Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DTC Detection
2.3. Systemic Treatment
2.4. Statistical Analysis
3. Results
3.1. Patient’s Characteristics
3.2. Detection of Disseminated Tumor Cells
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Total | DTC-Positive n (%) | p-Value | ≥2 DTCs/1.5 × 106 Cells n (%) | p-Value | |
---|---|---|---|---|---|
All patients | 602 | 120 (19.9) | 10 (1.7) | ||
Menopausal status | |||||
premenopausal | 253 | 49 (19.4) | 4 (1.6) | ||
postmenopausal | 345 | 70 (20.3) | 0.780 | 6 (1.7) | 0.881 |
Histology | |||||
non-special type | 521 | 102 (19.6) | 8 (1.5) | ||
other subtypes | 81 | 18 (22.2) | 0.534 | 2 (2.5) | 0.564 |
Nuclear grade | |||||
G1-2 | 278 | 57 20.5) | 5 (1.8) | ||
G3 | 321 | 62 (19.3) | 0.716 | 5 (1.6) | 0.819 |
Initial tumor size * | |||||
T1 | 253 | 49 (19.4) | 1 (3.6) | ||
T2-4 | 348 | 71 (20.4) | 0.754 | 1 (1.4) | 0.501 |
Initial nodal status * | |||||
N0 | 340 | 49 (14.4) | 4 (1.2) | ||
N1-3 | 255 | 70 (27.5) | 0.562 | 6 (2.4) | 0.272 |
Subtype ** | |||||
triple-negative | 107 | 20 (18.7) | 2 (1.9) | ||
luminal-like | 347 | 72 (20.8) | 7 (2.0) | ||
HER2-positive | 142 | 28 (19.7) | 0.888 | 1 (0.7) | 0.524 |
Total | DTC-Positive n (%) | p-Value | ≥2 DTCs/1.5 × 106 Cells n (%) | p-Value | |
---|---|---|---|---|---|
Bone only | |||||
yes | 3 | 1 | 0 | ||
no | 18 | 11 | 0.386 | 5 | - |
Visceral | |||||
yes | 16 | 9 | 4 | ||
no | 5 | 2 | 0.525 | 1 | 0.816 |
Total | DTC-Positive n (%) | p-Value | ≥2 DTCs/1.5 × 106 Cells n (%) | p-Value | |
---|---|---|---|---|---|
Bone only | |||||
yes | 14 | 4 | 1 | ||
no | 39 | 9 | 0.685 | 0 | 0.099 |
Visceral | |||||
yes | 27 | 7 | 0 | ||
no | 26 | 6 | 0.806 | 1 | 0.229 |
References
- Hosseini, H.; Obradović, M.M.S.; Hoffmann, M.; Harper, K.L.; Sosa, M.S.; Werner-Klein, M.; Nanduri, S.L.K.; Werno, C.; Ehrl, C.; Maneck, M.; et al. Early dissemination seeds metastasis in breast cancer. Nature 2016, 540, 552–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, S.; Vogl, F.D.; Naume, B.; Janni, W.; Osborne, M.P.; Coombes, R.C.; Schlimok, G.; Diel, I.J.; Gerber, B.; Gebauer, G.; et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 2005, 353, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, A.D.; Wallwiener, M.; Fehm, T.N.; Hahn, M.; Walter, C.B.; Gruber, I.; Brucker, S.Y.; Taran, F.-A. Disseminated tumor cells from the bone marrow of patients with nonmetastatic primary breast cancer are predictive of locoregional relapse. Ann. Oncol. 2015, 26, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, A.D.; Brucker, S.Y.; Taran, F.A.; Harbeck, N.; von Au, A.; Naume, B.; Pierga, J.-Y.; Hoffmann, O.; Beckmann, M.W.; Rydén, L.; et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur. J. Cancer 2021, 154, 128–137. [Google Scholar] [CrossRef]
- Burstein, H.; Curigliano, G.; Thürlimann, B.; Weber, W.; Poortmans, P.; Regan, M.; Senn, H.; Winer, E.; Gnant, M.; Aebi, S.; et al. Customizing Local and Systemic Therapies for Women with Early Breast Cancer: The St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef]
- Jeruss, J.S.; Mittendorf, E.A.; Tucker, S.L.; Gonzalez-Angulo, A.M.; Buchholz, T.A.; Sahin, A.A.; Cormier, J.N.; Buzdar, A.U.; Hortobagyi, G.N.; Hunt, K.K. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J. Clin. Oncol. 2008, 26, 246–252. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Fehm, T.; Becker, S.; Becker-Pergola, G.; Sotlar, K.; Gebauer, G.; Dürr-Störzer, S.; Neubauer, H.; Wallwiener, D.; Solomayer, E.-F. Presence of apoptotic and nonapoptotic disseminated tumor cells reflects the response to neoadjuvant systemic therapy in breast cancer. Breast Cancer Res. 2006, 8, R60. [Google Scholar] [CrossRef] [Green Version]
- Hartkopf, A.D.; Taran, F.-A.; Wallwiener, M.; Hagenbeck, C.; Melcher, C.; Krawczyk, N.; Hahn, M.; Wallwiener, D.; Fehm, T. The presence and prognostic impact of apoptotic and nonapoptotic disseminated tumor cells in the bone marrow of primary breast cancer patients after neoadjuvant chemotherapy. Breast Cancer Res. 2013, 15, R94. [Google Scholar] [CrossRef]
- Hall, C.; Krishnamurthy, S.; Lodhi, A.; Bhattacharyya, A.; Bs, A.A.; Kuerer, H.; Bedrosian, I.; Singh, B.; Lucci, A. Disseminated tumor cells predict survival after neoadjuvant therapy in primary breast cancer. Cancer 2011, 118, 342–348. [Google Scholar] [CrossRef]
- Keklikoglou, I.; Cianciaruso, C.; Güç, E.; Squadrito, M.L.; Spring, L.M.; Tazzyman, S.; Lambein, L.; Poissonnier, A.; Ferraro, G.B.; Baer, C.; et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol. 2019, 21, 190–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Early Breast Cancer Trialists’ Collaborative Group. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018, 19, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Fehm, T.; Braun, S.; Müller, V.; Janni, W.; Gebauer, G.; Marth, C.; Schindlbeck, C.; Wallwiener, D.; Borgen, E.; Naume, B.; et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 2006, 107, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Wöckel, A.; Festl, J.; Stüber, T.; Brust, K.; Krockenberger, M.; Heuschmann, P.U.; Jírů-Hillmann, S.; Albert, U.-S.; Budach, W.; Follmann, M.; et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017)—Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Breast Cancer. Geburtshilfe Frauenheilkd. 2018, 78, 1056–1088. [Google Scholar]
- Wöckel, A.; Festl, J.; Stüber, T.; Brust, K.; Stangl, S.; Heuschmann, P.U.; Albert, U.-S.; Budach, W.; Follmann, M.; Janni, W.; et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017)—Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd. 2018, 78, 927–948. [Google Scholar]
- Shaked, Y. Balancing efficacy of and host immune responses to cancer therapy: The yin and yang effects. Nat. Rev. Clin. Oncol. 2016, 13, 611–626. [Google Scholar] [CrossRef] [PubMed]
- Daenen, L.G.; Roodhart, J.M.; Van Amersfoort, M.; Dehnad, M.; Roessingh, W.; Ulfman, L.H.; Derksen, P.W.; Voest, E.E.; Jin, X.; Yin, J.; et al. Chemotherapy enhances metastasis formation via VEGFR-1-expressing endothelial cells. Cancer Res. 2011, 71, 6976–6985. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.S.; Jalgaonkar, S.P.; Middleton, J.D.; Hai, T. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc. Natl. Acad. Sci. USA 2017, 114, E7159–E7168. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Chen, Y.; Qi, F.; Jia, L.; Lu, X.-A.; He, T.; Fu, Y.; Li, L.; Luo, Y. Specific chemotherapeutic agents induce metastatic behaviour through stromal- and tumour-derived cytokine and angiogenic factor signalling. J. Pathol. 2015, 237, 190–202. [Google Scholar] [CrossRef]
- Volk-Draper, L.; Hall, K.; Griggs, C.; Rajput, S.; Kohio, P.; DeNardo, D.; Ran, S. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2014, 74, 5421–5434. [Google Scholar] [CrossRef] [Green Version]
- Solà, M.; Margelí, M.; Castellà, E.; Cirauqui, B.; Mariscal, A.; Rull, M.; Julián, J.F.; Luna, M.; Vallejo, V.; Fraile, M. Detection of disseminated tumor cells in locally advanced breast cancer patients before primary systemic therapy. Breast 2013, 22, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Wiedswang, G.; Borgen, E.; Kåresen, R.; Kvalheim, G.; Nesland, J.; Qvist, H.; Schlichting, E.; Sauer, T.; Janbu, J.; Harbitz, T.; et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J. Clin. Oncol. 2003, 21, 3469–3478. [Google Scholar] [CrossRef] [PubMed]
- Mansi, J.; Morden, J.; Bliss, J.; Neville, M.; Coombes, R.C. Bone marrow micrometastases in early breast cancer-30-year outcome. Br. J. Cancer 2016, 114, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidard, F.-C.; Kirova, Y.M.; Vincent-Salomon, A.; Alran, S.; de Rycke, Y.; Sigal-Zafrani, B.; Sastre-Garau, X.; Mignot, L.; Fourquet, A.; Pierga, J.-Y. Disseminated tumor cells and the risk of locoregional recurrence in nonmetastatic breast cancer. Ann. Oncol. 2009, 20, 1836–1841. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, G.S.; Pastoriza, J.M.; Wang, Y.; Harney, A.S.; Entenberg, D.; Pignatelli, J.; Sharma, V.P.; Xue, E.A.; Cheng, E.; D’Alfonso, T.M.; et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl. Med. 2017, 9, 131672. [Google Scholar] [CrossRef] [Green Version]
- König, L.; Kasimir-Bauer, S.; Bittner, A.-K.; Hoffmann, O.; Wagner, B.; Manvailer, L.F.S.; Kimmig, R.; Horn, P.A.; Rebmann, V. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. OncoImmunology 2017, 7, e1376153. [Google Scholar] [CrossRef] [Green Version]
- Madden, E.C.; Gorman, A.M.; Logue, S.E.; Samali, A. Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends Cancer 2020, 6, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.; Wiemann, S. Cancer-Associated Fibroblasts: Implications for Cancer Therapy. Cancers 2021, 13, 3526. [Google Scholar] [CrossRef]
- Mathiesen, R.R.; Borgen, E.; Renolen, A.; Løkkevik, E.; Nesland, J.M.; Anker, G.; Østenstad, B.; Lundgren, S.; Risberg, T.; Mjaaland, I.; et al. Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival. Breast Cancer Res. 2012, 14, R117. [Google Scholar] [CrossRef] [Green Version]
- Kasimir-Bauer, S.; Bittner, A.K.; König, L.; Reiter, K.; Keller, T.; Kimmig, R.; Hoffmann, O. Does primary neoadjuvant systemic therapy eradicate minimal residual disease? Analysis of disseminated and circulating tumor cells before and after therapy. Breast Cancer Res. 2016, 18, 20. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Yau, C.; Wolf, D.M.; Lee, J.S.; Chattopadhyay, A.; Scott, J.H.; Bowlby-Yoder, E.; Hwang, E.S.; Alvarado, M.; Ewing, C.A.; et al. Synchronous Detection of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow Predicts Adverse Outcome in Early Breast Cancer. Clin. Cancer Res. 2019, 25, 5388–5397. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.A.; Ylagan, L.R.; Trinkaus, K.M.; Gillanders, W.E.; Naughton, M.J.; Weilbaecher, K.N.; Fleming, T.P.; Aft, R.L. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin. Cancer Res. 2007, 13, 5001–5009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer 2018, 18, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Synnestvedt, M.; Borgen, E.; Wist, E.; Wiedswang, G.; Weyde, K.; Risberg, T.; Kersten, C.; Mjaaland, I.; Vindi, L.; Schirmer, C.; et al. Disseminated tumor cells as selection marker and monitoring tool for secondary adjuvant treatment in early breast cancer. Descriptive results from an intervention study. BMC Cancer 2012, 12, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidard, F.-C.; Michiels, S.; Riethdorf, S.; Mueller, V.; Esserman, L.J.; Lucci, A.; Naume, B.; Horiguchi, J.; Gisbert-Criado, R.; Sleijfer, S.; et al. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis. JNCI: J. Natl. Cancer Inst. 2018, 110, 560–567. [Google Scholar] [CrossRef]
- Meng, S.; Tripathy, D.; Frenkel, E.P.; Shete, S.; Naftalis, E.Z.; Huth, J.F.; Beitsch, P.D.; Leitch, M.; Hoover, S.; Euhus, D.; et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 2004, 10, 8152–8162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients | Neoadjuvant Group | Adjuvant Group | p-Value * | |
---|---|---|---|---|
All patients, n | 809 | 207 | 602 | |
Mean age (years) | 54.0 | 50.5 | 55.4 | <0.001 |
Menopausal status, n (%) | <0.001 | |||
premenopausal | 371 (46.1) | 118 (57.0) | 253 (42.3) | |
postmenopausal | 434 (53.9) | 89 (43.0) | 345 (57.7) | |
Histology, n (%) | 0.063 | |||
no special type | 710 (87.8) | 189 (91.3) | 521 (86.5) | |
other subtypes | 99 (12.2) | 18 (8.7) | 81 (13.5) | |
Nuclear grade, n (%) | 0.002 | |||
G1–2 | 348 (43.2) | 70 (34.0) | 278 (46.4) | |
G3 | 457 (56.8) | 136 (66.0) | 321 (53.6) | |
Initial tumor size, n (%) ** | <0.001 | |||
T1 | 280 (34.7) | 27 (13.0) | 253 (42.1) | |
T2–4 | 528 (65.3) | 180 (87.0) | 348 (57.9) | |
Initial nodal status, n (%) ** | <0.001 | |||
N0 | 402 (50.1) | 62 (30.0) | 340 (57.2) | |
N1–3 | 400 (49.9) | 145 (70.0) | 255 (42.8) | |
Subtype, n (%) | <0.001 | |||
triple-negative | 161 (20.1) | 54 (26.2) | 107 (18.0) | |
luminal-like *** | 426 (53.1) | 79 (38.3) | 347 (58.2) | |
HER2-positive | 215 (26.8) | 73 (35.4) | 142 (23.8) | |
pCR **** | ||||
yes | - | 82 (39.6) | - | - |
no | - | 125 (60.4) | - | - |
CPS + EG score **** | ||||
CPS + EG score ≤ 4 | - | 77 (41.2) | - | - |
CPS + EG score > 4 | - | 110 (58.8) | - | - |
All Patients | DTC-Positive * | ≥2 DTCs/1.5 × 106 Cells * | |||
---|---|---|---|---|---|
n | n (%) | chi2 p-Value | n (%) | chi2 p-Value | |
Total | 809 | 214 (26.5) | 34 (4.2) | ||
Treatment Group * | |||||
Neoadjuvant group | 207 | 94 (45.4) | 24 (11.6) | ||
Adjuvant group | 602 | 120 (19.9) | <0.001 | 10 (1.7) | <0.001 |
Menopausal status | 0.539 | ||||
premenopausal | 371 | 102 (27.5) | 18 (4.9) | ||
postmenopausal | 434 | 111 (25.6) | 16 (3.7) | 0.414 | |
Histology | 0.843 | ||||
non-special type | 710 | 187 (26.3) | 27 (3.8) | ||
other subtypes | 99 | 27 (27.3) | 7 (7.1) | 0.159 | |
Nuclear grade | 0.252 | ||||
G1–2 | 348 | 85 (24.4) | 13 (3.7) | ||
G3 | 457 | 128 (28.0) | 21 (4.6) | 0.546 | |
Initial tumor size ** | 0.006 | ||||
T1 | 280 | 58 (20.7) | 2 (3.6) | ||
T2–4 | 528 | 156 (29.6) | 24 (9.5) | 0.122 | |
Initial nodal status ** | 0.001 | ||||
N0 | 403 | 86 (21.3) | 11 (2.7) | ||
N1–3 | 400 | 126 (31.5) | 23 (5.8) | 0.032 | |
Subtype | 0.579 | 0.166 | |||
Triple-negative | 44 | 14 (31.8) | 11 (6.8) | ||
Luminal-like *** | 430 | 113 (26.3) | 17 (4.0) | ||
HER2-positive | 211 | 53 (25.1) | 6 (2.8) |
Total | DTC-Positive n (%) | p-Value | ≥2 DTCs/1.5 × 106 Cells n (%) | chi2 p-Value | |
---|---|---|---|---|---|
All patients | 207 | 94 (45.4) | 24 (11.6) | ||
Menopausal status | |||||
premenopausal | 118 | 53 (44.9) | 14 (11.9) | ||
postmenopausal | 89 | 41 (46.1) | 0.869 | 19 (11.2) | 0.889 |
Histology | |||||
non-special type | 189 | 85 (45.0) | 19 (10.1) | ||
other subtypes | 18 | 9 (50.0) | 0.682 | 5 (27.8) | 0.047 |
Nuclear grade | |||||
G1–2 | 70 | 28 (40.0) | 8 (11.4) | ||
G3 | 136 | 66 (48.5) | 0.243 | 16 (11.8) | 0.943 |
Initial tumor size * | |||||
Tis-1 | 27 | 9 (33.3) | 1 (3.7) | ||
T2-4 | 180 | 85 (47.2) | 0.172 | 23 (12.8) | 0.121 |
Initial nodal status * | |||||
N0 | 62 | 26 (41.9) | 7 (11.3) | ||
N1–3 | 145 | 68 (46.9) | 0.511 | 17 (11.7) | 0.929 |
Subtype ** | |||||
triple-negative | 54 | 28 (51.9) | 9 (16.7) | ||
luminal-like | 79 | 40 (50.6) | 10 (12.7) | ||
HER2-positive | 73 | 26 (35.6) | 0.098 | 5 (6.9) | 0.208 |
pCR | |||||
yes | 82 | 32 (39.0) | 6 (7.3) | ||
no | 125 | 62 (49.6) | 0.134 | 18 (14.4) | 0.110 |
CPS + EG score | |||||
CPS + EG score ≤ 4 | 77 | 28 (36.4) | 5 (6.5) | ||
CPS + EG score > 4 | 110 | 57 (45.5) | 0.036 | 18 (16.4) | 0.036 |
Parameter | OR for DTC Detection | 95% CI | chi2 p-Value |
---|---|---|---|
Treatment Group * | |||
Adjuvant group | 1.0 | ||
Neoadjuvant group | 3.1 | 2.1–4.4 | <0.001 |
Initial tumor size ** | |||
Tis-1 | 1.0 | ||
T2–4 | 1.1 | 0.8–1.6 | 0.612 |
Initial nodal status ** | |||
N0 | 1.0 | ||
N1–3 | 1.3 | 0.9–1.8 | 0.145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volmer, L.; Koch, A.; Matovina, S.; Dannehl, D.; Weiss, M.; Welker, G.; Hahn, M.; Engler, T.; Wallwiener, M.; Walter, C.B.; et al. Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow. Cancers 2022, 14, 635. https://doi.org/10.3390/cancers14030635
Volmer L, Koch A, Matovina S, Dannehl D, Weiss M, Welker G, Hahn M, Engler T, Wallwiener M, Walter CB, et al. Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow. Cancers. 2022; 14(3):635. https://doi.org/10.3390/cancers14030635
Chicago/Turabian StyleVolmer, Léa, André Koch, Sabine Matovina, Dominik Dannehl, Martin Weiss, Ganna Welker, Markus Hahn, Tobias Engler, Markus Wallwiener, Christina Barbara Walter, and et al. 2022. "Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow" Cancers 14, no. 3: 635. https://doi.org/10.3390/cancers14030635
APA StyleVolmer, L., Koch, A., Matovina, S., Dannehl, D., Weiss, M., Welker, G., Hahn, M., Engler, T., Wallwiener, M., Walter, C. B., Oberlechner, E., Brucker, S. Y., Pantel, K., & Hartkopf, A. (2022). Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow. Cancers, 14(3), 635. https://doi.org/10.3390/cancers14030635