Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Advanced Neuroimaging Analyses Using Normative Brain Templates
2.1. Connectomics
2.2. Imaging Transcriptomics
3. Neuro-Oncology Applications
4. Practical Framework for Normative Brain Analyses
5. Limitations of Normative Analyses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BOLD | blood oxygen level-dependent |
dMRI | diffusion weighted magnetic resonance imaging |
MNI | Montreal Neurological Institute |
MRI | magnetic resonance imaging |
rsfMRI | resting state functional magnetic resonance imaging |
References
- Ellingson, B.M.; Bendszus, M.; Boxerman, J.; Barboriak, D.; Erickson, B.J.; Smits, M.; Nelson, S.J.; Gerstner, E.; Alexander, B.; Goldmacher, G.; et al. Consensus Recommendations for a Standardized Brain Tumor Imaging Protocol in Clinical Trials. Neuro. Oncol. 2015, 17, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Boxerman, J.L.; Quarles, C.C.; Hu, L.S.; Erickson, B.J.; Gerstner, E.R.; Smits, M.; Kaufmann, T.J.; Barboriak, D.P.; Huang, R.H.; Wick, W.; et al. Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas. Neuro. Oncol. 2020, 22, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration. Neuroimage 2011, 54, 2033–2044. [Google Scholar] [CrossRef] [Green Version]
- Fonov, V.S.; Evans, A.C.; McKinstry, R.C.; Almli, C.R.; Collins, D.L. Unbiased Nonlinear Average Age-Appropriate Brain Templates from Birth to Adulthood. Neuroimage 2009, 47, S102. [Google Scholar] [CrossRef]
- Horn, A.; Fox, M.D. Opportunities of Connectomic Neuromodulation. Neuroimage 2020, 221, 117180. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Imaging; Georg Thieme Verlag: New York, NY, USA; Thieme Medical Publishers, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Mazziotta, J.C.; Toga, A.W.; Evans, A.; Fox, P.; Lancaster, J. A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development. Neuroimage 1995, 2, 89–101. [Google Scholar] [CrossRef]
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A Probabilistic Atlas and Reference System for the Human Brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1293–1322. [Google Scholar] [CrossRef]
- Brett, M.; Johnsrude, I.S.; Owen, A.M. The Problem of Functional Localization in the Human Brain. Nat. Rev. Neurosci. 2002, 3, 243–249. [Google Scholar] [CrossRef]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.; et al. Evaluation of 14 Nonlinear Deformation Algorithms Applied to Human Brain MRI Registration. Neuroimage 2009, 46, 786–802. [Google Scholar] [CrossRef] [Green Version]
- Almairac, F.; Duffau, H.; Herbet, G. Contralesional Macrostructural Plasticity of the Insular Cortex in Patients with Glioma. Neurology 2018, 91, e1902–e1908. [Google Scholar] [CrossRef]
- Sagberg, L.M.; Iversen, D.H.; Fyllingen, E.H.; Jakola, A.S.; Reinertsen, I.; Solheim, O. Brain Atlas for Assessing the Impact of Tumor Location on Perioperative Quality of Life in Patients with High-Grade Glioma: A Prospective Population-Based Cohort Study. NeuroImage Clin. 2019, 21, 101658. [Google Scholar] [CrossRef]
- Leergaard, T.B.; Hilgetag, C.C.; Sporns, O. Mapping the Connectome: Multi-Level Analysis of Brain Connectivity. Front. Neuroinform. 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Hagmann, P. From Diffusion MRI to Brain Connectomics; EPFL: Lausanne, Switzerland, 2005. [Google Scholar]
- Sporns, O. Structure and Function of Complex Brain Networks. Dialogues Clin. Neurosci. 2013, 15, 247–262. [Google Scholar]
- Sporns, O. The Human Connectome: A Complex Network. Ann. N. Y. Acad. Sci. 2011, 1224, 109–125. [Google Scholar] [CrossRef]
- Sporns, O.; Tononi, G.; Kötter, R. The Human Connectome: A Structural Description of the Human Brain. PLoS Comput. Biol. 2005, 1, 0245–0251. [Google Scholar] [CrossRef] [PubMed]
- Elias, G.J.B.; Germann, J.; Boutet, A.; Pancholi, A.; Beyn, M.E.; Bhatia, K.; Neudorfer, C.; Loh, A.; Rizvi, S.J.; Bhat, V.; et al. Structuro-Functional Surrogates of Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Brain 2021. [Google Scholar] [CrossRef]
- Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al. Predicting Optimal Deep Brain Stimulation Parameters for Parkinson’s Disease Using Functional MRI and Machine Learning. Nat. Commun. 2021, 12, 3043. [Google Scholar] [CrossRef] [PubMed]
- Neudorfer, C.; Elias, G.J.B.; Jakobs, M.; Boutet, A.; Germann, J.; Narang, K.; Loh, A.; Paff, M.; Horn, A.; Kucharczyk, W.; et al. Mapping Autonomic, Mood and Cognitive Effects of Hypothalamic Region Deep Brain Stimulation. Brain 2021, 144, 2837–2851. [Google Scholar] [CrossRef] [PubMed]
- Germann, J.; Elias, G.J.B.; Neudorfer, C.; Boutet, A.; Chow, C.T.; Wong, E.H.Y.; Parmar, R.; Gouveia, F.V.; Loh, A.; Giacobbe, P.; et al. Potential Optimization of Focused Ultrasound Capsulotomy for Obsessive Compulsive Disorder. Brain 2021. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hollunder, B.; Baldermann, J.C.; Kibleur, A.; Treu, S.; Akram, H.; Al-Fatly, B.; Strange, B.A.; Barcia, J.A.; Zrinzo, L.; et al. A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Schaper, F.L.W.V.J.; Horn, A.; Hsu, J.; Padmanabhan, J.L.; Brodtmann, A.; Cash, R.F.H.; Corbetta, M.; Choi, K.S.; Dougherty, D.D.; et al. Brain Stimulation and Brain Lesions Converge on Common Causal Circuits in Neuropsychiatric Disease. Nat. Hum. Behav. 2021, 5. [Google Scholar] [CrossRef] [PubMed]
- Germann, J.; Elias, G.J.B.; Boutet, A.; Narang, K.; Neudorfer, C.; Horn, A.; Loh, A.; Deeb, W.; Salvato, B.; Almeida, L.; et al. Brain Structures and Networks Responsible for Stimulation-Induced Memory Flashbacks during Forniceal Deep Brain Stimulation for Alzheimer’s Disease. Alzheimer’s Dement. 2021, 17, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D. Mapping Symptoms to Brain Networks with the Human Connectome. N. Engl. J. Med. 2018, 379, 2237–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, M.D.; Buckner, R.L.; Liu, H.; Chakravarty, M.M.; Lozano, A.M.; Pascual-Leone, A. Resting-State Networks Link Invasive and Noninvasive Brain Stimulation across Diverse Psychiatric and Neurological Diseases. Proc. Natl. Acad. Sci. USA 2014, 111. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.L.; Ferguson, M.A.; Fox, M.D. Lesion Network Mapping Predicts Post-Stroke Behavioural Deficits, and Improves Localization. Brain 2021, 144. [Google Scholar] [CrossRef]
- Darby, R.R.; Joutsa, J.; Fox, M.D. Network Localization of Heterogeneous Neuroimaging Findings. Brain 2019, 142, 70–79. [Google Scholar] [CrossRef]
- Corp, D.T.; Joutsa, J.; Darby, R.R.; Delnooz, C.C.S.; van de Warrenburg, B.P.C.; Cooke, D.; Prudente, C.N.; Ren, J.; Reich, M.M.; Batla, A.; et al. Network Localization of Cervical Dystonia Based on Causal Brain Lesions. Brain 2019, 142, 1660–1674. [Google Scholar] [CrossRef] [Green Version]
- Jbabdi, S.; Sotiropoulos, S.N.; Haber, S.N.; Van Essen, D.C.; Behrens, T.E. Measuring Macroscopic Brain Connections in Vivo. Nat. Neurosci. 2015, 18, 1546–1555. [Google Scholar] [CrossRef] [Green Version]
- Biswal, B.B.; Mennes, M.; Zuo, X.-N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; et al. Toward Discovery Science of Human Brain Function. Proc. Natl. Acad. Sci. USA 2010, 107, 4734–4739. [Google Scholar] [CrossRef] [Green Version]
- Elias, G.J.B.; Germann, J.; Loh, A.; Boutet, A.; Taha, A.; Wong, E.H.Y.; Parmar, R.; Lozano, A.M. Normative connectomes and their use in DBS. In Connectomic Deep Brain Stimulation; Academic Press: Cambridge, MA, USA, 2022; pp. 245–274. [Google Scholar]
- Mithani, K.; Boutet, A.; Germann, J.; Elias, G.J.B.; Weil, A.G.; Shah, A.; Guillen, M.; Bernal, B.; Achua, J.K.; Ragheb, J.; et al. Lesion Network Localization of Seizure Freedom Following MR-Guided Laser Interstitial Thermal Ablation. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, G.J.B.; De Vloo, P.; Germann, J.; Boutet, A.; Gramer, R.M.; Joel, S.E.; Morlion, B.; Nuttin, B.; Lozano, A.M. Mapping the Network Underpinnings of Central Poststroke Pain and Analgesic Neuromodulation. Pain 2020, 161, 2805–2819. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.M.; Germann, J.; Boutet, A.; Elias, G.J.B.; Mithani, K.; Chow, C.T.; Karmur, B.; Ibrahim, G.M.; McAndrews, M.P.; Lozano, A.M.; et al. Identification of Neural Networks Preferentially Engaged by Epileptogenic Mass Lesions through Lesion Network Mapping Analysis. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-Seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef]
- Shen, E.H.; Overly, C.C.; Jones, A.R. The Allen Human Brain Atlas: Comprehensive Gene Expression Mapping of the Human Brain. Trends Neurosci. 2012, 35, 711–714. [Google Scholar] [CrossRef]
- Jones, A.R.; Overly, C.C.; Sunkin, S.M. The Allen Brain Atlas: 5 Years and beyond. Nat. Rev. Neurosci. 2009, 10, 821–828. [Google Scholar] [CrossRef]
- Hawrylycz, M.J.; Lein, E.S.; Guillozet-Bongaarts, A.L.; Shen, E.H.; Ng, L.; Miller, J.A.; van de Lagemaat, L.N.; Smith, K.A.; Ebbert, A.; Riley, Z.L.; et al. An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome. Nature 2012, 489, 391–399. [Google Scholar] [CrossRef]
- Zheng, Y.-Q.; Zhang, Y.; Yau, Y.; Zeighami, Y.; Larcher, K.; Misic, B.; Dagher, A. Local Vulnerability and Global Connectivity Jointly Shape Neurodegenerative Disease Propagation. PLoS Biol. 2019, 17, e3000495. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.S.; Romero-Garcia, R.; Hart, M.G.; Suckling, J. Genetic, Cellular, and Connectomic Characterization of the Brain Regions Commonly Plagued by Glioma. Brain 2020, 143, 3294–3307. [Google Scholar] [CrossRef]
- Bilello, M.; Akbari, H.; Da, X.; Pisapia, J.M.; Mohan, S.; Wolf, R.L.; O’Rourke, D.M.; Martinez-Lage, M.; Davatzikos, C. Population-Based MRI Atlases of Spatial Distribution Are Specific to Patient and Tumor Characteristics in Glioblastoma. Neuroimage Clin. 2016, 12, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xia, W.; Liu, B.; Zhou, L.; Ni, M.; Zhang, R.; Shen, J.; Bai, Y.; Weng, G.; Yuan, S.; et al. Exploration of Spatial Distribution of Brain Metastasis from Small Cell Lung Cancer and Identification of Metastatic Risk Level of Brain Regions: A Multicenter, Retrospective Study. Cancer Imaging 2021, 21, 41. [Google Scholar] [CrossRef]
- Takano, K.; Kinoshita, M.; Takagaki, M.; Sakai, M.; Tateishi, S.; Achiha, T.; Hirayama, R.; Nishino, K.; Uchida, J.; Kumagai, T.; et al. Different Spatial Distributions of Brain Metastases from Lung Cancer by Histological Subtype and Mutation Status of Epidermal Growth Factor Receptor. Neuro. Oncol. 2016, 18, 716–724. [Google Scholar] [CrossRef]
- Albazron, F.M.; Bruss, J.; Jones, R.M.; Yock, T.I.; Pulsifer, M.B.; Cohen, A.L.; Nopoulos, P.C.; Abrams, A.N.; Sato, M.; Boes, A.D. Pediatric Postoperative Cerebellar Cognitive Affective Syndrome Follows Outflow Pathway Lesions. Neurology 2019, 93, e1561–e1571. [Google Scholar] [CrossRef]
- Mansouri, A.; Boutet, A.; Elias, G.; Germann, J.; Yan, H.; Babu, H.; Lozano, A.M.; Valiante, T.A. Lesion Network Mapping Analysis Identifies Potential Cause of Postoperative Depression in a Case of Cingulate Low-Grade Glioma. World Neurosurg. 2020, 133, 278–282. [Google Scholar] [CrossRef]
- Esmaeili, M.; Stensjøen, A.L.; Berntsen, E.M.; Solheim, O.; Reinertsen, I. The Direction of Tumour Growth in Glioblastoma Patients. Sci. Rep. 2018, 8, 1199. [Google Scholar] [CrossRef] [PubMed]
- Mickevicius, N.J.; Carle, A.B.; Bluemel, T.; Santarriaga, S.; Schloemer, F.; Shumate, D.; Connelly, J.; Schmainda, K.M.; LaViolette, P.S. Location of Brain Tumor Intersecting White Matter Tracts Predicts Patient Prognosis. J. Neurooncol. 2015, 125, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Brain Connectomics Applied to Oncological Neuroscience: From a Traditional Surgical Strategy Focusing on Glioma Topography to a Meta-Network Approach. Acta Neurochir. 2021, 163, 905–917. [Google Scholar] [CrossRef]
- Samuel, N.; Vetkas, A.; Pancholi, A.; Sarica, C.; Loh, A.; Germann, J.; Harmsen, I.E.; Tasserie, J.; Milano, V.; Yamamoto, K.; et al. A Network-Based Approach to Glioma Surgery: Insights from Functional Neurosurgery. Cancers 2021, 13, 6127. [Google Scholar] [CrossRef]
- Griffis, J.C.; Metcalf, N.V.; Corbetta, M.; Shulman, G.L. Lesion Quantification Toolkit: A MATLAB Software Tool for Estimating Grey Matter Damage and White Matter Disconnections in Patients with Focal Brain Lesions. Neuroimage Clin. 2021, 30, 102639. [Google Scholar] [CrossRef] [PubMed]
- Sunkin, S.M.; Ng, L.; Lau, C.; Dolbeare, T.; Gilbert, T.L.; Thompson, C.L.; Hawrylycz, M.; Dang, C. Allen Brain Atlas: An Integrated Spatio-Temporal Portal for Exploring the Central Nervous System. Nucleic Acids Res. 2013, 41, D996–D1008. [Google Scholar] [CrossRef] [Green Version]
- Markello, R.D.; Arnatkevičiūtė, A.; Poline, J.-B.; Fulcher, B.D.; Fornito, A.; Misic, B. Standardizing Workflows in Imaging Transcriptomics with the Abagen Toolbox. eLife 2021, 10, e72129. [Google Scholar] [CrossRef]
- Wang, Q.; Akram, H.; Muthuraman, M.; Gonzalez-Escamilla, G.; Sheth, S.A.; Oxenford, S.; Yeh, F.-C.; Groppa, S.; Vanegas-Arroyave, N.; Zrinzo, L.; et al. Normative vs. Patient-Specific Brain Connectivity in Deep Brain Stimulation. Neuroimage 2021, 224, 117307. [Google Scholar] [CrossRef] [PubMed]
- Azad, T.D.; Duffau, H. Limitations of Functional Neuroimaging for Patient Selection and Surgical Planning in Glioma Surgery. Neurosurg. Focus 2020, 48, E12. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.J.; Hollinshead, M.O.; O’Keefe, T.M.; Petrov, V.I.; Fariello, G.R.; Wald, L.L.; Fischl, B.; Rosen, B.R.; Mair, R.W.; Roffman, J.L.; et al. Brain Genomics Superstruct Project Initial Data Release with Structural, Functional, and Behavioral Measures. Sci. Data 2015, 2, 150031. [Google Scholar] [CrossRef] [Green Version]
- Glasser, M.F.; Smith, S.M.; Marcus, D.S.; Andersson, J.L.R.; Auerbach, E.J.; Behrens, T.E.J.; Coalson, T.S.; Harms, M.P.; Jenkinson, M.; Moeller, S.; et al. The Human Connectome Project’s Neuroimaging Approach. Nat. Neurosci. 2016, 19, 1175–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elam, J.S.; Glasser, M.F.; Harms, M.P.; Sotiropoulos, S.N.; Andersson, J.L.R.; Burgess, G.C.; Curtiss, S.W.; Oostenveld, R.; Larson-Prior, L.J.; Schoffelen, J.-M.; et al. The Human Connectome Project: A Retrospective. Neuroimage 2021, 244, 118543. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germann, J.; Zadeh, G.; Mansouri, A.; Kucharczyk, W.; Lozano, A.M.; Boutet, A. Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics. Cancers 2022, 14, 464. https://doi.org/10.3390/cancers14030464
Germann J, Zadeh G, Mansouri A, Kucharczyk W, Lozano AM, Boutet A. Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics. Cancers. 2022; 14(3):464. https://doi.org/10.3390/cancers14030464
Chicago/Turabian StyleGermann, Jurgen, Gelareh Zadeh, Alireza Mansouri, Walter Kucharczyk, Andres M. Lozano, and Alexandre Boutet. 2022. "Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics" Cancers 14, no. 3: 464. https://doi.org/10.3390/cancers14030464
APA StyleGermann, J., Zadeh, G., Mansouri, A., Kucharczyk, W., Lozano, A. M., & Boutet, A. (2022). Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics. Cancers, 14(3), 464. https://doi.org/10.3390/cancers14030464