The Role of Sarcopenia and Myosteatosis in Short- and Long-Term Outcomes Following Curative-Intent Surgery for Hepatocellular Carcinoma in a European Cohort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients, Ethics, and Eligibility
2.2. Image Analysis and Segmentation
2.3. Clinical Data Collection and Patient Follow Up
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Body Composition
3.3. Myosteatosis, Sarcopenia and Their Value in Predicting Perioperative Outcomes
3.4. Overall and Disease-Free Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.W.; Dunn, M.A. Arresting frailty and sarcopenia in cirrhosis: Future prospects. Clin. Liver Dis. 2018, 11, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.; Morley, J.E.; Schols, A.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Kramp, W.; Bednarsch, J.; van der Kroft, G.; Boecker, J.; Strnad, P.; Zimmermann, M.; Koek, G.; Neumann, U.P.; Lurje, G. Myosteatosis to predict inferior perioperative outcome in patients undergoing orthotopic liver transplantation. Am. J. Transplant. 2020, 20, 493–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudou, K.; Saeki, H.; Nakashima, Y.; Edahiro, K.; Korehisa, S.; Taniguchi, D.; Tsutsumi, R.; Nishimura, S.; Nakaji, Y.; Akiyama, S.; et al. Prognostic Significance of Sarcopenia in Patients with Esophagogastric Junction Cancer or Upper Gastric Cancer. Ann. Surg. Oncol. 2017, 24, 1804–1810. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Angulo, P.; Meza-Junco, J.; Prado, C.M.; Sawyer, M.B.; Beaumont, C.; Esfandiari, N.; Ma, M.; Baracos, V.E. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J. Cachexia Sarcopenia Muscle 2016, 7, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Centonze, L.; Di Sandro, S.; Lauterio, A.; De Carlis, R.; Botta, F.; Mariani, A.; Bagnardi, V.; De Carlis, L. The Impact of Sarcopenia on Postoperative Course following Pancreatoduodenectomy: Single-Center Experience of 110 Consecutive Cases. Dig. Surg. 2020, 37, 312–320. [Google Scholar] [CrossRef]
- Delitto, D.; Judge, S.M.; George, T.J., Jr.; Sarosi, G.A.; Thomas, R.M.; Behrns, K.E.; Hughes, S.J.; Judge, A.R.; Trevino, J.G. A clinically applicable muscular index predicts long-term survival in resectable pancreatic cancer. Surgery 2017, 161, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Meza-Junco, J.; Baracos, V.E.; Prado, C.M.; Ma, M.; Meeberg, G.; Beaumont, C.; Tandon, P.; Esfandiari, N.; Sawyer, M.B.; et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transplant. 2014, 20, 640–648. [Google Scholar] [CrossRef]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Fujimoto, Y.; Ogawa, K.; Mori, A.; Hammad, A.; Tamai, Y.; Inagaki, N.; Uemoto, S. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transplant. 2014, 20, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, J.; Dadhania, D.; Bhorade, S.; Adey, D.; Berger, J.; Bhat, G.; Budev, M.; Duarte-Rojo, A.; Dunn, M.; Hall, S.; et al. Report from the American Society of Transplantation on frailty in solid organ transplantation. Am. J. Transplant. 2019, 19, 984–994. [Google Scholar] [CrossRef]
- van der Kroft, G.; van Dijk, D.P.J.; Rensen, S.S.; Van Tiel, F.H.; de Greef, B.; West, M.; Ostridge, K.; Dejong, C.H.C.; Neumann, U.P.; Olde Damink, S.W.M. Low thoracic muscle radiation attenuation is associated with postoperative pneumonia following partial hepatectomy for colorectal metastasis. HPB 2020, 22, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Nachit, M.; De Rudder, M.; Thissen, J.P.; Schakman, O.; Bouzin, C.; Horsmans, Y.; Vande Velde, G.; Leclercq, I.A. Myosteatosis rather than sarcopenia associates with non-alcoholic steatohepatitis in non-alcoholic fatty liver disease preclinical models. J. Cachexia Sarcopenia Muscle 2020, 12, 144–158. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. 1), 4–13. [Google Scholar] [CrossRef]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lurje, G.; Bednarsch, J.; Czigany, Z.; Amygdalos, I.; Meister, F.; Schoning, W.; Ulmer, T.F.; Foerster, M.; Dejong, C.; Neumann, U.P. Prognostic factors of disease-free and overall survival in patients with hepatocellular carcinoma undergoing partial hepatectomy in curative intent. Langenbeck’s Arch. Surg. 2018, 403, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.; Czigany, Z.; Lurje, I.; Reichelt, S.; Bednarsch, J.; Strnad, P.; Trautwein, C.; Roderburg, C.; Tacke, F.; Gaisa, N.T.; et al. Impact of Angiogenesis- and Hypoxia-Associated Polymorphisms on Tumor Recurrence in Patients with Hepatocellular Carcinoma Undergoing Surgical Resection. Cancers 2020, 12, 3826. [Google Scholar] [CrossRef]
- Czigany, Z.; Kramp, W.; Lurje, I.; Miller, H.; Bednarsch, J.; Lang, S.A.; Ulmer, T.F.; Bruners, P.; Strnad, P.; Trautwein, C.; et al. The role of recipient myosteatosis in graft and patient survival after deceased donor liver transplantation. J. Cachexia Sarcopenia Muscle 2021, 12, 358–367. [Google Scholar] [CrossRef]
- Harimoto, N.; Shirabe, K.; Yamashita, Y.I.; Ikegami, T.; Yoshizumi, T.; Soejima, Y.; Ikeda, T.; Maehara, Y.; Nishie, A.; Yamanaka, T. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br. J. Surg. 2013, 100, 1523–1530. [Google Scholar] [CrossRef]
- Peng, P.D.; van Vledder, M.G.; Tsai, S.; de Jong, M.C.; Makary, M.; Ng, J.; Edil, B.H.; Wolfgang, C.L.; Schulick, R.D.; Choti, M.A.; et al. Sarcopenia negatively impacts short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis. HPB 2011, 13, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Kaibori, M.; Ishizaki, M.; Iida, H.; Matsui, K.; Sakaguchi, T.; Inoue, K.; Mizuta, T.; Ide, Y.; Iwasaka, J.; Kimura, Y.; et al. Effect of Intramuscular Adipose Tissue Content on Prognosis in Patients Undergoing Hepatocellular Carcinoma Resection. J. Gastrointest. Surg. 2015, 19, 1315–1323. [Google Scholar] [CrossRef]
- Xu, L.; Jing, Y.; Zhao, C.; Zhang, Q.; Zhao, X.; Yang, J.; Wu, L.; Yang, Y. Preoperative computed tomography-assessed skeletal muscle index is a novel prognostic factor in patients with hepatocellular carcinoma following hepatectomy: A meta-analysis. J. Gastrointest. Oncol. 2020, 11, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Nakagawa, H.; Kudo, Y.; Tateishi, R.; Taguri, M.; Watadani, T.; Nakagomi, R.; Kondo, M.; Nakatsuka, T.; Minami, T.; et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 2015, 63, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meister, F.A.; Bednarsch, J.; Amygdalos, I.; Boecker, J.; Strnad, P.; Bruners, P.; Lang, S.A.; Ulmer, T.F.; Heij, L.; Santana, D.A.M.; et al. Various myosteatosis selection criteria and their value in the assessment of short- and long-term outcomes following liver transplantation. Sci. Rep. 2021, 11, 13368. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Ebadi, M.; Tandon, P.; Moctezuma-Velazquez, C.; Ghosh, S.; Baracos, V.E.; Mazurak, V.C.; Montano-Loza, A.J. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J. Hepatol. 2018, 69, 608–616. [Google Scholar] [CrossRef]
- Eslamparast, T.; Montano-Loza, A.J.; Raman, M.; Tandon, P. Sarcopenic obesity in cirrhosis-The confluence of 2 prognostic titans. Liver Int. 2018, 38, 1706–1717. [Google Scholar] [CrossRef] [Green Version]
- Abu Hilal, M.; Aldrighetti, L.; Dagher, I.; Edwin, B.; Troisi, R.I.; Alikhanov, R.; Aroori, S.; Belli, G.; Besselink, M.; Briceno, J.; et al. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. Ann. Surg. 2018, 268, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Bednarsch, J.; Czigany, Z.; Heise, D.; Joechle, K.; Luedde, T.; Heij, L.; Bruners, P.; Ulmer, T.F.; Neumann, U.P.; Lang, S.A. Prognostic evaluation of HCC patients undergoing surgical resection: An analysis of 8 different staging systems. Langenbeck’s Arch. Surg. 2021, 406, 75–86. [Google Scholar] [CrossRef]
- Lurje, I.; Czigany, Z.; Bednarsch, J.; Roderburg, C.; Isfort, P.; Neumann, U.P.; Lurje, G. Treatment Strategies for Hepatocellular Carcinoma—A Multidisciplinary Approach. Int. J. Mol. Sci. 2019, 20, 1465. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Charlson, M.E.; Charlson, R.E.; Peterson, J.C.; Marinopoulos, S.S.; Briggs, W.M.; Hollenberg, J.P. The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. J. Clin. Epidemiol. 2008, 61, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slankamenac, K.; Graf, R.; Barkun, J.; Puhan, M.A.; Clavien, P.A. The comprehensive complication index: A novel continuous scale to measure surgical morbidity. Ann. Surg. 2013, 258, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staiger, R.D.; Cimino, M.; Javed, A.; Biondo, S.; Fondevila, C.; Perinel, J.; Aragao, A.C.; Torzilli, G.; Wolfgang, C.; Adham, M.; et al. The Comprehensive Complication Index (CCI(R)) is a Novel Cost Assessment Tool for Surgical Procedures. Ann. Surg. 2018, 268, 784–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amygdalos, I.; Czigany, Z.; Bednarsch, J.; Boecker, J.; Santana, D.A.M.; Meister, F.A.; von der Massen, J.; Liu, W.J.; Strnad, P.; Neumann, U.P.; et al. Low Postoperative Platelet Counts Are Associated with Major Morbidity and Inferior Survival in Adult Recipients of Orthotopic Liver Transplantation. J. Gastrointest. Surg. 2020, 24, 1996–2007. [Google Scholar] [CrossRef] [PubMed]
- Boecker, J.; Czigany, Z.; Bednarsch, J.; Amygdalos, I.; Meister, F.; Santana, D.A.M.; Liu, W.J.; Strnad, P.; Neumann, U.P.; Lurje, G. Potential value and limitations of different clinical scoring systems in the assessment of short- and long-term outcome following orthotopic liver transplantation. PLoS ONE 2019, 14, e0214221. [Google Scholar] [CrossRef] [PubMed]
- Fattovich, G.; Stroffolini, T.; Zagni, I.; Donato, F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004, 127, S35–S50. [Google Scholar] [CrossRef]
- Nachit, M.; Leclercq, I.A. Emerging awareness on the importance of skeletal muscle in liver diseases: Time to dig deeper into mechanisms! Clin. Sci. 2019, 133, 465–481. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Kang, J. Prognostic impact of myosteatosis in patients with colorectal cancer: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 1270–1282. [Google Scholar] [CrossRef]
- Kroh, A.; Uschner, D.; Lodewick, T.; Eickhoff, R.M.; Schoning, W.; Ulmer, F.T.; Neumann, U.P.; Binnebosel, M. Impact of body composition on survival and morbidity after liver resection in hepatocellular carcinoma patients. Hepatobiliary Pancreat. Dis. Int. 2019, 18, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Shirai, H.; Yao, S.; Yagi, S.; Kamo, N.; Seo, S.; Taura, K.; et al. Preoperative Visceral Adiposity and Muscularity Predict Poor Outcomes after Hepatectomy for Hepatocellular Carcinoma. Liver Cancer 2019, 8, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Yagi, T.; Yoshida, R.; Shinoura, S.; Umeda, Y.; Nobuoka, D.; Kuise, T.; Watanabe, N.; Fujiwara, T. Sarcopenia and American Society of Anesthesiologists Physical Status in the Assessment of Outcomes of Hepatocellular Carcinoma Patients Undergoing Hepatectomy. Acta Med. Okayama 2016, 70, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Voron, T.; Tselikas, L.; Pietrasz, D.; Pigneur, F.; Laurent, A.; Compagnon, P.; Salloum, C.; Luciani, A.; Azoulay, D. Sarcopenia Impacts on Short- and Long-term Results of Hepatectomy for Hepatocellular Carcinoma. Ann. Surg. 2015, 261, 1173–1183. [Google Scholar] [CrossRef]
- Yabusaki, N.; Fujii, T.; Yamada, S.; Suzuki, K.; Sugimoto, H.; Kanda, M.; Nakayama, G.; Koike, M.; Fujiwara, M.; Kodera, Y. Adverse impact of low skeletal muscle index on the prognosis of hepatocellular carcinoma after hepatic resection. Int. J. Surg. 2016, 30, 136–142. [Google Scholar] [CrossRef]
- Hausman, G.J.; Basu, U.; Du, M.; Fernyhough-Culver, M.; Dodson, M.V. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 2014, 3, 242–255. [Google Scholar] [CrossRef] [Green Version]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schutz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [Green Version]
- Carey, E.J.; Lai, J.C.; Sonnenday, C.; Tapper, E.B.; Tandon, P.; Duarte-Rojo, A.; Dunn, M.A.; Tsien, C.; Kallwitz, E.R.; Ng, V.; et al. A North American Expert Opinion Statement on Sarcopenia in Liver Transplantation. Hepatology 2019, 70, 1816–1829. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schutz, T.; Plauth, M.; Burgos Pelaez, R.; Rivera Irigoin, R. ESPEN Practical Guideline: Clinical nutrition in liver disease. Nutr. Hosp. 2020, 39, 3533–3562. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Wagner, D.; Buttner, S.; Kim, Y.; Gani, F.; Xu, L.; Margonis, G.A.; Amini, N.; Kamel, I.R.; Pawlik, T.M. Clinical and morphometric parameters of frailty for prediction of mortality following hepatopancreaticobiliary surgery in the elderly. Br. J. Surg. 2016, 103, e83–e92. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Marsoner, K.; Tomberger, A.; Haybaeck, J.; Haas, J.; Werkgartner, G.; Cerwenka, H.; Bacher, H.; Mischinger, H.J.; Kornprat, P. Low skeletal muscle mass outperforms the Charlson Comorbidity Index in risk prediction in patients undergoing pancreatic resections. Eur. J. Surg. Oncol. 2018, 44, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Magistri, P.; Lionetti, R.; Avolio, A.W.; Lenci, I.; Giannelli, V.; Pecchi, A.; Ferri, F.; Marrone, G.; Angelico, M.; et al. Sarco-Model: A score to predict the dropout risk in the perspective of organ allocation in patients awaiting liver transplantation. Liver Int. 2021, 41, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients | Myosteatosis | Sarcopenia | p-Value | ||
---|---|---|---|---|---|---|
n = 100 | no n = 40 | yes n = 60 | no n = 46 | yes n = 54 | ||
Patient age (years) | 67 ± 11 | 64 ± 14 | 70 ± 8 | 66 ± 11 | 68 ± 11 | 0.056/0.354 |
Patient BMI | 26 ± 4 | 26 ± 3 | 26 ± 5 | 29 ± 4 | 24 ± 3 | 0.822/0.000 |
Patient sex ratio (F:M) | 28:72 | 10 (25):30 (75) | 18 (30):42 (70) | 10 (22):36 (78) | 18 (33):36 (67) | 0.585/0.198 |
ASA | ||||||
1 | 2 | 1 (3) | 1 (2) | 0 | 2 (4) | 0.771/0.187 |
2 | 33 | 19 (47) | 14 (23) | 17 (37) | 16 (30) | 0.012/0.437 |
3 | 59 | 19 (47) | 40 (67) | 26 (56) | 33 (61) | 0.056/0.462 |
4 | 6 | 1 (3) | 5 (8) | 3 (7) | 3 (6) | 0.229/0.839 |
Patient CCi | 6.2 ± 1.5 | 5.8 ± 1.6 | 6.4 ± 1.3 | 6.1 ± 1.4 | 6.2 ± 1.6 | 0.079/0.716 |
Preoperative labMELD | 8 ± 3 | 7 ± 1 | 9 ± 3 | 8 ± 3 | 8 ± 2 | 0.126/0.509 |
Milan criteria | 22 | 12 (30) | 10 (17) | 14 (30) | 8 (15) | 0.089/0.069 |
Cirrhosis | 42 | 17 (43) | 25 (42) | 20 (44) | 22 (41) | 0.990/0.710 |
Liver disease | ||||||
Alcoholic | 28 | 5 (13) | 23 (38) | 8 (17) | 20 (37) | 0.005/0.029 |
NAFLD | 38 | 14 (35) | 24 (40) | 20 (43) | 18 (33) | 0.614/0.298 |
Viral | 25 | 17 (42) | 8 (14) | 15 (33) | 10 (18) | 0.001/0.105 |
Other | 9 | 4 (10) | 5 (8) | 3 (7) | 6 (12) | 0.775/0.424 |
Preoperative Hb (g/dL) | 13.2 ± 1.6 | 13.3 ± 2 | 13.1 ± 1.2 | 13.3 ± 1.9 | 13.1 ± 1.3 | 0.180/0.141 |
Preoperative PT (%) | 92.4 ± 14.7 | 95 ± 12.9 | 90.8 ± 15.6 | 91.9 ± 14.9 | 92.8 ± 14.8 | 0.122/0.868 |
Preoperative AFP (µg/L) | 2400 ± 9735 | 2693 ± 12006 | 2186 ± 7921 | 2655 ± 10359 | 2047 ± 9039 | 0.172/0.316 |
Preoperative Platelets (G/l) | 247 ± 119 | 239 ± 103 | 251 ± 129 | 231 ± 91 | 259 ± 138 | 0.766/0.534 |
Preoperative AST (U/L) | 54 ± 37 | 49 ± 28 | 57 ± 40 | 59 ± 38 | 51 ± 35 | 0.618/0.362 |
Preoperative ALT (U/L) | 47 ± 46 | 45 ± 42 | 48 ± 49 | 46 ± 43 | 48 ± 49 | 0.680/0.673 |
Preoperative GGT (U/L) | 170 ± 164 | 134 ± 135 | 193 ± 177 | 157 ± 170 | 181 ± 159 | 0.060/0.260 |
Preoperative Albumin (g/L) | 38 ± 10 | 43 ± 5 | 36 ± 11 | 38 ± 9 | 38 ± 10 | 0.001/0.794 |
ALBI | ||||||
Grade 1 | 73 | 33 (83) | 40 (66) | 31 (68) | 42 (77) | 0.081/0.244 |
Grade 2 | 24 | 7 (17) | 17 (29) | 14 (30) | 10 (19) | 0.214/0.164 |
Grade 3 | 3 | 0 | 3 (5) | 1 (2) | 2 (4) | 0.151/0.655 |
SMI (cm2/m2) | ||||||
All | 45 ± 9 | 48 ± 8 | 46 ± 10 | 53 ± 7 | 40 ± 6 | 0.079/0.000 |
Female | 37 ± 5 | 39 ± 4 | 36 ± 5 | 42 ± 2 | 34 ± 4 | 0.191/0.000 |
Male | 49 ± 8 | 51 ± 6 | 48 ± 9 | 56 ± 4 | 43 ± 5 | 0.209/0.000 |
SM-RA (HU) | ||||||
All | 33 ± 10 | 42 ± 5 | 27 ± 7 | 33 ± 10 | 32 ± 10 | 0.000/0.561 |
Female | 34 ± 11 | 46 ± 5 | 28 ± 6 | 35 ± 13 | 34 ± 9 | 0.000/0.869 |
Male | 32 ± 10 | 40 ± 5 | 26 ± 7 | 33 ± 9 | 31 ± 10 | 0.000/0.424 |
Preoperative Therapy | ||||||
PVE | 6 | 5 (13) | 1 (2) | 4 (9) | 2 (4) | 0.025/0.295 |
Sorafenib | 1 | 0 | 1 (2) | 0 | 1 (2) | 0.412/0.354 |
TACE | 7 | 4 (10) | 3 (5) | 4 (10) | 3 (5) | 0.337/0.540 |
TARE | 3 | 0 | 3 (5) | 1 (2) | 2 (4) | 0.151/0.655 |
Surgical Procedure | ||||||
Atypical/Non-Anatomic. | 24 | 10 (25) | 14 (23) | 14 (30) | 10 (19) | 0.848/0.164 |
Segmentectomy | 20 | 9 (22) | 11 (18) | 9 (20) | 11 (20) | 0.610/0.920 |
Bisegementectomy | 6 | 1 (3) | 5 (8) | 3 (7) | 3 (6) | 0.229/0.839 |
Hemihepatectomy | 25 | 10 (25) | 15 (25) | 11 (24) | 14 (26) | 1.000/0.817 |
Extended resection | 25 | 7 (17) | 13 (22) | 4 (9) | 16 (29) | 0.610/0.009 |
ALPPS | 2 | 1 (3) | 1 (2) | 2 (4) | 0 | 0.771/0.122 |
Other | 3 | 2 (5) | 1 (2) | 3 (6) | 0 | 0.338/0.057 |
Laparoscopic Procedure | 21 | 9 (22) | 12 (20) | 9 (20) | 12 (22) | 0.836/0.788 |
Tumor Stage UICC | ||||||
I | 36 | 16 (40) | 20 (33) | 18 (39) | 17 (31) | 0.669/0.424 |
II | 35 | 14 (35) | 21 (35) | 16 (35) | 19 (35) | 1.000/0.966 |
IIIa | 18 | 6 (15) | 12 (20) | 8 (18) | 10 (19) | 0.524/0.884 |
IIIb | 5 | 1 (2.5) | 4 (7) | 2 (4) | 3 (6) | 0.349/0.782 |
IIIc | 2 | 1 (2.5) | 1 (2) | 0 | 2 (3) | 0.771/0.187 |
IVa | 3 | 1 (2.5) | 2 (3) | 2 (4) | 1 (2) | 0.811/0.466 |
IVb | 1 | 1 (2.5) | 0 | 0 | 1 (2) | 0.218/0.354 |
Tumor Grading | ||||||
G1 | 4 | 2 (5) | 2 (3) | 3 (6) | 1 (2) | 0.677/0.235 |
G2 | 77 | 30 (75) | 47 (78) | 34 (74) | 43 (80) | 0.698/0.498 |
G3 | 19 | 8 (20) | 11 (19) | 9 (20) | 10 (18) | 0.835/0.894 |
Microvascular Invasion | 52 | 18 (45) | 34 (57) | 22 (48) | 30 (56) | 0.149/0.476 |
Largest Tumor Diameter (mm) | 72 ± 41 | 64 ± 30 | 77 ± 48 | 64 ± 35 | 79 ± 45 | 0.317/0.067 |
Number of Tumors | 1.9 ± 1.3 | 1.8 ± 1.5 | 1.9 ± 1.3 | 1.7 ± 1.3 | 2 ± 1.4 | 0.268/0.076 |
R0 Resection | 85 | 34 (85) | 51 (85) | 41 (89) | 44 (82) | 0.840/0.384 |
In-Hospital Morbidity CD ≥ 3b & (CD5) 1 | 90-Day Mortality after Discharge & (in Total) | |
---|---|---|
Sepsis | 10 (5) | 1 (6) |
Cardiac/pulmonary | 4 (0) | 1 (1) |
Hemorrhage | 1 (1) | 0 (1) |
Post-hepatectomy liver failure | 2 (2) | 0 (2) |
Domestic death/reason unknown | not applicable | 4 (4) |
Total | 17 (8) | 6 (14) |
All Patients | No | Yes | p-Value | |
---|---|---|---|---|
Myosteatosis | n = 100 | n = 40 | n = 60 | |
≥CD3b morbidity 1 n (%) | 17 (17) | 2 (5) | 15 (25) | 0.007 |
Hospital stay (days) | 14 ± 13 | 13 ± 10 | 15 ± 15 | 0.380 |
Intraoperative RBC transfusion (units) | 1 ± 1.8 | 0.3 ± 0.8 | 1.4 ± 2.1 | 0.002 |
Intraoperative FFP transfusion (units) | 2 ± 2.7 | 1.6 ± 2.5 | 2.3 ± 2.8 | 0.263 |
CCI 2 | 21 ± 89 | 17 ± 24 | 24 ± 32 | 0.689 |
Cost estimation (TEuro) 3 | 13.4 ± 7.6 | 12.2 ± 5.9 | 14.3 ± 8.5 | 0.383 |
Sarcopenia | n = 100 | n = 46 | n = 54 | |
≥CD3b morbidity n (%) | 17 (17) | 9 (20) | 8 (15) | 0.529 |
Hospital stay (days) | 14 ± 13 | 14 ± 13 | 15 ± 14 | 0.560 |
Intraoperative RBC transfusion (units) | 1 ± 1.8 | 0.3 ± 1 | 1.6 ± 2.2 | 0.000 |
Intraoperative FFP transfusion (units) | 2 ± 2.7 | 1.6 ± 2.2 | 2.4 ± 3 | 0.341 |
CCI | 21 ± 89 | 23 ± 32 | 20 ± 26 | 0.724 |
Cost estimation (TEuro) | 13.4 ± 7.6 | 14 ± 8.4 | 13 ± 6.8 | 0.626 |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
Major Complications (CD ≥ 3b) 1 n = 17 | No/Minor Complications (CD0-3a) 1 n = 83 | Odds-Ratio (95% Confidence Interval) | p Value | Odds-Ratio (95% Confidence Interval) | p Value | |
Age ≥ 65 years | 12 (71) | 53 (64) | 1.358 (0.437–4.228) | 0.597 | ||
BMI ≥ 25 | 16 (94) | 48 (58) | 0.820 (0.288–2.338) | 0.711 | ||
Sex Male | 16 (94) | 56 (68) | 7.714 (0.972–61.246) | 0.053 | 10.477 (1.210–90.705) | 0.033 |
ASA ≥ 3 | 12 (71) | 53 (64) | 1.358 (0.437–4.228) | 0.598 | ||
Cirrhosis yes | 10 (59) | 32 (39) | 2.232 (0.771–6.462 | 0.139 | ||
Milan yes | 2 (12) | 20 (24) | 2.281 (0.473–11.000) | 0.304 | ||
Preoperative albumin cutoff 40 | 11 (65) | 31 (37) | 3.075 (1.034–9.143) | 0.043 | 2.767 (0.763–10.033) | 0.122 |
Largest tumor diameter ≥ 50 mm | 13 (77) | 52 (63) | 1.750 (0.521–5.875) | 0.365 | ||
Multinodular tumor yes | 7 (41) | 31 (37) | 1.084 (0.373–3.148) | 0.882 | ||
Macrovascular invasion yes | 5 (29) | 18 (22) | 1.296 (0.402–4.179) | 0.664 | ||
Preoperative TACE yes | 1 (6) | 6 (7) | 0.802 (0.090–7.127) | 0.834 | ||
Preoperative PVE yes | 1 (6) | 5 (6) | 0.975 (0.107–8.918) | 0.982 | ||
Intraoperative FFP yes | 10 (59) | 33 (40) | 2.176 (0.723–6.496) | 0.166 | ||
Intraoperative RBC yes | 7 (41) | 25 (30) | 1.804 (0.605–5.385) | 0.290 | ||
Extended Resection yes | 2 (12) | 18 (22) | 0.481 (0.101–2.303) | 0.360 | ||
Duration Surgery ≥ 210 min | 12 (71) | 35 (42) | 3.291 (1.063–10.195) | 0.039 | 5.385 (1.476–19.650) | 0.011 |
Laparoscopic procedure | 1 (6) | 20 (24) | 0.194 (0.024–1.554) | 0.122 | ||
Sarcopenia (SMI) Yes | 8 (47) | 46 (55) | 0.715 (0.251–2.035) | 0.530 | ||
Myosteatosis (SM-RA) Yes | 15 (88) | 45 (54) | 6.333 (1.361–29.463) | 0.019 | 6.184 (1.184–32.305) | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meister, F.A.; Lurje, G.; Verhoeven, S.; Wiltberger, G.; Heij, L.; Liu, W.-J.; Jiang, D.; Bruners, P.; Lang, S.A.; Ulmer, T.F.; et al. The Role of Sarcopenia and Myosteatosis in Short- and Long-Term Outcomes Following Curative-Intent Surgery for Hepatocellular Carcinoma in a European Cohort. Cancers 2022, 14, 720. https://doi.org/10.3390/cancers14030720
Meister FA, Lurje G, Verhoeven S, Wiltberger G, Heij L, Liu W-J, Jiang D, Bruners P, Lang SA, Ulmer TF, et al. The Role of Sarcopenia and Myosteatosis in Short- and Long-Term Outcomes Following Curative-Intent Surgery for Hepatocellular Carcinoma in a European Cohort. Cancers. 2022; 14(3):720. https://doi.org/10.3390/cancers14030720
Chicago/Turabian StyleMeister, Franziska Alexandra, Georg Lurje, Suekran Verhoeven, Georg Wiltberger, Lara Heij, Wen-Jia Liu, Decan Jiang, Philipp Bruners, Sven Arke Lang, Tom Florian Ulmer, and et al. 2022. "The Role of Sarcopenia and Myosteatosis in Short- and Long-Term Outcomes Following Curative-Intent Surgery for Hepatocellular Carcinoma in a European Cohort" Cancers 14, no. 3: 720. https://doi.org/10.3390/cancers14030720
APA StyleMeister, F. A., Lurje, G., Verhoeven, S., Wiltberger, G., Heij, L., Liu, W. -J., Jiang, D., Bruners, P., Lang, S. A., Ulmer, T. F., Neumann, U. P., Bednarsch, J., & Czigany, Z. (2022). The Role of Sarcopenia and Myosteatosis in Short- and Long-Term Outcomes Following Curative-Intent Surgery for Hepatocellular Carcinoma in a European Cohort. Cancers, 14(3), 720. https://doi.org/10.3390/cancers14030720