Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Materials
3. Methods
3.1. Pre-Processing
3.2. Feature Selection
3.3. t-SNE
3.4. ResNet
3.5. SOM
4. Experiments and Results
5. Conclusions
6. Biological Insight
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NPI | Nottingham Prognostic Index |
CNA | Copy Number Alteration |
t-SNE | t-Distributed Stochastic Neighbor Embedding |
GSN | Gene Similarity Network |
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 20 December 2021).
- National Nutrition Council Institute, N.N.C. Cancer facts & figures 2020. CA Cancer J. Clin. 2020, 70, 1–76. [Google Scholar]
- Houssami, N.; Ciatto, S.; Martinelli, F.; Bonardi, R.; Duffy, S. Early detection of second breast cancers improves prognosis in breast cancer survivors. Ann. Oncol. 2009, 20, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Haybittle, J.; Blamey, R.; Elston, C.; Johnson, J.; Doyle, P.; Campbell, F.; Nicholson, R.; Griffiths, K. A prognostic index in primary breast cancer. Br. J. Cancer 1982, 45, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galea, M.H.; Blamey, R.W.; Elston, C.E.; Ellis, I.O. The nottingham prognostic index in primary breast cancer. Breast Cancer Res. Treat. 1992, 22, 207–219. [Google Scholar] [CrossRef]
- Todd, J.; Dowle, C.; Williams, M.; Elston, C.; Ellis, I.; Hinton, C.; Blamey, R.; Haybittle, J. Confirmation of a prognostic index in primary breast cancer. Br. J. Cancer 1987, 56, 489–492. [Google Scholar] [CrossRef] [Green Version]
- D’eredita, G.; Giardina, C.; Martellotta, M.; Natale, T.; Ferrarese, F. Prognostic factors in breast cancer: The predictive value of the nottingham prognostic index in patients with a long-term follow-up that were treated in a single institution. Eur. J. Cancer 2001, 37, 591–596. [Google Scholar] [CrossRef]
- Winzer, K.-J.; Buchholz, A.; Schumacher, M.; Sauerbrei, W. Improving the prognostic ability through better use of standard clinical data-the nottingham prognostic index as an example. PLoS ONE 2016, 11, e0149977. [Google Scholar] [CrossRef]
- Rakha, E.; Soria, D.; Green, A.R.; Lemetre, C.; Powe, D.G.; Nolan, C.C.; Garibaldi, J.M.; Ball, G.; Ellis, I.O. Nottingham prognostic index plus (npi+): A modern clinical decision making tool in breast cancer. Br. J. Cancer 2014, 110, 1688–1697. [Google Scholar] [CrossRef] [Green Version]
- Phung, M.T.; Tin, S.T.; Elwood, J.M. Prognostic models for breast cancer: A systematic review. BMC Cancer 2019, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G. Prognostic models: A methodological framework and review of models for breast cancer. Cancer Investig. 2009, 27, 235–243. [Google Scholar] [CrossRef]
- Sejben, A.; Nyári, T.; Zombori, T.; Cserni, G. Comparison of nottingham prognostic index, predict and prognostils in triple negative breast cancer–a retrospective cohort study. Pathol. Oncol. Res. 2020, 26, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Wishart, G.C.; Azzato, E.M.; Greenberg, D.C.; Rashbass, J.; Kearins, O.; Lawrence, G.; Caldas, C.; Pharoah, P.D. Predict: A new uk prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- prognosTILs. Available online: https://cesp-proxy2.vjf.inserm.fr/shiny/prognosTILs/ (accessed on 20 January 2022).
- Boeri, C.; Chiappa, C.; Galli, F.; Berardinis, V.D.; Bardelli, L.; Carcano, G.; Rovera, F. Machine learning techniques in breast cancer prognosis prediction: A primary evaluation. Cancer Med. 2020, 9, 3234–3243. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Zanzotto, F.M.; Riondino, S.; Scarpato, N.; Guadagni, F.; Roselli, M. Breast cancer prognosis using a machine learning approach. Cancers 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Rueda, M.; Alkhateeb, A. Identifying biomarkers of nottingham prognosis index in breast cancer survivability. In Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Gainesville, FL, USA, 1–4 August 2021; pp. 1–9. [Google Scholar]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Pearson, K.X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900, 50, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- De Sanctis, R.; Viganò, A.; Giuliani, A.; Gronchi, A.; De Paoli, A.; Navarria, P.; Quagliuolo, V.; Santoro, A.; Colosimo, A. Unsupervised versus supervised identification of prognostic factors in patients with localized retroperitoneal sarcoma: A data clustering and mahalanobis distance approach. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bazhenova, L.; Lokker, A.; Snider, J.; Castellanos, E.; Fisher, V.; Fellous, M.; Nanda, S.; Zong, J.; Keating, K.; Jiao, X. Trk fusion cancer: Patient characteristics and survival analysis in the real-world setting. Target. Oncol. 2021, 16, 389–399. [Google Scholar] [CrossRef]
- Phan, N.N.; Wang, C.-Y.; Li, K.-L.; Chen, C.-F.; Chiao, C.-C.; Yu, H.-G.; Huang, P.-L.; Lin, Y.-C. Distinct expression of cdca3, cdca5, and cdca8 leads to shorter relapse free survival in breast cancer patient. Oncotarget 2018, 9, 6977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shen, M.; Zhou, G. Upregulation of cdca5 promotes gastric cancer malignant progression via influencing cyclin e1. Biochem. Biophys. Res. Commun. 2018, 496, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Alinejad, V.; Dolati, S.; Motallebnezhad, M.; Yousefi, M. The role of il17b-il17rb signaling pathway in breast cancer. Biomed. Pharmacother. 2017, 88, 795–803. [Google Scholar] [CrossRef]
- Rakha, E.A.; Boyce, R.W.; El-Rehim, D.A.; Kurien, T.; Green, A.R.; Paish, E.C.; Robertson, J.F.; Ellis, I.O. Expression of mucins (muc1, muc2, muc3, muc4, muc5ac and muc6) and their prognostic significance in human breast cancer. Mod. Pathol. 2005, 18, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Astashchanka, A.; Shroka, T.M.; Jacobsen, B.M. Mucin 2 (muc2) modulates the aggressiveness of breast cancer. Breast Cancer Res. Treat. 2019, 173, 289–299. [Google Scholar] [CrossRef]
- Velloso, F.J.; Campos, A.R.; Sogayar, M.C.; Correa, R.G. Proteome profiling of triple negative breast cancer cells overexpressing nod1 and nod2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genom. 2019, 20, 1–20. [Google Scholar] [CrossRef]
- Yan, L.-R.; Wang, A.; Lv, Z.; Yuan, Y.; Xu, Q. Mitochondria-Related Core Genes in Breast Cancer: Potential Diagnostic, Prognostic Markers and Therapeutic Targets; Research Square, 2020. Available online: https://www.researchsquare.com/article/rs-32432/v1 (accessed on 29 December 2021).
- Shukla, A.; Srivastava, S.; Darokar, J.; Kulshreshtha, R. Hif1α and p53 regulated med30, a mediator complex subunit, is involved in regulation of glioblastoma pathogenesis and temozolomide resistance. Cell. Mol. Neurobiol. 2021, 41, 1521–1535. [Google Scholar] [CrossRef]
- Hasegawa, N.; Sumitomo, A.; Fujita, A.; Aritome, N.; Mizuta, S.; Matsui, K.; Ishino, R.; Inoue, K.; Urahama, N.; Nose, J.; et al. Mediator subunits med1 and med24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells. Mol. Cell. Biol. 2012, 32, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Atienza, J.M.; Roth, R.B.; Rosette, C.; Smylie, K.J.; Kammerer, S.; Rehbock, J.; Ekblom, J.; Denissenko, M.F. Suppression of rad21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. Mol. Cancer Ther. 2005, 4, 361–368. [Google Scholar] [CrossRef]
- Eukaryotic Translation Initiation Factor 3 Subunit h. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=EIF3H (accessed on 20 December 2021).
- Mahmood, S.F.; Gruel, N.; Chapeaublanc, E.; Lescure, A.; Jones, T.; Reyal, F.; Vincent-Salomon, A.; Raynal, V.; Pierron, G.; Perez, F.; et al. A sirna screen identifies rad21, eif3h, chrac1 and tanc2 as driver genes within the 8q23, 8q24. 3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 2014, 35, 670–682. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.; Durand, S.; Jalinot, P. Decreased expression of the translation factor eif3e induces senescence in breast cancer cells via suppression of parp1 and activation of mtorc1. Oncotarget 2021, 12, 649. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, L.; Wan, C.; Sun, Y.; Van der Jeught, K.; Zhou, Z.; Dong, T.; So, K.M.; Yu, T.; Li, Y.; et al. Mal2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.B.; Hu, N.; Varma, S.; Chen, C.-H.; Ding, K.; Park, P.C.; Chapman, J.-A.W.; SenGupta, S.K.; Madarnas, Y.; Elliott, B.E.; et al. Immunohistochemical assessment of expression of centromere protein—A (cenpa) in human invasive breast cancer. Cancers 2011, 3, 4212–4227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Z.; Ali, A.; Hu, L.; Zhao, F.; Yin, C.; Chen, C.; Yang, T.; Qian, A. Microtubule actin cross-linking factor 1, a novel potential target in cancer. Cancer Sci. 2017, 108, 1958. [Google Scholar] [CrossRef] [Green Version]
- Gencards-ugt2b7. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=UGT2B7 (accessed on 20 December 2021).
- Li, H.; Hu, B.; Guo, Z.; Jiang, X.; Su, X.; Zhang, X. Correlation of ugt2b7 polymorphism with cardiotoxicity in breast cancer patients undergoing epirubicin/cyclophosphamide-docetaxel adjuvant chemotherapy. Yonsei Med. J. 2019, 60, 30–37. [Google Scholar] [CrossRef]
- Mou, P.; Wang, H.; An, L.; Yin, Q.; Chang, J. Rs7435335 located in the ugt2b7 gene may be a possible genetic marker for the clinical response and prognosis of breast cancer patients receiving neoadjuvant chemotherapy. J. Cell. Biochem. 2019, 120, 7167–7173. [Google Scholar] [CrossRef]
- Gencards-sema3b. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=SEMA3B (accessed on 20 December 2021).
- Castro-Rivera, E.; Ran, S.; Thorpe, P.; Minna, J.D. Semaphorin 3b (sema3b) induces apoptosis in lung and breast cancer, whereas vegf165 antagonizes this effect. Proc. Natl. Acad. Sci. USA 2004, 101, 11432–11437. [Google Scholar] [CrossRef] [Green Version]
- Castro-Rivera, E.; Ran, S.; Brekken, R.A.; Minna, J.D. Semaphorin 3b inhibits the phosphatidylinositol 3-kinase/akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008, 68, 8295–8303. [Google Scholar] [CrossRef] [Green Version]
Level | Score | Survival-Rate |
---|---|---|
I | from ⩾2.0 to ⪕2.4 | 93% |
II | from >2.4 to ⪕3.4 | 85% |
III | from >3.4 to ⪕5.4 | 70% |
IV | >5.4 | 50% |
Dataset Name | Number of Genes | Number of Samples |
---|---|---|
Gene expression | 16,567 | 1885 |
mRNA | 16,567 | 1885 |
CNA | 16,401 | 1885 |
17 Target Genes in Gene Expression Dataset. | |||||||
---|---|---|---|---|---|---|---|
NO | Gene | NO | Gene | NO | Gene | NO | Gene |
01 | CDCA5 | 06 | TUBA3C | 11 | PIGV | 16 | RRM2 |
02 | IL17RB | 07 | BX648950 | 12 | TCN1 | 17 | QSOX1 |
03 | MUC2 | 08 | NXPH4 | 13 | BOLA2B | ||
04 | ZNF311 | 09 | UCP1 | 14 | KIF16B | ||
05 | NOD2 | 10 | SLC25A13 | 15 | RRP7A | ||
22 Target Genes in mRNA Dataset. | |||||||
NO | Gene | NO | Gene | NO | Gene | NO | Gene |
01 | CENPA | 07 | IGSF22 | 13 | ZNF18 | 19 | ABLIM2 |
02 | SLC5A10 | 08 | RRP7A | 14 | ORC6 | 20 | SORBS2 |
03 | CD3G | 09 | SLC35A2 | 15 | TMEM191C | 21 | PDSS1 |
04 | MACF1 | 10 | CCDC74A | 16 | SEMA3B | 22 | GANC |
05 | SCNN1D | 11 | MRPS7 | 17 | ZIC2 | ||
06 | UGT2B7 | 12 | COLGALT1 | 18 | IQCH | ||
22 Target Genes in CNA Dataset. | |||||||
NO | Gene | NO | Gene | NO | Gene | NO | Gene |
01 | RAD21-AS1 | 07 | EIF3H | 13 | NOV | 19 | ENPP2 |
02 | PXK | 08 | LINC01151 | 14 | NDRG1 | 20 | OTUD6B |
03 | MED30 | 09 | LINC00536 | 15 | CSMD3 | 21 | MTBP |
04 | MIR3610 | 10 | EXT1 | 16 | MAL2 | 22 | CENPH |
05 | LOXL2 | 11 | EIF3E | 17 | DPEP1 | ||
06 | RAD21 | 12 | COLEC10 | 18 | OXR1 |
Method | Classifier | Acc | Val_Acc | Loss | Val_Loss | AUC | Val_AU |
---|---|---|---|---|---|---|---|
SOM | VGG-33 | 0.8972 | 0.87858 | 0.2539 | 0.21189 | 0.9913 | 0.97 |
SOM | ResNet-112 | 0.9702 | 0.8653 | 0.1062 | 0.2647 | 0.9985 | 0.9649 |
t-SNE | VGG-33 | 0.9384 | 0.8265 | 0.31 | 0.2210 | 0.9845 | 0.8979 |
t-SNE | ResNet-112 | 0.9609 | 0.8371 | 0.1471 | 0.2797 | 0.9958 | 0.9179 |
Method | Classifier | Acc | Val_Acc | Loss | Val_Loss | AUC | Val_AU |
---|---|---|---|---|---|---|---|
SOM | VGG-33 | 0.9375 | 0.75 | 0.2044 | 1.043 | 0.9956 | 0.8662 |
SOM | ResNet-112 | 0.9375 | 0.75 | 0.2044 | 1.043 | 0.9956 | 0.8662 |
t-SNE | VGG-33 | 0.9773 | 0.8 | 0.0546 | 0.7122 | 0.9999 | 0.9625 |
t-SNE | ResNet-112 | 0.9848 | 0.8 | 0.0972 | 0.5909 | 0.9991 | 0.9500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Rueda, M.; Alkhateeb, A. Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network. Cancers 2022, 14, 934. https://doi.org/10.3390/cancers14040934
Zhou L, Rueda M, Alkhateeb A. Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network. Cancers. 2022; 14(4):934. https://doi.org/10.3390/cancers14040934
Chicago/Turabian StyleZhou, Li, Maria Rueda, and Abedalrhman Alkhateeb. 2022. "Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network" Cancers 14, no. 4: 934. https://doi.org/10.3390/cancers14040934
APA StyleZhou, L., Rueda, M., & Alkhateeb, A. (2022). Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network. Cancers, 14(4), 934. https://doi.org/10.3390/cancers14040934