Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Ultrasound Imaging of Cell Death in Tumor Response
1.2. Clinical Applications of Classification Models Developed from QUS Spectral Parametric Images Using Machine Learning Approaches
Tumors Characterization
1.3. LABC QUS Treatment Response Prediction
1.4. Head and Neck QUS Treatment Response Prediction
2. Recurrence Prediction
2.1. Recurrence Prediction of Head and Neck Cancer Using Radiomics of QUS Spectral Parametric Imaging
2.2. Recurrence Prediction of Locally-Advanced Breast Cancer Using Radiomics of QUS Spectral Parametric Imaging
3. Conclusions
Limitations and Future Directions
References
Author Contributions
Funding
Conflicts of Interest
References
- Fass, L. Imaging and cancer: A review. Mol. Oncol. 2008, 2, 115–152. [Google Scholar] [CrossRef] [PubMed]
- Frangioni, J.V. New Technologies for Human Cancer Imaging. J. Clin. Oncol. 2008, 26, 4012–4021. [Google Scholar] [CrossRef] [PubMed]
- Oelze, M.L.; Mamou, J. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 336–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi-Naini, A.; Papanicolau, N.; Falou, O.; Tadayyon, H.; Lee, J.; Zubovits, J.; Sadeghian, A.; Karshafian, R.; Al-Mahrouki, A.; Giles, A.; et al. Low-frequency quantitative ultrasound imaging of cell death in vivo. Med. Phys. 2013, 40, 082901. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi-Naini, A.; Papanicolau, N.; Falou, O.; Zubovits, J.; Dent, R.; Verma, S.; Trudeau, M.; Boileau, J.F.; Spayne, J.; Iradji, S.; et al. Quantitative Ultrasound Evaluation of Tumor Cell Death Response in Locally Advanced Breast Cancer Patients Receiving Chemotherapy. Clin. Cancer Res. 2013, 19, 2163–2174. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C.; Al-Mahrouki, A.; Gorjizadeh, A.; Sadeghi-Naini, A.; Karshafian, R.; Czarnota, G.J. Quantitative Ultrasound Characterization of Tumor Cell Death: Ultrasound-Stimulated Microbubbles for Radiation Enhancement. PLoS ONE 2014, 9, e102343. [Google Scholar] [CrossRef]
- Sadeghi-Naini, A.; Zhou, S.; Gangeh, M.J.; Jahedmotlagh, Z.; Falou, O.; Ranieri, S.; Azrif, M.; Giles, A.; Czarnota, G.J. Quantitative evaluation of cell death response in vitro and in vivo using conventional-frequency ultrasound. Oncoscience 2015, 2, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Tran, W.T.; Sannachi, L.; Papanicolau, N.; Tadayyon, H.; Al Mahrouki, A.; El Kaffas, A.; Gorjizadeh, A.; Lee, J.; Czarnota, G.J. Quantitative ultrasound imaging of therapy response in bladder cancer in vivo. Oncoscience 2016, 3, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Osapoetra, L.O.; Faltyn, M.; Do, N.N.A.; Giles, A.; Stanisz, M.; Sannachi, L.; Czarnota, G.J. Quantitative ultrasound characterization of therapy response in prostate cancer in vivo. Am. J. Transl. Res. 2021, 13, 4437–4449. [Google Scholar]
- Sadeghi-Naini, A.; Falou, O.; Tadayyon, H.; Al-Mahrouki, A.; Tran, W.; Papanicolau, N.; Kolios, M.C.; Czarnota, G.J. Conventional Frequency Ultrasonic Biomarkers of Cancer Treatment Response In Vivo. Transl. Oncol. 2013, 6, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Lizzi, F.L.; Ostromogilsky, M.; Feleppa, E.J.; Rorke, M.C.; Yaremko, M.M. Relationship of Ultrasonic Spectral Parameters to Features of Tissue Microstructure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1987, 34, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Lizzi, F.L.; Astor, M.; Feleppa, E.J.; Shao, M.; Kalisz, A. Statistical framework for ultrasonic spectral parameter imaging. Ultrasound Med. Biol. 1997, 23, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Sannachi, L.; Tadayyon, H.; Sadeghi-Naini, A.; Tran, W.; Gandhi, S.; Wright, F.; Oelze, M.; Czarnota, G. Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters. Med. Image Anal. 2015, 20, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Tadayyon, H.; Sannachi, L.; Sadeghi-Naini, A.; Al-Mahrouki, A.; Tran, W.T.; Kolios, M.C.; Czarnota, G.J. Quantification of Ultrasonic Scattering Properties of In Vivo Tumor Cell Death in Mouse Models of Breast Cancer. Transl. Oncol. 2015, 8, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Ghoshal, G.; Luchies, A.C.; Blue, J.P.; Oelze, M.L. Temperature dependent ultrasonic characterization of biological media. J. Acoust. Soc. Am. 2011, 130, 2203–2211. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.A.; Danilova, N.V.; Andreeva, Y.Y.; Nefedova, N.A. WHO classification of tumors of the breast, 2012. Arkhiv Patol. 2013, 75, 53–63. [Google Scholar]
- Ogston, K.N.; Miller, I.D.; Payne, S.; Hutcheon, A.W.; Sarkar, T.K.; Smith, I.; Schofield, A.; Heys, S.D. A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. Breast 2003, 12, 320–327. [Google Scholar] [CrossRef]
- Osapoetra, L.O.; Sannachi, L.; Quiaoit, K.; Dasgupta, A.; DiCenzo, D.; Fatima, K.; Wright, F.; Dinniwell, R.; Trudeau, M.; Gandhi, S.; et al. A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods. Oncotarget 2021, 12, 81–94. [Google Scholar] [CrossRef]
- Osapoetra, L.O.; Dasgupta, A.; DiCenzo, D.; Fatima, K.; Quiaoit, K.; Saifuddin, M.; Karam, I.; Poon, I.; Husain, Z.; Tran, W.T.; et al. Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics. Sci. Rep. 2021, 11, 6117. [Google Scholar] [CrossRef]
- Sannachi, L.; Gangeh, M.; Naini, A.-S.; Bhargava, P.; Jain, A.; Tran, W.T.; Czarnota, G.J. Quantitative Ultrasound Monitoring of Breast Tumour Response to Neoadjuvant Chemotherapy: Comparison of Results Among Clinical Scanners. Ultrasound Med. Biol. 2020, 46, 1142–1157. [Google Scholar] [CrossRef]
- DiCenzo, D.; Quiaoit, K.; Fatima, K.; Bhardwaj, D.; Sannachi, L.; Gangeh, M.; Sadeghi-Naini, A.; Dasgupta, A.; Kolios, M.C.; Trudeau, M.; et al. Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi-institutional study. Cancer Med. 2020, 9, 5798–5806. [Google Scholar] [CrossRef] [PubMed]
- Taleghamar, H.; Moghadas-Dastjerdi, H.; Czarnota, G.J.; Sadeghi-Naini, A. Characterizing intra-tumor regions on quantitative ultrasound parametric images to predict breast cancer response to chemotherapy at pre-treatment. Sci. Rep. 2021, 11, 14865. [Google Scholar] [CrossRef] [PubMed]
- Taleghamar, H.; Jalalifar, S.A.; Czarnota, G.J.; Sadeghi-Naini, A. Deep learning of quantitative ultrasound multi-parametric images at pre-treatment to predict breast cancer response to chemotherapy. Sci. Rep. 2022, 12, 2244. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Fatima, K.; DiCenzo, D.; Bhardwaj, D.; Quiaoit, K.; Saifuddin, M.; Karam, I.; Poon, I.; Husain, Z.; Tran, W.T.; et al. Quantitative ultrasound radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma treated with radical radiotherapy. Cancer Med. 2021, 10, 2579–2589. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Bhardwaj, D.; DiCenzo, D.; Fatima, K.; Osapoetra, L.O.; Quiaoit, K.; Saifuddin, M.; Brade, S.; Trudeau, M.; Gandhi, S.; et al. Radiomics in predicting recurrence for patients with locally advanced breast cancer using quantitative ultrasound. Oncotarget 2021, 12, 2437–2448. [Google Scholar] [CrossRef]
- Yao, L.X.; Zagzebski, J.A.; Madsen, E.L. Backscatter Coefficient Measurements Using a Reference Phantom to Extract Depth-Dependent Instrumentation Factors. Ultrason. Imaging 1990, 12, 58–70. [Google Scholar] [CrossRef]
- Labyed, Y.; Bigelow, T.A.; McFarlin, B.L. Estimate of the attenuation coefficient using a clinical array transducer for the detection of cervical ripening in human pregnancy. Ultrasonics 2011, 51, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Banihashemi, B.; Vlad, R.; Debeljevic, B.; Giles, A.; Kolios, M.C.; Czarnota, G.J.; Sharkey, R.M.; Karacay, H.; Litwin, S.; Rossi, E.A.; et al. Ultrasound Imaging of Apoptosis in Tumor Response: Novel Preclinical Monitoring of Photodynamic Therapy Effects. Cancer Res. 2008, 68, 8590–8596. [Google Scholar] [CrossRef] [Green Version]
- Czarnota, G.J.; Kolios, M.C.; Vaziri, H.; Benchimol, S.; Ottensmeyer, F.P.; Sherar, M.D.; Hunt, J.W. Ultrasonic biomicroscopy of viable, dead and apoptotic cells. Ultrasound Med. Biol. 1997, 23, 961–965. [Google Scholar] [CrossRef]
- Czarnota, G.J.; Kolios, M.C.; Abraham, J.; Portnoy, M.; Ottensmeyer, F.P.; Hunt, J.W.; Sherar, M.D. Ultrasound imaging of apoptosis: High-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo. Br. J. Cancer 1999, 81, 520–527. [Google Scholar] [CrossRef]
- Feleppa, E.J.; Ennis, R.D.; Schiff, P.B.; Wuu, C.-S.; Kalisz, A.; Ketterling, J.; Urban, S.; Liu, T.; Fair, W.R.; Porter, C.R.; et al. Spectrum-analysis and neural networks for imaging to detect and treat prostate cancer. Ultrason. Imaging 2001, 23, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Feleppa, E.J.; Ennis, R.D.; Schiff, P.B.; Wuu, C.-S.; Kalisz, A.; Ketterling, J.; Urban, S.; Liu, T.; Fair, W.R.; Porter, C.R.; et al. Ultrasonic spectrum-analysis and neural-network classification as a basis for ultrasonic imaging to target brachytherapy of prostate cancer. Brachytherapy 2002, 1, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Kolios, M.C.; Czarnota, G.J.; Lee, M.; Hunt, J.W.; Sherar, M.D. Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med. Biol. 2002, 28, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Oelze, M.L.; Zachary, J.F.; O’Brien, W.D. Characterization of tissue microstructure using ultrasonic backscatter: Theory and technique for optimization using a Gaussian form factor. J. Acoust. Soc. Am. 2002, 112, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Oelze, M.L.; Zachary, J.F.; O’Brien, W.D. Parametric imaging of rat mammary tumors in vivo for the purposes of tissue characterization. J. Ultrasound Med. 2002, 21, 1201–1210. [Google Scholar] [CrossRef]
- Oelze, M.L.; O’Brien, W.D.; Blue, J.P.; Zachary, J.F. Differentiation and Characterization of Rat Mammary Fibroadenomas and 4T1 Mouse Carcinomas Using Quantitative Ultrasound Imaging. IEEE Trans. Med. Imaging 2004, 23, 764–771. [Google Scholar] [CrossRef]
- Feleppa, E.J.; Porter, C.R.; Ketterling, J.; Lee, P.; Dasgupta, S.; Urban, S.; Kalisz, A. Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer. Ultrason. Imaging 2004, 26, 163–172. [Google Scholar] [CrossRef]
- Vlad, R.M.; Czarnota, G.J.; Giles, A.; Sherar, M.D.; Hunt, J.W.; Kolios, M.C. High-frequency ultrasound for monitoring changes in liver tissue during preservation. Phys. Med. Biol. 2005, 50, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Tunis, A.S.; Czarnota, G.J.; Giles, A.; Sherar, M.D.; Hunt, J.W.; Kolios, M.C. Monitoring structural changes in cells with high-frequency ultrasound signal statistics. Ultrasound Med. Biol. 2005, 31, 1041–1049. [Google Scholar] [CrossRef]
- Oelze, M.L.; Zachary, J.F. Examination of cancer in mouse models using high-frequency quantitative ultrasound. Ultrasound Med. Biol. 2006, 32, 1639–1648. [Google Scholar] [CrossRef]
- Vlad, R.M.; Alajez, N.M.; Giles, A.; Kolios, M.C.; Czarnota, G.J. Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro. IInt. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.M.; Brand, S.; Giles, A.; Kolios, M.C.; Czarnota, G.J. Quantitative Ultrasound Characterization of Responses to Radiotherapy in Cancer Mouse Models. Clin. Cancer Res. 2009, 15, 2067–2075. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.J.; Herd, M.-T.; King, M.R.; Haak, A.; Hafez, Z.T.; Song, J.; Oelze, M.L.; Madsen, E.L.; Zagzebski, J.A.; O’Brien, J.W.D.; et al. Interlaboratory Comparison of Backscatter Coefficient Estimates for Tissue-Mimicking Phantoms. Ultrason. Imaging 2010, 32, 48–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamou, J.; Coron, A.; Hata, M.; Machi, J.; Yanagihara, E.; Laugier, P.; Feleppa, E.J. Three-Dimensional High-Frequency Characterization of Cancerous Lymph Nodes. Ultrasound Med. Biol. 2010, 36, 361–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamou, J.; Coron, A.; Oelze, M.L.; Saegusa-Beecroft, E.; Hata, M.; Lee, P.; Machi, J.; Yanagihara, E.; Laugier, P.; Feleppa, E.J. Three-Dimensional High-Frequency Backscatter and Envelope Quantification of Cancerous Human Lymph Nodes. Ultrasound Med. Biol. 2011, 37, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Karshafian, R.; Papanicolau, N.; Giles, A.; Kolios, M.C.; Czarnota, G.J. Quantitative Ultrasound for the Monitoring of Novel Microbubble and Ultrasound Radiosensitization. Ultrasound Med. Biol. 2012, 38, 1212–1221. [Google Scholar] [CrossRef]
- Nam, K.; Zagzebski, J.A.; Hall, T.J. Quantitative Assessment of In Vivo Breast Masses Using Ultrasound Attenuation and Backscatter. Ultrason. Imaging 2013, 35, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Saegusa-Beecroft, E.; Machi, J.; Mamou, J.; Hata, M.; Coron, A.; Yanagihara, E.T.; Yamaguchi, T.; Oelze, M.L.; Laugier, P.; Feleppa, E.J. Three-dimensional quantitative ultrasound for detecting lymph node metastases. J. Surg. Res. 2013, 183, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Lavarello, R.J.; Ridgway, W.R.; Sarwate, S.S.; Oelze, M.L. Characterization of Thyroid Cancer in Mouse Models Using High-Frequency Quantitative Ultrasound Techniques. Ultrasound Med. Biol. 2013, 39, 2333–2341. [Google Scholar] [CrossRef] [Green Version]
- Tadayyon, H.; Sadeghi-Naini, A.; Wirtzfeld, L.; Wright, F.C.; Czarnota, G. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties. Med. Phys. 2014, 41, 012903. [Google Scholar] [CrossRef]
- Ghoshal, G.; Kemmerer, J.P.; Karunakaran, C.; Abuhabsah, R.; Miller, R.J.; Sarwate, S.; Oelze, M.L. Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure. Ultrason. Imaging 2014, 36, 239–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoshal, G.; Kemmerer, J.P.; Karunakaran, C.; Miller, R.J.; Oelze, M.L. Quantitative Ultrasound for Monitoring High-Intensity Focused Ultrasound Treatment In Vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, M.M.; Wirtzfeld, L.A.; Kolios, M.C.; Czarnota, G.J. High-Frequency Ultrasound Analysis of Post-Mitotic Arrest Cell Death. Oncoscience 2016, 3, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi-Naini, A.; Suraweera, H.; Tran, W.T.; Hadizad, F.; Bruni, G.; Rastegar, R.F.; Curpen, B.; Czarnota, G.J. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps. Sci. Rep. 2017, 7, 13638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohrbach, D.; Wodlinger, B.; Wen, J.; Mamou, J.; Feleppa, E. High-Frequency Quantitative Ultrasound for Imaging Prostate Cancer Using a Novel Micro-Ultrasound Scanner. Ultrasound Med. Biol. 2018, 44, 1341–1354. [Google Scholar] [CrossRef]
- Quiaoit, K.; DiCenzo, D.; Fatima, K.; Bhardwaj, D.; Sannachi, L.; Gangeh, M.; Sadeghi-Naini, A.; Dasgupta, A.; Kolios, M.C.; Trudeau, M.; et al. Quantitative ultrasound radiomics for therapy response monitoring in patients with locally advanced breast cancer: Multi-institutional study results. PLoS ONE 2020, 15, e0236182. [Google Scholar] [CrossRef]
- Tran, W.T.; Suraweera, H.; Quiaoit, K.; DiCenzo, D.; Fatima, K.; Jang, D.; Bhardwaj, D.; Kolios, C.; Karam, I.; Poon, I.; et al. Quantitative ultrasound delta-radiomics during radiotherapy for monitoring treatment responses in head and neck malignancies. Futur. Sci. OA 2020, 6, 1–15. [Google Scholar] [CrossRef]
- Dasgupta, A.; Brade, S.; Snnachi, L.; Quiaoit, K.; Fatima, K.; DiCenzo, D.; Osapoetra, L.O.; Saifuddin, M.; Trudeau, M.; Gandhi, S.; et al. Quantitative ultrasound radiomics using texture derivatives in prediction of treatment response to neo-adjuvant chemotherapy for locally advanced breast cancer. Oncotarget 2020, 11, 3782–3792. [Google Scholar] [CrossRef]
- Fatima, K.; Dasgupta, A.; DiCenzo, D.; Kolios, C.; Quiaoit, K.; Saifuddin, M.; Sandhu, M.; Bhardwaj, D.; Karam, I.; Poon, I.; et al. Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2021, 28, 62–70. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Dasgupta, A.; DiCenzo, D.; Brade, S.; Fatima, K.; Quiaoit, K.; Trudeau, M.; Gandhi, S.; Eisen, A.; Wright, F.; et al. Early Changes in Quantitative Ultrasound Imaging Parameters during Neoadjuvant Chemotherapy to Predict Recurrence in Patients with Locally Advanced Breast Cancer. Cancers 2022, 14, 1247. [Google Scholar] [CrossRef]
- Osapoetra, L.O.; Sannachi, L.; DiCenzo, D.; Quiaoit, K.; Fatima, K.; Czarnota, G.J. Breast lesion characterization using Quantitative Ultrasound (QUS) and derivative texture methods. Transl. Oncol. 2020, 13, 100827. [Google Scholar] [CrossRef] [PubMed]
- Osapoetra, L.O.; Chan, W.; Tran, W.; Kolios, M.C.; Czarnota, G.J. Comparison of methods for texture analysis of QUS parametric images in the characterization of breast lesions. PLoS ONE 2020, 15, e0244965. [Google Scholar] [CrossRef] [PubMed]
- Goundan, P.N.; Mamou, J.; Rohrbach, D.; Smith, J.; Patel, H.; Wallace, K.D.; Feleppa, E.J.; Lee, S.L. A Preliminary Study of Quantitative Ultrasound for Cancer-Risk Assessment of Thyroid Nodules. Front. Endocrinol. 2021, 12, 627698. [Google Scholar] [CrossRef] [PubMed]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6450–6458. [Google Scholar] [CrossRef]
QUS Frequency | Implementation | References |
---|---|---|
50 MHz | Cell death characterization (in vitro) | [29] |
40 MHz | Monitoring treatment response (in vitro, in situ and in vivo) | [30] |
7 MHz | Tissue characterization (clinical) | [31] |
5.75 MHz | Tissue characterization (clinical) | [32] |
30 MHz and 34 MHz | Cell death characterization (in vitro) | [33] |
4–12 MHz | Tissue characterization (in vivo) | [34] |
8 MHz | Tissue characterization (in vivo) | [35] |
8.5 MHz and 20 MHz | Tissue characterization (in vivo) | [36] |
7.5 MHz | Tissue characterization (clinical) | [37] |
40 MHz | Tissue characterization (in vivo) | [38] |
20 MHz | Examining cell structural changes (in vitro) | [39] |
20 MHz | Tissue characterization (in vivo) | [40] |
26 MHz | Monitoring treatment response (in vivo) | [28] |
20 MHz | Monitoring treatment response (in vitro) | [41] |
20 MHz | Monitoring treatment response (in vivo) | [42] |
1–12 MHz | Tissue characterization (phantoms) (clinical) | [43] |
25.6 MHz | Lymph nodes characterization (clinical) | [44] |
25.6 MHz | Lymph nodes characterization (clinical) | [45] |
25 MHz | Monitoring treatment response (in vivo) | [46] |
10 MHz and 15 MHz | Tissue characterization (phantoms) (clinical) | [47] |
7 MHz | Monitoring treatment response (clinical) | [5] |
25.6 MHz | Detecting lymph node metastases (clinical) | [48] |
∼7 MHz and 20 MHz | Treatment response monitoring (in vivo) | [4] |
40 MHz | Tissue characterization (in vivo) | [49] |
6 MHz | Tissue characterization (clinical) | [50] |
25 MHz | Monitoring treatment response (in vivo) | [6] |
6 MHz | Monitoring treatment response (in situ) | [51] |
7 MHz | Monitoring treatment response (clinical) | [13] |
~7 MHz | Monitoring treatment response (in vitro, in vivo) | [7] |
7 MHz and 20 MHz | Monitoring treatment response (in vivo) | [14] |
6 MHz | Monitoring treatment response (in vivo) | [52] |
25 MHz | Cell death characterization (in vitro) | [53] |
25 MHz | Monitoring treatment response (in vivo) | [8] |
~6 MHz | Tissue characterization (clinical) | [54] |
29 MHz | Tissue characterization (clinical) | [55] |
6.5 MHz and 6.9 MHz | Predicting treatment response (clinical) | [21] |
6.3 MHz and 7 MHz | Monitoring treatment response (clinical) | [56] |
8 MHz | Monitoring treatment response (clinical) | [57] |
7 MHz | Predicting treatment response (clinical) | [58] |
6.5 MHz | Predicting tumor recurrence (clinical) | [59] |
6.5 MHz | Predicting treatment response (clinical) | [19] |
7 MHz | Predicting tumor recurrence (clinical) | [25] |
7 MHz | Predicting tumor recurrence (clinical) | [60] |
Scan Time | US System | Sensitivity [%] | Specificity [%] | Accuracy [%] | McNemar p * |
---|---|---|---|---|---|
Week 1 | ULX | 60.0 | 50.0 | 58.8 | 0.752 |
GE | 60.0 | 50.0 | 58.8 | ||
Week 4 | ULX | 78.9 | 66.7 | 77.3 | 0.545 |
GE | 64.3 | 66.7 | 69.1 | ||
Week 8 | ULX | 71.4 | 100.0 | 73.3 | 0.683 |
GE | 71.4 | 100.0 | 73.3 |
Classifier | Sensitivity | Specificity | Accuracy | AUC | Selected Features |
---|---|---|---|---|---|
FLD | 73 | 81 | 78 | 0.75 | MBF-HOM-CON, MBF, SI-CON-ENE |
KNN | 73 | 84 | 80 | 0.80 | SS-COR-COR, MBF-ENE-HOM |
SVM-RBF | 86 | 95 | 92 | 0.91 | MBF-HOM-CON, MBF-ENE-CON, ASD-HOM-ENE |
Classifier | Sensitivity | Specificity | Accuracy | AUC | Selected Features |
---|---|---|---|---|---|
FLD | 86 | 100 | 89 | 0.92 | AAC-ENE-HOM, AAC-HOM-CON |
KNN | 93 | 88 | 92 | 0.90 | AAC-HOM, ASD-ENE-HOM |
SVM-RBF | 97 | 88 | 95 | 0.97 | SS, SS-HOM-CON |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, D.; Osapoetra, L.O.; Czarnota, G.J. Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging. Cancers 2022, 14, 6217. https://doi.org/10.3390/cancers14246217
Sharma D, Osapoetra LO, Czarnota GJ. Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging. Cancers. 2022; 14(24):6217. https://doi.org/10.3390/cancers14246217
Chicago/Turabian StyleSharma, Deepa, Laurentius Oscar Osapoetra, and Gregory J. Czarnota. 2022. "Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging" Cancers 14, no. 24: 6217. https://doi.org/10.3390/cancers14246217
APA StyleSharma, D., Osapoetra, L. O., & Czarnota, G. J. (2022). Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging. Cancers, 14(24), 6217. https://doi.org/10.3390/cancers14246217