Therapeutic Strategies for Patients with Advanced Small Bowel Adenocarcinoma: Current Knowledge and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Systemic Chemotherapy
2.1. First-Line Chemotherapy Regimen
2.2. Second-Line Chemotherapy Regimen
3. Targeted Therapies
3.1. Anti-Angiogenic Therapies
3.2. Anti-EGFR
3.3. Other Promising Targeted Therapies
4. Immune Checkpoint Inhibitors
5. Specific Cases Management in Advanced SBA
5.1. Resection of Small Bowel Adenocarcinoma Metastases
5.2. Peritoneal Carcinomatosis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raghav, K.; Overman, M.J. Small Bowel Adenocarcinomas—Existing Evidence and Evolving Paradigms. Nat. Rev. Clin. Oncol. 2013, 10, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Legué, L.M.; Bernards, N.; Gerritse, S.L.; van Oudheusden, T.R.; de Hingh, I.H.J.T.; Creemers, G.-J.M.; Ten Tije, A.J.; Lemmens, V.E.P.P. Trends in Incidence, Treatment and Survival of Small Bowel Adenocarcinomas between 1999 and 2013: A Population-Based Study in The Netherlands. Acta Oncol. 2016, 55, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, T.; Henriques, J.; Manfredi, S.; Tougeron, D.; Bouché, O.; Pezet, D.; Piessen, G.; Coriat, R.; Zaanan, A.; Legoux, J.-L.; et al. Small Bowel Adenocarcinoma: Results from a Nationwide Prospective ARCAD-NADEGE Cohort Study of 347 Patients. Int. J. Cancer 2020, 147, 167–177. [Google Scholar] [CrossRef]
- Howe, J.R.; Karnell, L.H.; Menck, H.R.; Scott-Conner, C. The American College of Surgeons Commission on Cancer and the American Cancer Society. Adenocarcinoma of the Small Bowel: Review of the National Cancer Data Base, 1985–1995. Cancer 1999, 86, 2693–2706. [Google Scholar] [CrossRef]
- Dabaja, B.S.; Suki, D.; Pro, B.; Bonnen, M.; Ajani, J. Adenocarcinoma of the Small Bowel: Presentation, Prognostic Factors, and Outcome of 217 Patients. Cancer 2004, 101, 518–526. [Google Scholar] [CrossRef]
- Talamonti, M.S.; Goetz, L.H.; Rao, S.; Joehl, R.J. Primary Cancers of the Small Bowel: Analysis of Prognostic Factors and Results of Surgical Management. Arch. Surg. 2002, 137, 564–570, discussion 570–571. [Google Scholar] [CrossRef] [Green Version]
- Chin, Y.H.; Jain, S.R.; Lee, M.H.; Ng, C.H.; Lin, S.Y.; Mai, A.S.; Muthiah, M.D.; Foo, F.J.; Sundar, R.; Ong, D.E.H.; et al. Small Bowel Adenocarcinoma in Crohn’s Disease: A Systematic Review and Meta-Analysis of the Prevalence, Manifestation, Histopathology, and Outcomes. Int. J. Colorectal Dis. 2022, 37, 239–250. [Google Scholar] [CrossRef]
- Fishman, P.N.; Pond, G.R.; Moore, M.J.; Oza, A.; Burkes, R.L.; Siu, L.L.; Feld, R.; Gallinger, S.; Greig, P.; Knox, J.J. Natural History and Chemotherapy Effectiveness for Advanced Adenocarcinoma of the Small Bowel: A Retrospective Review of 113 Cases. Am. J. Clin. Oncol. 2006, 29, 225–231. [Google Scholar] [CrossRef]
- Czaykowski, P.; Hui, D. Chemotherapy in Small Bowel Adenocarcinoma: 10-Year Experience of the British Columbia Cancer Agency. Clin. Oncol. 2007, 19, 143–149. [Google Scholar] [CrossRef]
- Moon, Y.W.; Rha, S.Y.; Shin, S.J.; Chang, H.; Shim, H.S.; Roh, J.K. Adenocarcinoma of the Small Bowel at a Single Korean Institute: Management and Prognosticators. J. Cancer Res. Clin. Oncol. 2010, 136, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Koo, D.H.; Yun, S.-C.; Hong, Y.S.; Ryu, M.-H.; Lee, J.-L.; Chang, H.-M.; Ryoo, B.-Y.; Kang, Y.-K.; Kim, T.W. Systemic Chemotherapy for Treatment of Advanced Small Bowel Adenocarcinoma with Prognostic Factor Analysis: Retrospective Study. BMC Cancer 2011, 11, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, K.; Peckitt, C.; Sclafani, F.; Watkins, D.; Rao, S.; Starling, N.; Jain, V.; Trivedi, S.; Stanway, S.; Cunningham, D.; et al. Prognostic Factors and Treatment Outcomes in Patients with Small Bowel Adenocarcinoma (SBA): The Royal Marsden Hospital (RMH) Experience. BMC Cancer 2015, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Halfdanarson, T.R.; McWilliams, R.R.; Donohue, J.H.; Quevedo, J.F. A Single-Institution Experience with 491 Cases of Small Bowel Adenocarcinoma. Am. J. Surg. 2010, 199, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Gibson, M.K.; Holcroft, C.A.; Kvols, L.K.; Haller, D. Phase II Study of 5-Fluorouracil, Doxorubicin, and Mitomycin C for Metastatic Small Bowel Adenocarcinoma. Oncologist 2005, 10, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Overman, M.J.; Varadhachary, G.R.; Kopetz, S.; Adinin, R.; Lin, E.; Morris, J.S.; Eng, C.; Abbruzzese, J.L.; Wolff, R.A. Phase II Study of Capecitabine and Oxaliplatin for Advanced Adenocarcinoma of the Small Bowel and Ampulla of Vater. J. Clin. Oncol. 2009, 27, 2598–2603. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.J.; Liu, Y.W.; Zhang, L.; Qiu, F.; Yu, F.; Zhan, Z.Y.; Feng, M.; Yan, J.; Zhao, J.G.; Xiong, J.P. A Phase II Study of Modified FOLFOX as First-Line Chemotherapy in Advanced Small Bowel Adenocarcinoma. Anticancer Drugs 2012, 23, 561–566. [Google Scholar] [CrossRef]
- Horimatsu, T.; Nakayama, N.; Moriwaki, T.; Hirashima, Y.; Fujita, M.; Asayama, M.; Moriyama, I.; Nakashima, K.; Baba, E.; Kitamura, H.; et al. A Phase II Study of 5-Fluorouracil/L-Leucovorin/Oxaliplatin (MFOLFOX6) in Japanese Patients with Metastatic or Unresectable Small Bowel Adenocarcinoma. Int. J. Clin. Oncol. 2017, 22, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Overman, M.J.; Adam, L.; Raghav, K.; Wang, J.; Kee, B.; Fogelman, D.; Eng, C.; Vilar, E.; Shroff, R.; Dasari, A.; et al. Phase II Study of Nab-Paclitaxel in Refractory Small Bowel Adenocarcinoma and CpG Island Methylator Phenotype (CIMP)-High Colorectal Cancer. Ann. Oncol. 2018, 29, 139–144. [Google Scholar] [CrossRef]
- McWilliams, R.R.; Foster, N.R.; Mahoney, M.R.; Smyrk, T.C.; Murray, J.A.; Ames, M.M.; Horvath, L.E.; Schneider, D.J.; Hobday, T.J.; Jatoi, A.; et al. North Central Cancer Treatment Group N0543 (Alliance): A Phase 2 Trial of Pharmacogenetic-Based Dosing of Irinotecan, Oxaliplatin, and Capecitabine as First-Line Therapy for Patients with Advanced Small Bowel Adenocarcinoma. Cancer 2017, 123, 3494–3501. [Google Scholar] [CrossRef]
- Crawley, C.; Ross, P.; Norman, A.; Hill, A.; Cunningham, D. The Royal Marsden Experience of a Small Bowel Adenocarcinoma Treated with Protracted Venous Infusion 5-Fluorouracil. Br. J. Cancer 1998, 78, 508–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locher, C.; Malka, D.; Boige, V.; Lebray, P.; Elias, D.; Lasser, P.; Ducreux, M. Combination Chemotherapy in Advanced Small Bowel Adenocarcinoma. Oncology 2005, 69, 290–294. [Google Scholar] [CrossRef]
- Overman, M.J.; Kopetz, S.; Wen, S.; Hoff, P.M.; Fogelman, D.; Morris, J.; Abbruzzese, J.L.; Ajani, J.A.; Wolff, R.A. Chemotherapy with 5-Fluorouracil and a Platinum Compound Improves Outcomes in Metastatic Small Bowel Adenocarcinoma. Cancer 2008, 113, 2038–2045. [Google Scholar] [CrossRef]
- Zaanan, A.; Costes, L.; Gauthier, M.; Malka, D.; Locher, C.; Mitry, E.; Tougeron, D.; Lecomte, T.; Gornet, J.-M.; Sobhani, I.; et al. Chemotherapy of Advanced Small-Bowel Adenocarcinoma: A Multicenter AGEO Study. Ann. Oncol. 2010, 21, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Zaanan, A.; Gauthier, M.; Malka, D.; Locher, C.; Gornet, J.-M.; Thirot-Bidault, A.; Tougeron, D.; Taïeb, J.; Bonnetain, F.; Aparicio, T.; et al. Second-Line Chemotherapy with Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI Regimen) in Patients with Advanced Small Bowel Adenocarcinoma after Failure of First-Line Platinum-Based Chemotherapy: A Multicenter AGEO Study. Cancer 2011, 117, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, T.; Taguri, M.; Honma, Y.; Takahashi, H.; Ueda, S.; Nishina, T.; Kawai, H.; Kato, S.; Suenaga, M.; Tamura, F.; et al. Multicenter Retrospective Study of 132 Patients with Unresectable Small Bowel Adenocarcinoma Treated with Chemotherapy. Oncologist 2012, 17, 1163–1170. [Google Scholar] [CrossRef] [Green Version]
- Aydin, D.; Sendur, M.A.; Kefeli, U.; Umut Unal, O.; Tastekin, D.; Akyol, M.; Tanrikulu, E.; Ciltas, A.; Bala Ustaalioglu, B.; Sener Dede, D.; et al. Evaluation of Prognostic Factors and Treatment in Advanced Small Bowel Adenocarcinoma: Report of a Multi-Institutional Experience of Anatolian Society of Medical Oncology (ASMO). J. BUON 2016, 21, 1242–1249. [Google Scholar] [PubMed]
- Aldrich, J.D.; Raghav, K.P.S.; Varadhachary, G.R.; Wolff, R.A.; Overman, M.J. Retrospective Analysis of Taxane-Based Therapy in Small Bowel Adenocarcinoma. Oncologist 2019, 24, e384–e386. [Google Scholar] [CrossRef] [Green Version]
- Overman, M.J.; Pozadzides, J.; Kopetz, S.; Wen, S.; Abbruzzese, J.L.; Wolff, R.A.; Wang, H. Immunophenotype and Molecular Characterisation of Adenocarcinoma of the Small Intestine. Br. J. Cancer 2010, 102, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Amano, T.; Iijima, H.; Shinzaki, S.; Tashiro, T.; Iwatani, S.; Tani, M.; Otake, Y.; Yoshihara, T.; Sugimoto, A.; Egawa, S.; et al. Vascular Endothelial Growth Factor-A Is an Immunohistochemical Biomarker for the Efficacy of Bevacizumab-Containing Chemotherapy for Duodenal and Jejunal Adenocarcinoma. BMC Cancer 2021, 21, 978. [Google Scholar] [CrossRef]
- Aydin, D.; Sendur, M.A.; Kefeli, U.; Ustaalioglu, B.B.; Aydin, O.; Yildirim, E.; Isik, D.; Ozcelik, M.; Surmeli, H.; Oyman, A.; et al. Evaluation of Bevacizumab in Advanced Small Bowel Adenocarcinoma. Clin. Colorectal Cancer 2017, 16, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Takayoshi, K.; Kusaba, H.; Uenomachi, M.; Mitsugi, K.; Makiyama, C.; Makiyama, A.; Uchino, K.; Shirakawa, T.; Shibata, Y.; Shinohara, Y.; et al. Suggestion of Added Value by Bevacizumab to Chemotherapy in Patients with Unresectable or Recurrent Small Bowel Cancer. Cancer Chemother. Pharmacol. 2017, 80, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Hirao, M.; Komori, M.; Nishida, T.; Iijima, H.; Yamaguchi, S.; Ishihara, R.; Yasunaga, Y.; Kobayashi, I.; Kishida, O.; Oshita, M.; et al. Clinical Use of Molecular Targeted Agents for Primary Small Bowel Adenocarcinoma: A Multicenter Retrospective Cohort Study by the Osaka Gut Forum. Oncol. Lett. 2017, 14, 1628–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulhati, P.; Raghav, K.; Shroff, R.T.; Varadhachary, G.R.; Kopetz, S.; Javle, M.; Qiao, W.; Wang, H.; Morris, J.; Wolff, R.A.; et al. Bevacizumab Combined with Capecitabine and Oxaliplatin in Patients with Advanced Adenocarcinoma of the Small Bowel or Ampulla of Vater: A Single-Center, Open-Label, Phase 2 Study. Cancer 2017, 123, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Santini, D.; Fratto, M.E.; Spoto, C.; Russo, A.; Galluzzo, S.; Zoccoli, A.; Vincenzi, B.; Tonini, G. Cetuximab in Small Bowel Adenocarcinoma: A New Friend? Br. J. Cancer 2010, 103, 1305, author reply 1306. [Google Scholar] [CrossRef]
- Dell’Aquila, E.; Zeppola, T.; Stellato, M.; Pantano, F.; Scartozzi, M.; Madaudo, C.; Pietrantonio, F.; Cremolini, C.; Aprile, G.; Vincenzi, B.; et al. Anti-EGFR Therapy in Metastatic Small Bowel Adenocarcinoma: Myth or Reality? Clin. Med. Insights Oncol. 2020, 14, 1179554920946693. [Google Scholar] [CrossRef]
- Serpas, V.; Raghav, K.P.S.; Varadhachary, G.R.; Wolff, R.A.; Overman, M.J. A Retrospective Study of Anti-EGFR Antibody Therapy in Small Bowel Adenocarcinoma. JCO 2018, 36, e16264. [Google Scholar] [CrossRef]
- Gulhati, P.; Raghav, K.; Shroff, R.; Varadhachary, G.; Javle, M.; Qiao, W.; Wang, H.; Morris, J.; Wolff, R.; Overman, M.J. Phase II Study of Panitumumab in RAS Wild-Type Metastatic Adenocarcinoma of Small Bowel or Ampulla of Vater. Oncologist 2018, 23, 277-e26. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, N.; Karayama, M.; Iwaizumi, M.; Kusama, Y.; Kono, M.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Enomoto, N.; Fujisawa, T.; et al. Synchronous Duodenal Cancer and Lung Cancer Harboring an Epidermal Growth Factor Receptor Mutation Treated with Erlotinib and Oral Fluoropyrimidine. Intern. Med. 2017, 56, 2367–2371. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.S.; Foster, N.R.; Overman, M.J.; Boland, P.M.; Kim, S.S.; Arrambide, K.A.; Jaszewski, B.L.; Bekaii-Saab, T.; Graham, R.P.; Welch, J.; et al. ZEBRA: A Multicenter Phase II Study of Pembrolizumab in Patients with Advanced Small-Bowel Adenocarcinoma. Clin. Cancer Res. 2021, 27, 3641–3648. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, T.; Zaanan, A.; Mary, F.; Afchain, P.; Manfredi, S.; Evans, T.R.J. Small Bowel Adenocarcinoma. Gastroenterol. Clin. N. Am. 2016, 45, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Schrock, A.B.; Devoe, C.E.; McWilliams, R.; Sun, J.; Aparicio, T.; Stephens, P.J.; Ross, J.S.; Wilson, R.; Miller, V.A.; Ali, S.M.; et al. Genomic Profiling of Small-Bowel Adenocarcinoma. JAMA Oncol. 2017, 3, 1546–1553. [Google Scholar] [CrossRef] [Green Version]
- Hamad, A.; Singhi, A.D.; Bahary, N.; McGrath, K.; Amarin, R.; Zeh, H.J.; Zureikat, A.H. Neoadjuvant Treatment With Trastuzumab and FOLFOX Induces a Complete Pathologic Response in a Metastatic ERBB2 (HER2)-Amplified Duodenal Cancer. J. Natl. Compr. Cancer Netw. 2017, 15, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.A.; Garrido-Laguna, I.; et al. Small Bowel Adenocarcinoma, Version 1.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 1109–1133. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-Line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Zhou, C.-B.; Zhou, Y.-L.; Fang, J.-Y. Gut Microbiota in Cancer Immune Response and Immunotherapy. Trends Cancer 2021, 7, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening Horizons: The Role of Ferroptosis in Cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296. [Google Scholar] [CrossRef]
- Rompteaux, P.; Gagnière, J.; Gornet, J.-M.; Coriat, R.; Baumgaertner, I.; Lecomte, T.; Afchain, P.; Zaanan, A.; Pocard, M.; Bachet, J.-B.; et al. Resection of Small Bowel Adenocarcinoma Metastases: Results of the ARCAD-NADEGE Cohort Study. Eur. J. Surg. Oncol. 2019, 45, 331–335. [Google Scholar] [CrossRef]
- de Bree, E.; Rovers, K.P.; Stamatiou, D.; Souglakos, J.; Michelakis, D.; de Hingh, I.H. The Evolving Management of Small Bowel Adenocarcinoma. Acta Oncol. 2018, 57, 712–722. [Google Scholar] [CrossRef] [Green Version]
- Marchettini, P.; Sugarbaker, P.H. Mucinous Adenocarcinoma of the Small Bowel with Peritoneal Seeding. Eur. J. Surg. Oncol. 2002, 28, 19–23. [Google Scholar] [CrossRef]
- Jacks, S.P.; Hundley, J.C.; Shen, P.; Russell, G.B.; Levine, E.A. Cytoreductive Surgery and Intraperitoneal Hyperthermic Chemotherapy for Peritoneal Carcinomatosis from Small Bowel Adenocarcinoma. J. Surg. Oncol. 2005, 91, 112–117, discussion 118–119. [Google Scholar] [CrossRef]
- Chua, T.C.; Koh, J.-L.; Yan, T.D.; Liauw, W.; Morris, D.L. Cytoreductive Surgery and Perioperative Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis from Small Bowel Adenocarcinoma. J. Surg. Oncol. 2009, 100, 139–143. [Google Scholar] [CrossRef]
- Elias, D.; Glehen, O.; Pocard, M.; Quenet, F.; Goéré, D.; Arvieux, C.; Rat, P.; Gilly, F.; Association Française de Chirurgie. A Comparative Study of Complete Cytoreductive Surgery Plus Intraperitoneal Chemotherapy to Treat Peritoneal Dissemination From Colon, Rectum, Small Bowel, and Nonpseudomyxoma Appendix. Ann. Surg. 2010, 251, 896–901. [Google Scholar] [CrossRef]
- van Oudheusden, T.R.; Lemmens, V.E.; Braam, H.J.; van Ramshorst, B.; Meijerink, J.; te Velde, E.A.; Mehta, A.M.; Verwaal, V.J.; de Hingh, I.H. Peritoneal Metastases from Small Bowel Cancer: Results of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy in The Netherlands. Surgery 2015, 157, 1023–1027. [Google Scholar] [CrossRef]
- Liu, Y.; Yonemura, Y.; Levine, E.A.; Glehen, O.; Goere, D.; Elias, D.; Morris, D.L.; Sugarbaker, P.H.; Tuech, J.J.; Cashin, P.; et al. Cytoreductive Surgery Plus Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Metastases From a Small Bowel Adenocarcinoma: Multi-Institutional Experience. Ann. Surg. Oncol. 2018, 25, 1184–1192. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ishibashi, H.; Takeshita, K.; Mizumoto, A.; Hirano, M.; Sako, S.; Takegawa, S.; Takao, N.; Ichinose, M.; Yonemura, Y. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Dissemination from Small Bowel Malignancy: Results from a Single Specialized Center. Ann. Surg. Oncol. 2016, 23, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shen, P.; Stewart, J.H.; Russell, G.B.; Levine, E.A. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis from Small Bowel Adenocarcinoma. Am. Surg. 2013, 79, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Rovers, K.P.; de Bree, E.; Yonemura, Y.; de Hingh, I.H. Treatment of Peritoneal Metastases from Small Bowel Adenocarcinoma. Int. J. Hyperth. 2017, 33, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
References | Type of Study | Number of Patients | Type of CT | Number of Patients (%) | Patients Treated with CT (Months) | OS in Patients without CT (Months) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | Receiving CT | Not Receiving CT | ORR | DCR | OS (Months) | ||||||
Dabaja, Cancer, 2004 [6] | Retrospective | 75 | 34 | 41 | NA | - | - | - | 12 | 2 | 0.02 |
Fishman, Am J Oncol, 2006 [9] | Retrospective | 105 | 44 | 61 | Various regimens | - | 29.5% | 50% | 19 | 13 | 0.035 (in multivariate analysis) |
Moon, J Cancer Res Clin Oncol, 2010 [11] | Retrospective | 87 | 34 | 53 | All | - | 27.6% | - | 9 | 3.5 | 0.01 |
5-FU | 4 (11.8%) | ||||||||||
5-FU–cisplatin | 11 (32.4%) | ||||||||||
5-FU-based adriamycin | 14 (41.2%) | ||||||||||
Gemcitabine | 2 (5.8%) | ||||||||||
Other regimens | 3 (8.8%) | ||||||||||
Czaykowski, Clin Oncol, 2007 [10] | Retrospective | 37 | 16 | 21 | 5-FU based | 5% | - | 15.6 | 7.7 | NA | |
Koo, BMC Cancer, 2011 [12] | Retrospective | 91 | 40 | 51 | All | - | 11.1% | 37.0% | 11.8 | 4.1 | <0.01 |
5-FU | 10 (24.0%) | ||||||||||
5-FU–cisplatin | 25 (62.5%) | ||||||||||
FOLFIRI | 3 (7.5%) | ||||||||||
5-FU–adriamycin–mitomycin | 2 (5.0%) | ||||||||||
Khan, BMC Cancer, 2015 [13] | Retrospective | 59 | 46 | 59 | Various regimens | - | 50% | - | 60.9% (1-year OS) | 27.1% (1-year OS) | 0.04 |
Halfdanarson, Am J Surg, 2010 [14] | Retrospective | 165 | NA | NA | NA | - | - | - | 15.5 | 5.3 | <0.01 |
Aparicio, Int J Cancer, 2020 [4] | Prospective | 124 * | 86 | 15 | All | - | - | - | 14.6 | 2.2 | 0.0001 |
5-FU | 6 (7.0%) | - | - | - | - | - | |||||
FOLFOX/CAPOX | 60 (69.8%) | - | - | - | - | - | |||||
FOFLIRI | 16 (18.6%) | - | - | - | - | - | |||||
Other regimens | 4 (4.6%) | - | - | - | - | - |
References | Type of Study | Number of Patients | Line of Treatment | Type of CT (Number of Patients) | ORR | Disease Control Rate | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|---|---|
Crawley, Br J Cancer, 1998 [21] | Retrospective Single Center | 8 | 1 | All (n = 8) | - | 75% | 7.8 | 13 |
ECF (n = 5) | - | 80% | - | - | ||||
5-FU (n = 2) | - | 50% | - | - | ||||
5-FU–mitomycin (n = 1) | - | 100% | - | - | ||||
Locher, Oncology, 2005 [22] | Retrospective Single Center | 20 | 1 2 | All (n = 20) | 21% | 79% | 8 | 14 |
5-FU–cisplatin (n = 15) | 20% | - | - | - | ||||
5-FU–carboplatin (n = 2) | 0% | - | - | - | ||||
FOLFOX (n = 3) | 33% | - | - | - | ||||
All (n = 13) | - | - | - | - | ||||
FOLFIRI (n = 8) | - | 50% | 5 | - | ||||
5-FU–cisplatin (n = 1) | 0% | 0% | - | - | ||||
5-FU (n = 4) | 0% | 0% | - | - | ||||
Overman, Cancer, 2008 [23] | Retrospective Single Center | 80 | 1 | All (n = 80) | 71% | - | 4.6 | 13.0 |
5-FU–cisplatin (n = 29) | 41% | - | 8.7 | 14.8 | ||||
5-FU alone/non 5-FU-based (n = 51) | 30% | - | 3.9 | 12.0 | ||||
Zaanan, Ann Oncol, 2010 [24] | Retrospective Multicentric | 93 | 1 | All (n = 93) | 26% | 74% | 6.6 | 15.1 |
5-FU (n = 10) | 0% | 50% | 7.7 | 13.5 | ||||
FOLFOX (n = 48) | 34% | 79% | 6.9 | 17.8 | ||||
FOLFIRI (n = 19) | 34% | 73% | 6.0 | 10.6 | ||||
5-FU-cisplatin (n = 16) | 31% | 69% | 4.8 | 9.3 | ||||
Zaanan, Cancer, 2011 [25] | Retrospective Multicentric | 28 | 2 | FOLFIRI (n = 28) | 20% | 52% | 3.2 | 10.5 |
Tsushima, Oncologist, 2012 [26] | Retrospective Multicentric | 132 | 1 | All (n = 132) | - | - | - | - |
5-FU (n = 60) | 20% | - | 5.4 | 13.9 | ||||
5-FU–cisplatin (n = 17) | 38% | - | 3.8 | 12.6 | ||||
FOLFOX (n = 22) | 42% | - | 8.2 | 22.2 | ||||
FOLFIRI (n = 11) | 25% | - | 5.6 | 9.4 | ||||
Other regimens (n = 22) | 21% | - | 3.4 | 8.1 | ||||
Aydin, J BUON, 2016 [27] | Retrospective Multicentric | 56 | 1 | All (n = 56) | - | - | 7 | 13 |
FOLFOX (n = 18) | 35% | - | 7 | 15 | ||||
5-FU–cisplatin (n = 17) | 56% | - | 8 | 11 | ||||
FOLFIRI (n = 18) | 55% | - | 8 | 16 | ||||
Gemcitabine (n = 10) | 20% | - | 5 | 11 | ||||
Aldrich, Oncologist, 2019 [28] | Retrospective Single Center | 20 | 1 or 2 | All: Taxane-based (n = 20) | 65% | - | 3.8 | 10.7 |
Combination (n = 17) | - | - | - | - | ||||
Monotherapy (n = 3) | - | - | - | - | ||||
Gibson, Oncologist, 2005 [15] | Phase II Multicentric | 39 | 1 | 5-FU–mitomycin–doxorubicin | 18.4% | 31% | 5 | 8 |
Overman, J Clin Oncol, 2009 [16] | Phase II Single Center | 30 | 1 | CAPOX | 50% | 87% | 11.3 | 20.4 |
Xiang, Anticancer Drugs, 2012 [17] | Phase II Multicentric | 33 | 1 | FOLFOX | 48.5% | - | 7.8 | 15.2 |
Horimatsu, Int J Clin Oncol, 2017 [18] | Phase II Multicentric | 24 | 1 | FOLFOX | 45% | 80% | 5.4 | 17.3 |
Mc Williams, Cancers, 2017 [20] | Phase II Single Center | 32 | 1 | CAPIRINOX | 37.5% | - | 8.9 | 13.4 |
Overman, Ann Oncol, 2018 [19] | Phase II Single Center | 10 | >1 | Nab-paclitaxel | 20% | 50% | 3.2 | 10.9 |
References | Type of Study | Number of Patients | Investigated Therapies | Main Results |
---|---|---|---|---|
Aydin, Clin Colorectal Cancer 2017 [31] | Retrospective Multicenter | 28 | Bevacizumab + CT (n = 12) CT alone (n = 16) | ORR: 43.7% in the CT group vs. 58.3% in the bevacizumab + CT group (NS) mPFS: 7.7 months in the CT group vs. 9.6 months in the bevacizumab + CT group (NS) mOS: 14.8 months in the CT group vs. 18.5 months in the bevacizumab + CT group (NS) |
Takayoshi, Cancer Chemother Pharmacol 2017 [32] | Retrospective Single Center | 33 | Bevacizumab + CT (n = 9) CT + other targeted therapy or CT alone (n = 24) | ORR: 33%.3 in the bevacizumab + CT group DCR: 55.5% in the bevacizumab + CT group mOS: 11.4 months among the 24 patients who did not receive bevacizumab in any of the treatment lines versus 21.9 months in the bevacizumab + CT group (p = 0.179). |
Hirao, Oncol Lett, 2017 [33] | Retrospective Single Center | 17 | Bevacizumab + CT (n = 7) Cetuximab + CT (n = 1) CT alone (n = 9) | Among the 17 patients who received oxaliplatin-based CT in first-line, a PS of 0 (p = 0.0255) and treatment with bevacizumab (p = 0.0121) were significant positive prognostic factors. |
Gulhati, Cancer, 2017 [34] | Phase II Single Center | 30 | Bevacizumab + CT (CAPOX) | ORR: 48.3% (1 complete response, 13 partial responses) 6 months PFS: 68%–mPFS: 8.7 months–mOS: 12.9 months |
NCT04205968 | Phase II | - | Ramucirumab + CT (paclitaxel) versus CT (FOLFIRI) | Ongoing |
Santini, Br J Cancer 2010 [35] | Retrospective Single Center | 4 | Cetuximab + CT (irinotecan) | ORR: 75%–DCR: 100% All 3 responders were KRAS wild-type |
Dell’Aquila, Clin Med Insights Oncol, 2020 [36] | Retrospective Multicenter | 13 | Cetuximab + CT | ORR: 44% (CR in 15% of patients, PR in 39% of patients) DCR: 67% |
Serpas, J Clin Oncol, 2018 [37] | Retrospective Single Center | 25 | Cetuximab ± CT (n = 19) Panitumumab ± CT (n = 6) | mPFS: 3.3 months–mOS: 13 months ORR: 12%–DCR 36%. All 3 responders were treated in combination with irinotecan and did not previously progress on irinotecan Patients treated by anti-EGFR in monotherapy (n = 7): mPFS: 2.2 months ORR: 0% and best response: SD (n = 1) |
Gulhati, Oncologist, 2018 [38] | Phase II | 9 | Panitumumab monotherapy | ORR: 0%–DCR: 22% (n = 2) mPFS: 2.4 months–mOS: 5.7 months No patients had extended RAS mutations (exons 2/3/4), 2 had a BRAF G469A mutation, and 1 had a PIK3CA H1074R mutation. |
Akiyama, Intern Med, 2017 [39] | Case report | 1 | Erlotinib + S-1 | Concomitant response of lung and duodenal cancer to the combination of erlotinib and S-1 |
Marabelle, J Clin Oncol, 2020 [40] | Phase II | 19 SBA among 233 patients | Pembrolizumab monotherapy | ORR: 34.3% mPFS: 4.1 months–mOS: 23.5 months |
Pedersen, Clin Cancer Res, 2021 [41] | Phase II | 40 | Pembrolizumab monotherapy | PR: 8% (n = 3)–Unachieved predefined success criteria of ORR 30%. mPFS: 2.9 months–mOS: 7.1 months 50% of patients with MSI-H tumors achieved PR and remained alive without progression 1 confirmed PR (3%) was seen in patients with low MSS/MSI tumors and correlated with high tumor mutation burden. |
Cardin, J Clin Oncol, 2O2O [42] | Phase II | - | Avelumab | 29% RR and 71% DCR |
NCT02834013 | Phase II | - | Ipilimumab + nivolumab versus nivolumab | Ongoing (dedicated to rare tumors, including SBA) |
NCT03108131 | Phase II | - | Cobimetinib + atezolizumab | Ongoing (dedicated to rare tumors, including SBA) |
References | Type of Study | Number of Patients | Median OS (Months) from CRS + HIPEC | Median OS (Months) from Diagnosis | Grade III–IV Toxicities | Treatment-Related Death |
---|---|---|---|---|---|---|
Marchettini, Eur J Surg Oncol, 2002 [57] | Retrospective Single Center | 6 | 16 | - | - | 0% |
Jacks, J Surg Oncol, 2005 [58] | Retrospective Single Center | 6 | 30.1 | 54 | - | - |
Chua, J Surg Oncol, 2009 [59] | Retrospective Single Center | 7 | 25 | - | 29% | 0% |
Elias, Ann Surg, 2010 [60] | Retrospective Multicenter | 31 | 47 | - | 35% | 2.9% |
Sun, Am Surg, 2013 [64] | Prospective Single Center | 17 | 18 | 37 | 12% | 0% |
van Oudheusden, Surgery, 2015 [61] | Retrospective Multicenter | 16 | 31 | - | 25% | NA |
Liu, Ann Surg Oncol, 2016 [63] | Retrospective Single Center | 31 | 36 | 51 | 25.8% | 0% |
Liu, Ann Surg, 2018 [62] | Retrospective Multicenter | 152 | 32 | - | 19.1% | 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moati, E.; Overman, M.J.; Zaanan, A. Therapeutic Strategies for Patients with Advanced Small Bowel Adenocarcinoma: Current Knowledge and Perspectives. Cancers 2022, 14, 1137. https://doi.org/10.3390/cancers14051137
Moati E, Overman MJ, Zaanan A. Therapeutic Strategies for Patients with Advanced Small Bowel Adenocarcinoma: Current Knowledge and Perspectives. Cancers. 2022; 14(5):1137. https://doi.org/10.3390/cancers14051137
Chicago/Turabian StyleMoati, Emilie, Michael J. Overman, and Aziz Zaanan. 2022. "Therapeutic Strategies for Patients with Advanced Small Bowel Adenocarcinoma: Current Knowledge and Perspectives" Cancers 14, no. 5: 1137. https://doi.org/10.3390/cancers14051137
APA StyleMoati, E., Overman, M. J., & Zaanan, A. (2022). Therapeutic Strategies for Patients with Advanced Small Bowel Adenocarcinoma: Current Knowledge and Perspectives. Cancers, 14(5), 1137. https://doi.org/10.3390/cancers14051137