Circ_RNF13 Regulates the Stemness and Chemosensitivity of Colorectal Cancer by Transcriptional Regulation of DDX27 Mediated by TRIM24 Stabilization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Clinical Specimens
2.2. Cell Culture, Treatment, and Transfection
2.3. qRT-PCR
2.4. Western Blot Analysis
2.5. Fluorescence In Situ Hybridization (FISH) and Immunofluorescence (IF)
2.6. Subcellular Fractionation
2.7. Cell Counting Kit-8 (CCK-8) Assay
2.8. Sphere Formation Assay
2.9. Colony Formation Assay
2.10. Cell Apoptosis Assay
2.11. Flow Cytometry
2.12. RNA Pull-Down Assay
2.13. RNA Immunoprecipitation (RIP) Assay
2.14. Chromatin Immunoprecipitation (ChIP) Assay
2.15. Co-Immunoprecipitation (Co-IP)
2.16. Animal Study
2.17. Immunohistochemistry (IHC)
2.18. TUNEL Assay
2.19. Statistical Analysis
3. Results
3.1. Characterization of Circ_RNF13
3.2. Circ_RNF13 and DDX27 Are Elevated in CRC Tumor Samples and Cells
3.3. Knockdown of Circ_RNF13 Suppresses Stemness and Increases Chemosensitivity in CRC Cells
3.4. Knockdown of DDX27 Inhibits Stemness and Increases Chemosensitivity in CRC Cells
3.5. Circ_RNF13 Regulates DDX27 Expression via TRIM24-Mediated Transcriptional Regulation
3.6. Circ_RNF13 Stabilizes TRIM24 via Suppressing FBXW7-Mediated TRIM24 Degradation
3.7. Knockdown of Circ_RNF13 Impairs Stemness and Enhances Chemosensitivity of CRC In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33, Erratum in CA Cancer J. Clin. 2021, 359. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Erratum: Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017, 17, 268. [Google Scholar] [CrossRef] [Green Version]
- Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med. 2011, 17, 313–319. [Google Scholar] [CrossRef]
- E Fairman-Williams, M.; Guenther, U.-P.; Jankowsky, E. SF1 and SF2 helicases: Family matters. Curr. Opin. Struct. Biol. 2010, 20, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.H.; O’Donohue, M.-F.; Gundry, S.R.; Chan, A.T.; Widrick, J.; Draper, I.; Chakraborty, A.; Zhou, Y.; Zon, L.I.; Gleizes, P.-E.; et al. RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes. PLoS Genet. 2018, 14, e1007226. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Chen, H.; Wong, C.-C.; Liu, D.; Li, T.; Wang, X.; Ji, J.; Sung, J.J.Y.; Fang, J.-Y.; Yu, J. DEAD-box helicase 27 promotes colorectal cancer growth and metastasis and predicts poor survival in CRC patients. Oncogene 2018, 37, 3006–3021. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Li, D.; Bai, Y.; Song, S.; Yan, P.; Wu, R.; Zhang, Y.; Hu, G.; Lin, C.; Li, X.; et al. DEAD-box helicase 27 plays a tumor-promoter role by regulating the stem cell-like activity of human colorectal cancer cells. OncoTargets Ther. 2018, 12, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Tan, C.; Liu, X. Circular RNAs: A new frontier in the study of human diseases. J. Med Genet. 2016, 53, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, J.; Baird, A.-M.; Brady, L.; Lim, M.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Liu, S.; Mao, Y.; Xu, J.; Yang, S.; Shen, H.; Xu, W.; Fan, W.; Wang, J. CircRNF13 regulates the invasion and metastasis in lung adenocarcinoma by targeting miR-93-5p. Gene 2018, 671, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Wang, H.; Zhu, K.; Zhang, G. The Regulation of circRNA RNF13/miRNA-1224-5p Axis Promotes the Malignant Evolution in Acute Myeloid Leukemia. BioMed Res. Int. 2020, 2020, 5654380. [Google Scholar] [CrossRef]
- Liu XZ, L.; Chen, Y.; Jiang, X.; Jiang, J. CircRNF13 Promotes the Malignant Progression of Pancreatic Cancer through Targeting miR-139-5p/IGF1R Axis. J. Oncol. 2021, 2021, 6945046. [Google Scholar]
- Mo, Y.; Wang, Y.; Zhang, S.; Xiong, F.; Yan, Q.; Jiang, X.; Deng, X.; Wang, Y.; Fan, C.; Le Tang, L.; et al. Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol. Cancer 2021, 20, 1–21. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Meng, Q.; Sun, H.; Wu, S.; Hu, W.; Liu, G.; Li, X.; Yang, Y.; Chen, R. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol. Cancer 2020, 19, 13. [Google Scholar] [CrossRef] [Green Version]
- Le Douarin, B.; Nielsen, A.L.; Garnier, J.M.; Ichinose, H.; Jeanmougin, F.; Losson, R.; Chambon, P. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 1996, 15, 6701–6715. [Google Scholar] [CrossRef]
- Allton, K.; Jain, A.K.; Herz, H.-M.; Tsai, W.-W.; Jung, S.Y.; Qin, J.; Bergmann, A.; Johnson, R.L.; Barton, M.C. Trim24 targets endogenous p53 for degradation. Proc. Natl. Acad. Sci. USA 2009, 106, 11612–11616. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.-Q.; Han, Y.; Yao, W.; Yu, J. Prognostic relevance of tripartite motif containing 24 expression in colorectal cancer. Pathol.-Res. Pract. 2017, 213, 1271–1275. [Google Scholar] [CrossRef]
- Panda, A.C.; Gorospe, M. Detection and Analysis of Circular RNAs by RT-PCR. Bio-Protocol 2018, 8, e2775. [Google Scholar] [CrossRef] [PubMed]
- Dyugovskaya, L.; Polyakov, A.; Cohen-Kaplan, V.; Lavie, P.; Lavie, L. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: Effects of p38MAPK and ERK1/2 signaling. J Transl Med 2012, 10, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercado, S.A.; Slater, N.K. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake. Cryobiol. 2016, 73, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther. 2016, 160, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Agliano, A.; Calvo, A.; Box, C. The challenge of targeting cancer stem cells to halt metastasis. Semin. Cancer Biol. 2017, 44, 25–42. [Google Scholar] [CrossRef]
- Rengganaten, V.; Huang, C.-J.; Tsai, P.-H.; Wang, M.-L.; Yang, Y.-P.; Lan, Y.-T.; Fang, W.-L.; Soo, S.; Ong, H.T.; Cheong, S.K.; et al. Mapping a Circular RNA–microRNA–mRNA-Signaling Regulatory Axis That Modulates Stemness Properties of Cancer Stem Cell Populations in Colorectal Cancer Spheroid Cells. Int. J. Mol. Sci. 2020, 21, 7864. [Google Scholar] [CrossRef]
- Das, P.K.; Islam, F.; Lam, A.K. The Roles of Cancer Stem Cells and Therapy Resistance in Colorectal Carcinoma. Cells 2020, 9, 1392. [Google Scholar] [CrossRef]
- Boman, B.M.; Fields, J.Z.; Cavanaugh, K.L.; Guetter, A.; Runquist, O.A. How Dysregulated Colonic Crypt Dynamics Cause Stem Cell Overpopulation and Initiate Colon Cancer. Cancer Res. 2008, 68, 3304–3313. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Zhang, Y.; Wang, B.; Hu, Y.; Zhan, B.; Wei, F.; Tang, J.; Lian, J. Tripartite motif containing 24 regulates cell proliferation in colorectal cancer through YAP signaling. Cancer Med. 2020, 9, 6367–6376. [Google Scholar] [CrossRef]
- Scheffner, M.; Nuber, U.; Huibregtse, J.M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 1995, 373, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Iwatsuki, M.; Mimori, K.; Ishii, H.; Yokobori, T.; Takatsuno, Y.; Sato, T.; Toh, H.; Onoyama, I.; Nakayama, K.I.; Baba, H.; et al. Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: Clinical significance. Int. J. Cancer 2009, 126, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.-H.; Bellon, M.; Nicot, C. FBXW7: A critical tumor suppressor of human cancers. Mol. Cancer 2018, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Hilgendorf, S.; Vellenga, E. Knockdown of TP53 in ASXL1 negative background rescues apoptotic phenotype of human hematopoietic stem and progenitor cells but without overt malignant transformation. Haematologica 2017, 103, e59–e62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Tian, G.; Zhang, Z.; Yang, X. SYT7 acts as an oncogene and a potential therapeutic target and was regulated by ΔNp63α in HNSCC. Cancer Cell Int. 2021, 21, 696. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, F.; Hu, A.; Wang, X.; Fang, E.; Chen, Y.; Li, D.; Song, H.; Wang, J.; Guo, Y.; et al. Therapeutic targeting of circ- CUX 1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol. Med. 2019, 11, e10835. [Google Scholar] [CrossRef]
- Xu, J.; Ji, L.; Liang, Y.; Wan, Z.; Zheng, W.; Song, X.; Gorshkov, K.; Sun, Q.; Lin, H.; Zheng, X.; et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct. Target. Ther. 2020, 5, 298. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence 5′-3′ |
---|---|
circ_RNF13 (divergent) sense | GTCCAGGATAGACATAGAGC |
circ_RNF13 (divergent) anti-sense | GTGTAGACTTGTGTGGCTGA |
circ_RNF13 (convergent) sense | GCTCTCCATAGGGATGCTCA |
circ_RNF13(convergent) anti-sense | GCAGGGAGGTCATCAAATGT |
RNF13 sense | CCTCCCTGCAAGATTTGGTT |
RNF13 anti-sense | TGTATCCTGCTCGTGCA |
DDX27 sense | AGCCCGTGGACTTGACATTG |
DDX27 anti-sense | GCATCTTCCGCTCATCTTCTC |
TRIM24 sense | AGCCACAAATGCCTAAGC |
TRIM24 anti-sense | AGGATGAGGAGGAAGAACTG |
U6 sense | CTCGCTTCGGCAGCACA |
U6 anti-sense | AACGCTTCACGAATTTGCGT |
GAPDH sense | CCAGGTGGTCTCCTCTGA |
GAPDH anti-sense | GCTGTAGCCAAATCGTTGT |
Antibody | Vendor | Catalog No. | Working Dilution |
---|---|---|---|
DDX27 | Invitrogen | PA5-61421 | WB (1:500); IHC (1:50) |
CD44 | Abcam | ab51037 | WB (1:2000); IF (1:100) |
CD133 | Abcam | ab19898 | WB (1:1000); IF (1:100) |
SOX2 | Abcam | ab97959 | WB (1:1000) |
OCT4 | Abcam | ab19857 | WB (1:1000) |
NANOG | Abcam | ab109250 | WB (1:2000) |
CD133-APC | Invitrogen | 17-1338-42 | Flow (0.125 μg)/test |
CD44-FITC | Invitrogen | 11-0441-82 | Flow (0.5 μg)/test |
TRIM24 | Abcam | ab70560 | WB (1:1000); IP/RIP (2 μg) |
FBXW7 | Abcam | ab109617 | WB (1:1000); IP (2 μg) |
β-tubulin | Abcam | ab6046 | WB (1:1000) |
GAPDH | Abcam | ab8245 | WB (1:2000) |
Variables | Cases | Expression | p Value | x2 | |
---|---|---|---|---|---|
Low (n = 25) | High (n = 25) | ||||
Gender | |||||
Male | 14 | 12 | 0.5713 | 0.3205 | |
Female | 11 | 13 | |||
Age | |||||
≤62 years | 10 | 11 | 0.7745 | 0.08210 | |
>62 years | 15 | 14 | |||
Tumor size | |||||
<5 cm | 8 | 16 | 0.0235 * | 5.128 | |
≥5 cm | 17 | 9 | |||
Distant metastasis | |||||
Negative | 19 | 9 | 0.0044 ** | 8.117 | |
Positive | 6 | 16 | |||
Differentiation | |||||
Poor | 16 | 12 | 0.2545 | 1.299 | |
Well to moderate | 9 | 13 | |||
Lymph node metastasis | |||||
Negative | 18 | 10 | 0.0227 * | 5.195 | |
Positive | 7 | 15 | |||
TNM stage | |||||
I+II | 20 | 11 | 0.0087 ** | 6.876 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Hu, G.; Tian, B.; Ma, M.; Long, F.; Chen, M. Circ_RNF13 Regulates the Stemness and Chemosensitivity of Colorectal Cancer by Transcriptional Regulation of DDX27 Mediated by TRIM24 Stabilization. Cancers 2022, 14, 6218. https://doi.org/10.3390/cancers14246218
Guo Y, Hu G, Tian B, Ma M, Long F, Chen M. Circ_RNF13 Regulates the Stemness and Chemosensitivity of Colorectal Cancer by Transcriptional Regulation of DDX27 Mediated by TRIM24 Stabilization. Cancers. 2022; 14(24):6218. https://doi.org/10.3390/cancers14246218
Chicago/Turabian StyleGuo, Yihang, Gui Hu, Buning Tian, Min Ma, Fei Long, and Miao Chen. 2022. "Circ_RNF13 Regulates the Stemness and Chemosensitivity of Colorectal Cancer by Transcriptional Regulation of DDX27 Mediated by TRIM24 Stabilization" Cancers 14, no. 24: 6218. https://doi.org/10.3390/cancers14246218
APA StyleGuo, Y., Hu, G., Tian, B., Ma, M., Long, F., & Chen, M. (2022). Circ_RNF13 Regulates the Stemness and Chemosensitivity of Colorectal Cancer by Transcriptional Regulation of DDX27 Mediated by TRIM24 Stabilization. Cancers, 14(24), 6218. https://doi.org/10.3390/cancers14246218