.2. Cytokine Responses to Fusion Proteins
2.3.3. Frequency of Cytotoxic T Lymphocyte Responding to ROR1+ Tumor Cells
2.4. Assessment of the Protective Efficacy of the Fusion Proteins in Mouse Tumor Models
2.5. Statistical Analysis
3. Results
3.1. Production and Characterization of Fusion Proteins
3.2. ROR1 Fusion Proteins Induced Potent mROR-1specific Immune Responses in Immunized Mice
3.3. TT Carrier Peptides Mediate a Strong Cytokine Response against Fusion Proteins
3.4. TT Peptides Formulated Fusion Proteins Induce Potent TCD8+ Response against ROR1+ Tumor Cells
3.5. Immunization with Fusion Proteins Inhibits Tumor Growth in Mice Implanted with Syngeneic ROR1+ Tumor Cells
3.6. Immunization with ROR1+ Fusion Proteins Decreased the Frequencies of Treg and MDSC Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Mohseni Afshar, Z.; Hosseinzadeh, R.; Barary, M.; Ebrahimpour, S.; Alijanpour, A.; Sayad, B.; Hosseinzadeh, D.; Miri, S.R.; Sio, T.T.; Sullman, M.J. Challenges posed by COVID-19 in cancer patients: A narrative review. Cancer Med. 2022, 11, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Feng, Y.; Zhang, J.; Swinnen, J.; Li, Y.; Ni, Y. A review on curability of cancers: More efforts for novel therapeutic options are needed. Cancers 2019, 11, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moletta, L.; Serafini, S.; Valmasoni, M.; Pierobon, E.S.; Ponzoni, A.; Sperti, C. Surgery for recurrent pancreatic cancer: Is it effective? Cancers 2019, 11, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.L.; Basu, S.; Soni, V.; Jaiswal, R.K. Immunotherapy: An alternative promising therapeutic approach against cancers. Mol. Biol. Rep. 2022, 49, 9903–9913. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target 2022, 7, 39. [Google Scholar] [CrossRef]
- Bondhopadhyay, B.; Sisodiya, S.; Chikara, A.; Khan, A.; Tanwar, P.; Afroze, D.; Singh, N.; Agrawal, U.; Mehrotra, R.; Hussain, S. Cancer immunotherapy: A promising dawn in cancer research. Am. J. Blood Res. 2020, 10, 375–385. [Google Scholar]
- Zhang, Z.; Lu, M.; Qin, Y.; Gao, W.; Tao, L.; Su, W.; Zhong, J. Neoantigen: A new breakthrough in tumor immunotherapy. Front. Immunol. 2021, 12, 1297. [Google Scholar] [CrossRef]
- Pallerla, S.; Abdul, A.u.R.M.; Comeau, J.; Jois, S. Cancer vaccines, treatment of the future: With emphasis on her2-positive breast cancer. Int. J. Mol. Sci. 2021, 22, 779. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Buonaguro, L.; Tagliamonte, M. Selecting target antigens for cancer vaccine development. Vaccines 2020, 8, 615. [Google Scholar] [CrossRef]
- Chodon, T.; Koya, R.C.; Odunsi, K. Active immunotherapy of cancer. Immunol. Investig. 2015, 44, 817–836. [Google Scholar] [CrossRef]
- Corti, C.; Giachetti, P.P.; Eggermont, A.M.; Delaloge, S.; Curigliano, G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur. J. Cancer 2022, 160, 150–174. [Google Scholar] [CrossRef]
- Makkouk, A.; Weiner, G.J. Cancer immunotherapy and breaking immune tolerance: New approaches to an old challenge. Cancer Res. 2015, 75, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, D.M.; Byrne, S.N.; Payne, R.J. Synthetic self-adjuvanting glycopeptide cancer vaccines. Front. Chem. 2015, 3, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, B.F.; Ferreira, C.P.; de Vasconcelos, J.R.C.; Han, S.W. scFv6. C4 DNA vaccine with fragment C of Tetanus toxin increases protective immunity against CEA-expressing tumor. Gene Ther. 2019, 26, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; He, L.; Zhao, Z.; Gu, H.; Fang, X.; Wang, T.; Yang, X.; Chen, S.; Deng, Y.; Li, J. Recombinant vaccine containing an RBD-Fc fusion induced protection against SARS-CoV-2 in nonhuman primates and mice. Cell. Mol. Immunol. 2021, 18, 1070–1073. [Google Scholar] [CrossRef] [PubMed]
- Soleimanpour, S.; Hassannia, T.; Motiee, M.; Amini, A.A.; Rezaee, S. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: Immunological, biochemical and therapeutic properties. Crit. Rev. Biotechnol. 2017, 37, 371–392. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, D.; Guo, Y.; Lu, B.; Zhao, Z.J.; Xu, X.; Chen, Y. Tyrosine Kinase ROR1 as a Target for Anti-Cancer Therapies. Front. Oncol. 2021, 11, 680834. [Google Scholar] [CrossRef]
- Wang, M.L.; Barrientos, J.C.; Furman, R.R.; Mei, M.; Barr, P.M.; Choi, M.Y.; de Vos, S.; Kallam, A.; Patel, K.; Kipps, T.J. Zilovertamab vedotin targeting of ROR1 as therapy for lymphoid cancers. NEJM Evid. 2022, 1, EVIDoa2100001. [Google Scholar] [CrossRef]
- Hojjat-Farsangi, M.; Jeddi-Tehrani, M.; Daneshmanesh, A.H.; Mozaffari, F.; Moshfegh, A.; Hansson, L.; Razavi, S.M.; Sharifian, R.A.; Rabbani, H.; Österborg, A. Spontaneous immunity against the receptor tyrosine kinase ROR1 in patients with chronic lymphocytic leukemia. PLoS ONE 2015, 10, e0142310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Cui, B.; Lai, H.; Liu, G.; Ghia, E.M.; Widhopf, G.F.; Zhang, Z.; Wu, C.C.; Chen, L.; Wu, R. Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy. Proc. Natl. Acad. Sci. USA 2014, 111, 17266–17271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Sadri-Ardalani, F.; Amiri, M.M.; Jeddi-Tehrani, M.; Shabani, M.; Shokri, F. Immunization with HER2 extracellular subdomain proteins induces cellular response and tumor growth inhibition in mice. Immunotherapy 2018, 10, 511–524. [Google Scholar] [CrossRef]
- Hassannia, H.; Amiri, M.M.; Jadidi-Niaragh, F.; Hosseini-Ghatar, R.; Khoshnoodi, J.; Sharifian, R.-A.; Golsaz-Shirazi, F.; Jeddi-Tehrani, M.; Shokri, F. Inhibition of tumor growth by mouse ROR1 specific antibody in a syngeneic mouse tumor model. Immunol. Lett. 2018, 193, 35–41. [Google Scholar] [CrossRef]
- Bayat, A.A.; Ghods, R.; Shabani, M.; Mahmoudi, A.R.; Yeganeh, O.; Hassannia, H.; Sadeghitabar, A.; Balay-Goli, L.; Noutash-Haghighat, F.; Reza Sarrafzadeh, A. Production and characterization of monoclonal antibodies against human prostate specific antigen. Avicenna J. Med. Biotechnol. 2015, 7, 2. [Google Scholar] [PubMed]
- Jadidi-Niaragh, F.; Atyabi, F.; Rastegari, A.; Kheshtchin, N.; Arab, S.; Hassannia, H.; Ajami, M.; Mirsanei, Z.; Habibi, S.; Masoumi, F. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J. Control. Release 2017, 246, 46–59. [Google Scholar] [CrossRef]
- Wagner, A.; Weinberger, B. Vaccines to prevent infectious diseases in the older population: Immunological challenges and future perspectives. Front. Immunol. 2020, 11, 717. [Google Scholar] [CrossRef] [Green Version]
- Kazuyoshi, K.; Nozaki, C. Vaccine Targets Expanding from Infectious Diseases to Non-infectious Diseases. Int. J. Eng. Sci. 2019, 3, 39–43. [Google Scholar]
- Stergiou, N.; Urschbach, M.; Gabba, A.; Schmitt, E.; Kunz, H.; Besenius, P. The Development of Vaccines from Synthetic Tumor-Associated Mucin Glycopeptides and their Glycosylation-Dependent Immune Response. Chem. Rec. 2021, 21, 3313–3331. [Google Scholar] [CrossRef] [PubMed]
- Deniger, D.C.; Yu, J.; Huls, M.H.; Figliola, M.J.; Mi, T.; Maiti, S.N.; Widhopf, G.F., 2nd; Hurton, L.V.; Thokala, R.; Singh, H. Sleeping beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS ONE 2015, 10, e0128151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, T.D.; Patel, R.S.; Cook, D.R.; Choi, M.Y.; Patil, A.; Liang, A.C.; Li, M.Z.; Haigis, K.M.; Elledge, S.J. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 2021, 373, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Gefen, T.; Vaya, J.; Khatib, S.; Rapoport, I.; Lupo, M.; Barnea, E.; Admon, A.; Heller, E.D.; Aizenshtein, E.; Pitcovski, J. The effect of haptens on protein-carrier immunogenicity. Immunology 2015, 144, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Petrushina, I.; Ghochikyan, A.; Mktrichyan, M.; Mamikonyan, G.; Movsesyan, N.; Davtyan, H.; Patel, A.; Head, E.; Cribbs, D.H.; Agadjanyan, M.G. Alzheimer’s disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Aβ species in amyloid precursor protein transgenic mice. J. Neurosci. 2007, 27, 12721–12731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Movsesyan, N.; Mkrtichyan, M.; Petrushina, I.; Ross, T.M.; Cribbs, D.H.; Agadjanyan, M.G.; Ghochikyan, A. DNA epitope vaccine containing complement component C3d enhances anti-amyloid-β antibody production and polarizes the immune response towards a Th2 phenotype. J. Neuroimmunol. 2008, 205, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Davtyan, H.; Ghochikyan, A.; Petrushina, I.; Hovakimyan, A.; Davtyan, A.; Poghosyan, A.; Marleau, A.M.; Movsesyan, N.; Kiyatkin, A.; Rasool, S. Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: Prelude to a clinical trial. J. Neurosci. 2013, 33, 4923–4934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loureiro, S.; Ren, J.; Phapugrangkul, P.; Colaco, C.A.; Bailey, C.R.; Shelton, H.; Molesti, E.; Temperton, N.J.; Barclay, W.S.; Jones, I.M. Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines. J. Virol. 2011, 85, 3010–3014. [Google Scholar] [CrossRef] [Green Version]
- Konduru, K.; Shurtleff, A.; Bavari, S.; Kaplan, G. Evaluation of ebolavirus glycoprotein Fc fusion protein as a subunit vaccine (P4417). Am. Assoc. Immnol. 2013, 190, 205–518. [Google Scholar]
- Cruz, F.M.; Colbert, J.D.; Merino, E.; Kriegsman, B.A.; Rock, K.L. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu. Rev. Immunol. 2017, 35, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Ghaedi, M.; Golsaz-Shirazi, F.; Bahadori, T.; Khoshnoodi, J.; Mortezagholi, S.; Jeddi-Tehrani, M.; Amiri, M.M.; Shokri, F. Potent anti-tumor immune response and tumor growth inhibition induced by HER2 subdomain fusion protein in a mouse tumor model. J. Cancer Res. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Krummenacher, C.; Song, S.; Gao, L.; Zhang, H.; Xu, M.; Feng, L.; Feng, Q.; Zeng, M.; et al. Immunization With Fc-Based Recombinant Epstein-Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model. Front. Immunol. 2018, 9, 932. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassannia, H.; Amiri, M.M.; Ghaedi, M.; Sharifian, R.-A.; Golsaz-Shirazi, F.; Jeddi-Tehrani, M.; Shokri, F. Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers 2022, 14, 5827. https://doi.org/10.3390/cancers14235827
Hassannia H, Amiri MM, Ghaedi M, Sharifian R-A, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers. 2022; 14(23):5827. https://doi.org/10.3390/cancers14235827
Chicago/Turabian StyleHassannia, Hadi, Mohammad Mehdi Amiri, Mojgan Ghaedi, Ramezan-Ali Sharifian, Forough Golsaz-Shirazi, Mahmood Jeddi-Tehrani, and Fazel Shokri. 2022. "Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model" Cancers 14, no. 23: 5827. https://doi.org/10.3390/cancers14235827
APA StyleHassannia, H., Amiri, M. M., Ghaedi, M., Sharifian, R. -A., Golsaz-Shirazi, F., Jeddi-Tehrani, M., & Shokri, F. (2022). Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers, 14(23), 5827. https://doi.org/10.3390/cancers14235827