Escalated Maximum Dose in the Planning Target Volume Improves Local Control in Stereotactic Body Radiation Therapy for T1-2 Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Radiotherapy
2.2. Follow-Up
2.3. Statistical Analysis
3. Results
3.1. Clinical Outcomes after SBRT
3.2. Prognostic Factors for Local Control after SBRT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®®): Non-Small Cell Lung Cancer, Version 1.2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 12 January 2022).
- Nagata, Y.; Kimura, T. Stereotactic Body Radiotherapy (SBRT) for Stage I Lung Cancer. Jpn. J. Clin. Oncol. 2018, 48, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Carlson, D.J.; Brenner, D.J. The Tumor Radiobiology of SRS and SBRT: Are More than the 5 Rs Involved? Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Sapkaroski, D.; Osborne, C.; Knight, K.A. A Review of Stereotactic Body Radiotherapy—Is Volumetric Modulated Arc Therapy the Answer? J. Med. Radiat. Sci. 2015, 62, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Blomgren, H.; Lax, I.; Näslund, I.; Svanström, R. Stereotactic High Dose Fraction Radiation Therapy of Extracranial Tumors Using an Accelerator. Clinical Experience of the First Thirty-One Patients. Acta Oncol. 1995, 34, 861–870. [Google Scholar] [CrossRef]
- Nagata, Y.; Hiraoka, M.; Shibata, T.; Onishi, H.; Kokubo, M.; Karasawa, K.; Shioyama, Y.; Onimaru, R.; Kozuka, T.; Kunieda, E.; et al. Prospective Trial of Stereotactic Body Radiation Therapy for Both Operable and Inoperable T1N0M0 Non-Small Cell Lung Cancer: Japan Clinical Oncology Group Study JCOG0403. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 989–996. [Google Scholar] [CrossRef]
- Onishi, H.; Araki, T.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Gomi, K.; Yamashita, T.; Niibe, Y.; Karasawa, K.; Hayakawa, K.; et al. Stereotactic Hypofractionated High-Dose Irradiation for Stage I Nonsmall Cell Lung Carcinoma: Clinical Outcomes in 245 Subjects in a Japanese Multiinstitutional Study. Cancer 2004, 101, 1623–1631. [Google Scholar] [CrossRef]
- Shibamoto, Y.; Hashizume, C.; Baba, F.; Ayakawa, S.; Miyakawa, A.; Murai, T.; Takaoka, T.; Hattori, Y.; Asai, R. Stereotactic Body Radiotherapy Using a Radiobiology-Based Regimen for Stage I Non-Small-Cell Lung Cancer: Five-Year Mature Results. J. Thorac. Oncol. 2015, 10, 960–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grills, I.S.; Hope, A.J.; Guckenberger, M.; Kestin, L.L.; Werner-Wasik, M.; Yan, D.; Sonke, J.J.; Bissonnette, J.P.; Wilbert, J.; Xiao, Y.; et al. A Collaborative Analysis of Stereotactic Lung Radiotherapy Outcomes for Early-Stage Non-Small-Cell Lung Cancer Using Daily Online Cone-Beam Computed Tomography Image-Guided Radiotherapy. J. Thorac. Oncol. 2012, 7, 1382–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.Y.; Senan, S.; Paul, M.A.; Mehran, R.J.; Louie, A.V.; Balter, P.; Groen, H.J.M.; McRae, S.E.; Widder, J.; Feng, L.; et al. Stereotactic Ablative Radiotherapy Versus Lobectomy for Operable Stage I Non-Small-Cell Lung Cancer: A Pooled Analysis of Two Randomised Trials. Lancet Oncol. 2015, 16, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.Y.; Mehran, R.J.; Feng, L.; Verma, V.; Liao, Z.; Welsh, J.W.; Lin, S.H.; O’Reilly, M.S.; Jeter, M.D.; Balter, P.A.; et al. Stereotactic Ablative Radiotherapy for Operable Stage I Non-Small-Cell Lung Cancer (Revised STARS): Long-Term Results of a Single-Arm, Prospective Trial with Prespecified Comparison to Surgery. Lancet Oncol. 2021, 22, 1448–1457. [Google Scholar] [CrossRef]
- Lee, P.; Loo, B.W.; Biswas, T.; Ding, G.X.; El Naqa, I.M.; Jackson, A.; Kong, F.M.; LaCouture, T.; Miften, M.; Solberg, T.; et al. Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Andratschke, N.; Dieckmann, K.; Hoogeman, M.S.; Hoyer, M.; Hurkmans, C.; Tanadini-Lang, S.; Lartigau, E.; Méndez Romero, A.; Senan, S.; et al. ESTRO ACROP Consensus Guideline on Implementation and Practice of Stereotactic Body Radiotherapy for Peripherally Located Early Stage Non-Small Cell Lung Cancer. Radiother. Oncol. 2017, 124, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibamoto, Y.; Otsuka, S.; Iwata, H.; Sugie, C.; Ogino, H.; Tomita, N. Radiobiological Evaluation of the Radiation Dose as Used in High-Precision Radiotherapy: Effect of Prolonged Delivery Time and Applicability of the Linear-Quadratic Model. J. Radiat. Res. 2012, 53, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C.H. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2017. [Google Scholar]
- US Department of Health and Human Services. National Institutes of Health—National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 12 January 2022).
- Koshy, M.; Malik, R.; Weichselbaum, R.R.; Sher, D.J. Increasing Radiation Therapy Dose Is Associated with Improved Survival in Patients Undergoing Stereotactic Body Radiation Therapy for Stage I Non-Small-Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Kestin, L.; Grills, I.; Guckenberger, M.; Belderbos, J.; Hope, A.J.; Werner-Wasik, M.; Sonke, J.J.; Bissonnette, J.P.; Xiao, Y.; Yan, D.; et al. Dose–Response Relationship with Clinical Outcome for Lung Stereotactic Body Radiotherapy (SBRT) Delivered via Online Image Guidance. Radiother. Oncol. 2014, 110, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Shiue, K.; Cerra-Franco, A.; Shapiro, R.; Estabrook, N.; Mannina, E.M.; Deig, C.R.; Althouse, S.; Liu, S.; Wan, J.; Zang, Y.; et al. Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy. J. Thorac. Oncol. 2018, 13, 1549–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woody, N.M.; Stephans, K.L.; Andrews, M.; Zhuang, T.; Gopal, P.; Xia, P.; Farver, C.F.; Raymond, D.P.; Peacock, C.D.; Cicenia, J.; et al. A Histologic Basis for the Efficacy of SBRT to the Lung. J. Thorac. Oncol. 2017, 12, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Hörner-Rieber, J.; Bernhardt, D.; Dern, J.; König, L.; Adeberg, S.; Paul, A.; Heussel, C.P.; Kappes, J.; Hoffmann, H.; Herth, F.J.P.; et al. Histology of Non-Small Cell Lung Cancer Predicts the Response to Stereotactic Body Radiotherapy. Radiother. Oncol. 2017, 125, 317–324. [Google Scholar] [CrossRef]
- Parzen, J.S.; Almahariq, M.F.; Quinn, T.J.; Siddiqui, Z.A.; Thompson, A.B.; Guerrero, T.; Lee, K.; Stevens, C.; Grills, I.S. Higher Biologically Effective Dose Is Associated with Improved Survival in Patients with Squamous Cell Carcinoma of the Lung Treated with Stereotactic Body Radiation Therapy. Radiother. Oncol. 2021, 160, 25–31. [Google Scholar] [CrossRef]
- Ren, W.; Mi, D.; Yang, K.; Cao, N.; Tian, J.; Li, Z.; Ma, B. The Expression of Hypoxia-Inducible Factor-1α and Its Clinical Significance in Lung Cancer: A Systematic Review and Meta-Analysis. Swiss Med. Wkly. 2013, 143, w13855. [Google Scholar] [CrossRef]
- Kimura, T.; Nagata, Y.; Eba, J.; Ozawa, S.; Ishikura, S.; Shibata, T.; Ito, Y.; Hiraoka, M.; Nishimura, Y.; Radiation Oncology Study Group of the Japan Clinical Oncology Group. A Randomized Phase III Trial of Comparing Two Dose-Fractionations Stereotactic Body Radiotherapy (SBRT) for Medically Inoperable Stage IA Non-Small Cell Lung Cancer or Small Lung Lesions Clinically Diagnosed as Primary Lung Cancer: Japan Clinical Oncology Group Study JCOG1408 (J-SBRT Trial). Jpn. J. Clin. Oncol. 2017, 47, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Dunst, J.; Stadler, P.; Becker, A.; Lautenschläger, C.; Pelz, T.; Hänsgen, G.; Molls, M.; Kuhnt, T. Tumor Volume and Tumor Hypoxia in Head and Neck Cancers. The Amount of the Hypoxic Volume Is Important. Strahlenther. Onkol. 2003, 179, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The Hypoxic Tumour Microenvironment. Oncogenesis 2018, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Potters, L.; Kavanagh, B.; Galvin, J.M.; Hevezi, J.M.; Janjan, N.A.; Larson, D.A.; Mehta, M.P.; Ryu, S.; Steinberg, M.; Timmerman, R.; et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Onimaru, R.; Onishi, H.; Ogawa, G.; Hiraoka, M.; Ishikura, S.; Karasawa, K.; Matsuo, Y.; Kokubo, M.; Shioyama, Y.; Matsushita, H.; et al. Final Report of Survival and Late Toxicities in the Phase I Study of Stereotactic Body Radiation Therapy for Peripheral T2N0M0 Non-Small Cell Lung Cancer (JCOG0702). Jpn. J. Clin. Oncol. 2018, 48, 1076–1082. [Google Scholar] [CrossRef] [Green Version]
- Uemoto, K.; Doi, H.; Shiomi, H.; Yamada, K.; Tatsumi, D.; Yasumoto, T.; Takashina, M.; Koizumi, M.; Oh, R.J. Clinical Assessment of Micro-Residual Tumors During Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Anticancer Res. 2018, 38, 945–954. [Google Scholar] [CrossRef]
- Giraud, P.; Antoine, M.; Larrouy, A.; Milleron, B.; Callard, P.; De Rycke, Y.; Carette, M.F.; Rosenwald, J.C.; Cosset, J.M.; Housset, M.; et al. Evaluation of Microscopic Tumor Extension in Non-Small-Cell Lung Cancer for Three-Dimensional Conformal Radiotherapy Planning. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1015–1024. [Google Scholar] [CrossRef]
Factors | n = 100 | (%) |
---|---|---|
Age (years), median (range) | 77.5 (50–91) | |
Sex | ||
Male | 67 | (67.0) |
Female | 33 | (33.0) |
ECOG-PS | ||
0 | 53 | (53.0) |
1 | 27 | (27.0) |
2 | 16 | (16.0) |
3 | 3 | (3.0) |
4 | 1 | (1.0) |
Tobacco-smoking history | ||
Never | 22 | (22.0) |
Former | 71 | (71.0) |
Current | 7 | (7.0) |
Smoking (pack-years), median (range) | 54 (0.5–136) | |
Simultaneous primary cancer | 9 | (9.0) |
Interstitial pneumonia | 10 | (10.0) |
Thoracic surgery history | 31 | (31.0) |
Tumors | n = 104 | (%) |
Operability | ||
Operable | 19 | (18.3) |
Inoperable | 85 | (81.7) |
Pathological diagnosis | ||
Adenocarcinoma | 35 | (33.7) |
Squamous cell carcinoma | 22 | (21.2) |
Unknown | 47 | (45.2) |
Tumor location | ||
Left upper lobe | 31 | (29.8) |
Left lower lobe | 8 | (7.7) |
Right upper lobe | 26 | (25.0) |
Right middle lobe | 7 | (6.7) |
Right lower lobe | 32 | (30.8) |
Clinical T stage | ||
Tmi | 1 | (1.0) |
T1a | 8 | (7.7) |
T1b | 40 | (38.5) |
T1c | 15 | (14.4) |
T2a | 10 | (9.6) |
T2b | 4 | (3.8) |
T2 (visceral pleural invasion) | 26 | (25.0) |
Technique | Median Prescription Dose (Range) | Median Fractions (Range) | Prescription | Number of Tumors | (%) |
---|---|---|---|---|---|
3D-CRT | 48 Gy (48.0–52.0) | 4 (4–5) | Isocenter | 37 | (35.6) |
3D-CRT | 45 Gy (44.4–47.5) | 4 (4) | Covering PTV of 86% isodose line | 12 | (11.5) |
3D-CRT | 42 Gy (42.0) | 4 (4) | PTV D95 | 1 | (1.0) |
VMAT | 48 Gy (42.0–60.0) | 4 (4–8) | PTV D95 | 54 | (51.9) |
PTV | Median (Range) |
---|---|
Volume (cm3) | 36.8 (7.2–190.7) |
Dmax (BED10, Gy) | 134.9 (106.0–191.2) |
D50 (BED10, Gy) | 117.1 (96.5–146.0) |
D95 (BED10, Gy) | 105.4 (86.1–130.7) |
D98 (BED10, Gy) | 101.5 (82.4–126.2) |
Dmin (BED10, Gy) | 93.8 (52.7–109.6) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Factors | n (%) | Number of Events | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
Age (y) | ||||||
<80 | 68 (65.4%) | 7 | 1 | 0.855 | ||
≥80 | 36 (34.6%) | 3 | 1.135 (0.228–3.414) | |||
Sex | ||||||
Male | 71 (68.3%) | 9 | 1 | 0.12 | ||
Female | 33 (31.7%) | 1 | 0.194 (0.652–40.721) | |||
ECOG-PS | ||||||
0, 1 | 83 (79.8%) | 7 | 1 | 0.342 | ||
2–4 | 21 (20.2%) | 3 | 1.929 (0.497–7.487) | |||
Smoking history | ||||||
None | 22 (21.2%) | 3 | 1 | 0.586 | ||
Any | 82 (78.8%) | 7 | 1.456 (0.377–5.633) | |||
Operability | ||||||
Operable | 19 (18.3%) | 1 | 1 | 0.508 | ||
Inoperable | 85 (81.7%) | 9 | 2.010 (0.255–15.864) | |||
Pathological diagnosis | ||||||
Squamous cell carcinoma | 22 (21.2%) | 6 | 1 | 0.005 | 1 | 0.025 |
other | 82 (78.8%) | 4 | 0.160 (0.045–0.567) | 0.228 (0.063–0.828) | ||
Clinical T Stage | ||||||
T1 | 64 (61.5%) | 3 | 1 | 0.033 | 1 | 0.042 |
T2 | 40 (38.5%) | 7 | 4.369 (1.128–16.915) | 4.111 (1.054–16.042) | ||
CTV margin | ||||||
0 mm (GTV = CTV) | 41 (39.4%) | 2 | 1 | 0.219 | ||
≥1 mm | 63 (60.6%) | 8 | 2.648 (0.560–12.527) | |||
PTV volume | ||||||
<40 cm3 | 57 (54.8%) | 3 | 1 | 0.068 | ||
≥40 cm3 | 47 (45.2%) | 7 | 3.536 (0.912–13.704) | |||
Dmax (BED10, Gy) | ||||||
<125 Gy | 36 (34.6%) | 8 | 1 | 0.021 | 1 | 0.041 |
≥125 Gy | 68 (65.4%) | 2 | 0.161(0.034–0.758) | 0.195 (0.040–0.945) | ||
D50 (BED10, Gy) | ||||||
<111 Gy | 37 (35.6%) | 7 | 1 | 0.053 | ||
≥111 Gy | 67 (64.4%) | 3 | 0.263 (0.068–1.017) | |||
D95 (BED10, Gy) | ||||||
<104 Gy | 42 (40.4%) | 7 | 1 | 0.121 | ||
≥104 Gy | 62 (59.6%) | 3 | 0.343 (0.089–1.328) | |||
D98 (BED10, Gy) | ||||||
<100 Gy | 35 (33.7%) | 5 | 1 | 0.473 | ||
≥100 Gy | 69 (66.3%) | 5 | 0.635 (0.183–2.195) | |||
Dmin (BED10, Gy) | ||||||
<95 Gy | 72 (69.2%) | 5 | 1 | 0.136 | ||
≥95 Gy | 32 (30.8%) | 5 | 2.579 (0.112–1.346) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inagaki, T.; Doi, H.; Ishida, N.; Ri, A.; Tatsuno, S.; Wada, Y.; Uehara, T.; Inada, M.; Nakamatsu, K.; Hosono, M.; et al. Escalated Maximum Dose in the Planning Target Volume Improves Local Control in Stereotactic Body Radiation Therapy for T1-2 Lung Cancer. Cancers 2022, 14, 933. https://doi.org/10.3390/cancers14040933
Inagaki T, Doi H, Ishida N, Ri A, Tatsuno S, Wada Y, Uehara T, Inada M, Nakamatsu K, Hosono M, et al. Escalated Maximum Dose in the Planning Target Volume Improves Local Control in Stereotactic Body Radiation Therapy for T1-2 Lung Cancer. Cancers. 2022; 14(4):933. https://doi.org/10.3390/cancers14040933
Chicago/Turabian StyleInagaki, Takaya, Hiroshi Doi, Naoko Ishida, Aritoshi Ri, Saori Tatsuno, Yutaro Wada, Takuya Uehara, Masahiro Inada, Kiyoshi Nakamatsu, Makoto Hosono, and et al. 2022. "Escalated Maximum Dose in the Planning Target Volume Improves Local Control in Stereotactic Body Radiation Therapy for T1-2 Lung Cancer" Cancers 14, no. 4: 933. https://doi.org/10.3390/cancers14040933
APA StyleInagaki, T., Doi, H., Ishida, N., Ri, A., Tatsuno, S., Wada, Y., Uehara, T., Inada, M., Nakamatsu, K., Hosono, M., & Nishimura, Y. (2022). Escalated Maximum Dose in the Planning Target Volume Improves Local Control in Stereotactic Body Radiation Therapy for T1-2 Lung Cancer. Cancers, 14(4), 933. https://doi.org/10.3390/cancers14040933