Exploring the Impact of the Obesity Paradox on Lung Cancer and Other Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Obesity and Cancer Development
3.2. Obesity and Cancer Prognosis
3.3. Obesity Paradox in Other Cancers
3.3.1. Renal
3.3.2. Melanoma
3.4. Obesity Paradox in Lung Cancer
3.4.1. Obesity and Survival in Lung Cancer
3.4.2. Enhanced PD-1 Checkpoint Inhibitor Therapy Response
3.5. Measurements of Adiposity
3.5.1. BMI
3.5.2. Underwater Weighing
3.5.3. Dual-Energy X-ray Absorptiometry
3.5.4. Bioelectric Impedance
3.5.5. The Waist-to-Hip Ratio
3.5.6. Visceral Fat Index
3.5.7. Abdominal Obesity
3.6. Confounding Factors
3.6.1. Metformin
3.6.2. Statins
3.6.3. Sex
3.6.4. Smoking
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allott, E.H.; Masko, E.M.; Freedland, S.J. Obesity and prostate cancer: Weighing the evidence. Eur. Urol. 2013, 63, 800–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Fakhouri, T.H.; Carroll, M.D.; Hales, C.M.; Fryar, C.D.; Li, X.; Freedman, D.S. Prevalence of obesity among adults, by household income and education—United States, 2011–2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1369. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E.J.; LeRoith, D. Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiol. Rev. 2015, 95, 727–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimri, L.; Saadi, J.; Peri, I.; Yehuda-Shnaidman, E.; Schwartz, B. Mechanisms linking obesity to altered metabolism in mice colon carcinogenesis. Oncotarget 2015, 6, 38195. [Google Scholar] [CrossRef] [Green Version]
- Pakiz, B.; Ganz, P.A.; Sedjo, R.L.; Flatt, S.W.; Demark-Wahnefried, W.; Liu, J.; Wolin, K.Y.; Rock, C.L. Correlates of quality of life in overweight or obese breast cancer survivors at enrollment into a weight loss trial. Psycho-Oncology 2016, 25, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.K. Obesity and coronary heart disease. Am. J. Med. Sci. 2001, 321, 215–224. [Google Scholar] [CrossRef]
- Pinto, N.M.; Marino, B.S.; Wernovsky, G.; de Ferranti, S.D.; Walsh, A.Z.; Laronde, M.; Hyland, K.; Dunn, S.O.; Cohen, M.S. Obesity is a common comorbidity in children with congenital and acquired heart disease. Pediatrics 2007, 120, e1157–e1164. [Google Scholar] [CrossRef]
- Marchesini, G.; Moscatiello, S.; Di Domizio, S.; Forlani, G. Obesity-associated liver disease. J. Clin. Endocrinol. Metab. 2008, 93, s74–s80. [Google Scholar] [CrossRef]
- Tworoger, S.S.; Huang, T. Obesity and ovarian cancer. Obes. Cancer 2016, 208, 155–176. [Google Scholar]
- Zhang, X.; Liu, Y.; Shao, H.; Zheng, X. Obesity paradox in lung cancer prognosis: Evolving biological insights and clinical implications. J. Thorac. Oncol. 2017, 12, 1478–1488. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Giovannucci, E.L. The obesity paradox in cancer: Epidemiologic insights and perspectives. Curr. Nutr. Rep. 2019, 8, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, S.E.; Schiller, J.H.; Bonomi, P.B.; Sandler, A.B.; Brahmer, J.R.; Ramalingam, S.S.; Johnson, D.H. Body mass index and its association with clinical outcomes for advanced non–small-cell lung cancer patients enrolled on Eastern Cooperative Oncology Group clinical trials. J. Thorac. Oncol. 2013, 8, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, V.K.; Bentzen, S.M.; Mohindra, P.; Nichols, E.M.; Bhooshan, N.; Vyfhuis, M.; Scilla, K.A.; Feigenberg, S.J.; Edelman, M.J.; Feliciano, J.L. Obesity is associated with long-term improved survival in definitively treated locally advanced non-small cell lung cancer (NSCLC). Lung Cancer 2017, 104, 52–57. [Google Scholar] [CrossRef]
- Smith, L.; Brinton, L.A.; Spitz, M.R.; Lam, T.K.; Park, Y.; Hollenback, A.R.; Freedman, N.D.; Gierach, G.L. Body mass index and risk of lung cancer among never, former, and current smokers. J. Natl. Cancer Inst. 2012, 104, 778–789. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.C.; Lam, T.H.; Yew, W.W.; Chan, W.M.; Law, W.S.; Tam, C.M. Lower lung cancer mortality in obesity. Int. J. Epidemiol. 2011, 40, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Haaf, K.; Jeon, J.; Tammemägi, M.C.; Han, S.S.; Kong, C.Y.; Plevritis, S.K.; Feuer, E.J.; de Koning, H.J.; Steyerberg, E.W.; Meza, R. Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study. PLoS Med. 2017, 14, e1002277. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Pinto, A.; Giusti, A.M.; Lenzi, A.; Poggiogalle, E. Obesity or BMI paradox? Beneath the tip of the iceberg. Front. Nutr. 2020, 7, 53. [Google Scholar] [CrossRef]
- Barbi, J.; Patnaik, S.K.; Pabla, S.; Zollo, R.; Smith, R.J., Jr.; Sass, S.N.; Srinivasan, A.; Petrucci, C.; Seager, R.; Conroy, J.; et al. Visceral Obesity Promotes Lung Cancer Progression-Toward Resolution of the Obesity Paradox in Lung Cancer. J. Thorac. Oncol. 2021, 16, 1333–1348. [Google Scholar] [CrossRef]
- Ostrand-Rosenberg, S. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 2018, 51, 68–75. [Google Scholar] [CrossRef]
- Ostrand-Rosenberg, S. Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. Annu. Rev. Cancer Biol. 2021, 5, 17–38. [Google Scholar] [CrossRef]
- Thakkar, B.; Aronis, K.N.; Vamvini, M.T.; Shields, K.; Mantzoros, C.S. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: A meta-analysis using primary data of published studies. Metabolism 2013, 62, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Adult Obesity Facts. 2021. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 21 August 2021).
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [PubMed]
- Chobot, A.; Górowska-Kowolik, K.; Sokołowska, M.; Jarosz-Chobot, P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab. Res. Rev. 2018, 34, e3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliba, L.J.; Maffett, S. Hypertensive Heart Disease and Obesity: A Review. Heart Fail Clin. 2019, 15, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rio, F.; Alvarez-Puebla, M.J.; Esteban-Gorgojo, I.; Barranco, P.; Olaguibel, J.M. Obesity and Asthma: Key Clinical Questions. J. Investig. Allergol. Clin. Immunol. 2019, 29, 262–271. [Google Scholar] [CrossRef]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.D.; Basu, A. Estimating the Medical Care Costs of Obesity in the United States: Systematic Review, Meta-Analysis, and Empirical Analysis. Value Health 2016, 19, 602–613. [Google Scholar] [CrossRef] [Green Version]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Wynder, E.L.; Escher, G.C.; Mantel, N. An epidemiological investigation of cancer of the endometrium. Cancer 1966, 19, 489–520. [Google Scholar] [CrossRef]
- Bertot, L.C.; Adams, L.A. Trends in hepatocellular carcinoma due to non-alcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 179–187. [Google Scholar] [CrossRef]
- Pocha, C.; Kolly, P.; Dufour, J.F. Nonalcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma: A Problem of Growing Magnitude. Semin. Liver Dis. 2015, 35, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Saitta, C.; Pollicino, T.; Raimondo, G. Obesity and liver cancer. Ann. Hepatol. 2019, 18, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Wolk, A. Body mass index and risk of non-Hodgkin’s and Hodgkin’s lymphoma: A meta-analysis of prospective studies. Eur. J. Cancer 2011, 47, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.M.; Slager, S.L.; Cerhan, J.R.; Wang, S.S.; Vajdic, C.M.; Skibola, C.F.; Bracci, P.M.; de Sanjose, S.; Smedby, K.E.; Chiu, B.C.H.; et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: The InterLymph non-Hodgkin lymphoma subtypes project. J. Natl. Cancer Inst. Monogr. 2014, 2014, 130–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, A.; Corley, D.A. Body mass index and adenocarcinomas of the esophagus or gastric cardia: A systematic review and meta-analysis. Cancer Epidemiol. Prev. Biomark. 2006, 15, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Dal Maso, L.; La Vecchia, C.; Franceschi, S.; Preston-Martin, S.; Ron, E.; Levi, F.; Mack, W.; Mark, S.D.; McTieran, A.; Kolonel, L.; et al. A pooled analysis of thyroid cancer studies. V. Anthropometric factors. Cancer Causes Control 2000, 11, 137–144. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Obesity and colon and rectal cancer risk: A meta-analysis of prospective studies. Am. J. Clin. Nutr. 2007, 86, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Bergström, A.; Hsieh, C.; Lindblad, P.; Lu, C.; Cook, N.; Wolk, A. Obesity and renal cell cancer—A quantitative review. Br. J. Cancer 2001, 85, 984–990. [Google Scholar] [CrossRef] [Green Version]
- Marshall, F.F. Obesity and Renal Cell Cancer—A Quantitative Review. J. Urol. 2002, 168, 877. [Google Scholar] [CrossRef]
- Setiawan, V.W.; Stram, D.O.; Nomura, A.M.; Kolonel, L.N.; Henderson, B.E. Risk factors for renal cell cancer: The multiethnic cohort. Am. J. Epidemiol. 2007, 166, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.; Wolk, A. Overweight, obesity and risk of liver cancer: A meta-analysis of cohort studies. Br. J. Cancer 2007, 97, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Friedman, G.D.; Herrinton, L.J. Obesity and multiple myeloma. Cancer Causes Control. 1994, 5, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Body mass index and risk of multiple myeloma: A meta-analysis. Int. J. Cancer 2007, 121, 2512–2516. [Google Scholar] [CrossRef]
- Larsson, S.; Wolk, A. Obesity and the risk of gallbladder cancer: A meta-analysis. Br. J. Cancer 2007, 96, 1457–1461. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Overweight and obesity and incidence of leukemia: A meta-analysis of cohort studies. Int. J. Cancer 2008, 122, 1418–1421. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Obesity and risk of non-Hodgkin’s lymphoma: A meta-analysis. Int. J. Cancer 2007, 121, 1564–1570. [Google Scholar] [CrossRef]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.-H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Qi, X.; Locke, J.; Rehman, S. Childhood and Adolescent Obesity in the United States: A Public Health Concern. Glob. Pediatr. Health 2019, 6, 12333794X19891305. [Google Scholar] [CrossRef] [Green Version]
- Dushnicky, M.J.; Nazarali, S.; Mir, A.; Portwine, C.; Samaan, M.C. Is There a Causal Relationship between Childhood Obesity and Acute Lymphoblastic Leukemia? A Review. Cancers 2020, 12, 3082. [Google Scholar] [CrossRef]
- Ghosh, T.; Richardson, M.; Ryder, J.; Spector, L.; Turcotte, L. Abstract 3118: Obesity as a risk factor for pediatric acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Cancer Res. 2019, 79 (Suppl. 13), 3118. [Google Scholar]
- Leiba, M.; Leiba, A.; Keinan-Boker, L.; Avigdor, A.; Derazne, E.; Levine, H.; Kark, J.D. Adolescent weight and height are predictors of specific non-Hodgkin lymphoma subtypes among a cohort of 2,352,988 individuals aged 16 to 19 years. Cancer 2016, 122, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, H.; Song, M. Early-life obesity and adulthood colorectal cancer risk: A meta-analysis. Rev. Panam Salud. Publica 2019, 43, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, A.; Monjazeb, A.M.; Decock, J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front. Immunol. 2019, 10, 1940. [Google Scholar] [CrossRef] [PubMed]
- De Heredia, F.P.; Gómez-Martínez, S.; Marcos, A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Kanneganti, T.-D.; Dixit, V.D. Immunological complications of obesity. Nat. Immunol. 2012, 13, 707–712. [Google Scholar] [CrossRef]
- De Kleer, I.; Willems, F.; Lambrecht, B.; Goriely, S. Ontogeny of Myeloid Cells. Front. Immunol. 2014, 5, 423. [Google Scholar] [CrossRef] [Green Version]
- Gantt, S.; Gervassi, A.; Jaspan, H.; Horton, H. The role of myeloid-derived suppressor cells in immune ontogeny. Front. Immunol. 2014, 5, 387. [Google Scholar] [CrossRef] [Green Version]
- Fauriat, C.; Long, E.O.; Ljunggren, H.-G.; Bryceson, Y.T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood J. Am. Soc. Hematol. 2010, 115, 2167–2176. [Google Scholar] [CrossRef] [Green Version]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef]
- Elaraby, E.; Malek, A.I.; Abdullah, H.W.; Elemam, N.M.; Saber-Ayad, M.; Talaat, I.M. Natural Killer Cell Dysfunction in Obese Patients with Breast Cancer: A Review of a Triad and Its Implications. J. Immunol. Res. 2021, 2021, 9972927. [Google Scholar] [CrossRef] [PubMed]
- Michelet, X.; Dyck, L.; Hogan, A.; Loftus, R.M.; Duquette, D.; Wei, K.; Beyaz, S.; Tavakkoli, A.; Foley, C.; Donnelly, R. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 2018, 19, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.; Mann, S.; Levine, C.B.; Cummings, B.P.; Wakshlag, J.J. Increasing body condition score is positively associated interleukin-6 and monocyte chemoattractant protein-1 in Labrador retrievers. Vet. Immunol. Immunopathol. 2015, 167, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Liu, J.; Deng, Y.; Minze, L.; Xiao, X.; Wright, V.; Yu, R.; Li, X.C.; Blaszczak, A.; Bergin, S.; et al. Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nat. Commun. 2017, 8, 15725. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, B.D.; Goncalves, M.; Cantley, L.C. Obesity and cancer mechanisms: Cancer metabolism. J. Clin. Oncol. 2016, 34, 4277. [Google Scholar] [CrossRef] [Green Version]
- Péqueux, C.; Raymond-Letron, I.; Blacher, S.; Boudou, F.; Adlanmerini, M.; Fouque, M.J.; Rochaix, P.; Noël, A.; Foidart, J.-M.; Krust, A.; et al. Stromal estrogen receptor-α promotes tumor growth by normalizing an increased angiogenesis. Cancer Res. 2012, 72, 3010–3019. [Google Scholar] [CrossRef] [Green Version]
- Kaaks, R.; Lukanova, A.; Kurzer, M.S. Obesity, endogenous hormones, and endometrial cancer risk: A synthetic review. Cancer Epidemiol. Prev. Biomark. 2002, 11, 1531–1543. [Google Scholar]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Ryu, T.Y.; Park, J.; Scherer, P.E. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab. J. 2014, 38, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Frystyk, J.; Skjaerbaek, C.; Vestbo, E.; Fisker, S.; Ørskov, H. Circulating levels of free insulin-like growth factors in obese subjects: The impact of type 2 diabetes. Diabetes/Metab. Res. Rev. 1999, 15, 314–322. [Google Scholar] [CrossRef]
- Murrell, A.; Heeson, S.; Cooper, W.N.; Douglas, E.; Apostolidou, S.; Moore, G.E.; Maher, E.; Reik, W. An association between variants in the IGF2 gene and Beckwith–Wiedemann syndrome: Interaction between genotype and epigenotype. Hum. Mol. Genet. 2004, 13, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringel, A.E.; Drijvers, J.M.; Baker, G.J.; Catozzi, A.; García-Cañaveras, J.C.; Gassaway, B.M.; Miller, B.C.; Juneja, V.R.; Nguyen, T.H.; Joshi, S.; et al. Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell 2020, 183, 1848–1866.e1826. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ma, J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: A systematic review and meta-analysis. Cancer Prev. Res. 2011, 4, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Doleman, B.; Mills, K.T.; Lim, S.; Zelhart, M.D.; Gagliardi, G. Body mass index and colorectal cancer prognosis: A systematic review and meta-analysis. Tech. Coloproctol. 2016, 20, 517–535. [Google Scholar] [CrossRef]
- Utsunomiya, T.; Okamoto, M.; Kameyama, T.; Matsuyama, A.; Yamamoto, M.; Fujiwara, M.; Mori, M.; Aimitsu, S.; Ishida, T. Impact of obesity on the surgical outcome following repeat hepatic resection in Japanese patients with recurrent hepatocellular carcinoma. World J. Gastroenterol. 2008, 14, 1553–1558. [Google Scholar] [CrossRef] [Green Version]
- Langella, S.; Russolillo, N.; Forchino, F.; Lo Tesoriere, R.; D’Eletto, M.; Ferrero, A. Impact of obesity on postoperative outcome of hepatic resection for colorectal metastases. Surgery 2015, 158, 1521–1529. [Google Scholar] [CrossRef]
- Feng, J.W.; Yang, X.H.; Wu, B.Q.; Sun, D.L.; Jiang, Y.; Qu, Z. Influence of Body Mass Index on the Clinicopathologic Features of Papillary Thyroid Carcinoma. Ann. Otol. Rhinol. Laryngol. 2019, 128, 625–632. [Google Scholar] [CrossRef]
- Gendall, K.A.; Raniga, S.; Kennedy, R.; Frizelle, F.A. The impact of obesity on outcome after major colorectal surgery. Dis. Colon. Rectum. 2007, 50, 2223–2237. [Google Scholar] [CrossRef]
- Harrell Shreckengost, C.S.; Tariq, M.; Farley, C.R.; Zhang, C.; Delman, K.A.; Kudchadkar, R.R.; Lowe, M.C. The Impact of Obesity on Surgically Treated Locoregional Melanoma. Ann. Surg. Oncol. 2021, 28, 6140–6151. [Google Scholar] [CrossRef]
- Iyengar, N.M.; Kochhar, A.; Morris, P.G.; Zhou, X.K.; Ghossein, R.A.; Pino, A.; Fury, M.G.; Pfister, D.G.; Patel, S.G.; Boyle, J.O. Impact of obesity on the survival of patients with early-stage squamous cell carcinoma of the oral tongue. Cancer 2014, 120, 983–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohloch, K.; Altmann, B.; Pfreundschuh, M.; Loeffler, M.; Schmitz, N.; Zettl, F.; Ziepert, M.; Trumper, L. Obesity negatively impacts outcome in elderly female patients with aggressive B-cell lymphomas treated with R-CHOP: Results from prospective trials of the German high grade non-Hodgkin’s lymphoma trial group. Br. J. Haematol. 2018, 180, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Struecker, B.; Biebl, M.; Dadras, M.; Chopra, S.; Deneche, C.; Spenke, J.; Heilmann, A.C.; Bahra, M.; Sauer, I.M.; Pratschke, J.; et al. The Impact of Obesity on Outcomes Following Resection for Gastric Cancer. Dig. Surg. 2017, 34, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Incio, J.; Liu, H.; Suboj, P.; Chin, S.M.; Chen, I.X.; Pinter, M.; Ng, M.R.; Nia, H.T.; Grahovac, J.; Kao, S. Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov. 2016, 6, 852–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, J.B.; Gonzalez, R.J.; Petzel, M.Q.; Lin, E.; Morris, J.S.; Gomez, H.; Lee, J.E.; Crane, C.H.; Pisters, W.T.; Evans, D.B. Influence of obesity on cancer-related outcomes after pancreatectomy to treat pancreatic adenocarcinoma. Arch. Surg. 2009, 144, 216–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdek, M.T.; Griffin, A.M.; Ferguson, P.C.; Wunder, J.S. Morbid Obesity Increases the Risk of Postoperative Wound Complications, Infection, and Repeat Surgical Procedures Following Upper Extremity Limb Salvage Surgery for Soft Tissue Sarcoma. Hand 2019, 14, 114–120. [Google Scholar] [CrossRef]
- Li, M.; Bu, R. Biological Support to Obesity Paradox in Renal Cell Carcinoma: A Review. Urol. Int. 2020, 104, 837–848. [Google Scholar] [CrossRef]
- Björndahl, M.; Cao, R.; Nissen, L.J.; Clasper, S.; Johnson, L.A.; Xue, Y.; Zhou, Z.; Jackson, D.; Hansen, A.J.; Cao, Y. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 15593–15598. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Tu, H.; Zhu, M.; Liang, D.; Ye, Y.; Chang, D.W.; Lng, Y.; Wu, X. Circulating obesity-driven biomarkers are associated with risk of clear cell renal cell carcinoma: A two-stage, case-control study. Carcinogenesis 2019, 40, 1191–1197. [Google Scholar] [CrossRef]
- Kamat, A.M.; Shock, R.P.; Naya, Y.; Rosser, C.J.; Slaton, J.W.; Pisters, L.L. Prognostic value of body mass index in patients undergoing nephrectomy for localized renal tumors. Urology 2004, 63, 46–50. [Google Scholar] [CrossRef]
- Albiges, L.; Hakimi, A.A.; Xie, W.; McKay, R.R.; Simantov, R.; Lin, X.; Lee, J.L.; Rini, B.I.; Srinvas, S.; Bjarnason, G.A. Body Mass Index and Metastatic Renal Cell Carcinoma: Clinical and Biological Correlations. J. Clin. Oncol. 2016, 34, 3655–3663. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, B.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Choi, H.Y.; Adami, H.O.; Lee, J.E.; Lee, H.M. Body mass index and survival in patients with renal cell carcinoma: A clinical-based cohort and meta-analysis. Int. J. Cancer 2013, 132, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Jeon Hwang, G.; Jeong In, G.; Lee June, H.; Lee Chang, J.; Kwak, C.; Kim Hyeon, H.; Lee Sang, E.; Lee, E. Prognostic Value of Body Mass Index in Korean Patients with Renal Cell Carcinoma. J. Urol. 2010, 183, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Xie, W.; Kollmannsberger, C.K.; Rini, B.I.; McDermott, D.F.; Knox, J.J.; Heng, Y. The impact of body mass index (BMI) and body surface area (BSA) on treatment outcome to vascular endothelial growth factor (VEGF)-targeted therapy in metastatic renal cell carcinoma: Results from a large international collaboration. J. Clin. Oncol. 2010, 28 (Suppl. S15), 4524. [Google Scholar] [CrossRef]
- Steffens, S.; Grünwald, V.; Ringe, K.I.; Seidel, C.; Eggers, H.; Schrader, M.; Wacker, F.; Kuczyk, M.A.; Schrader, A.J. Does Obesity Influence the Prognosis of Metastatic Renal Cell Carcinoma in Patients Treated with Vascular Endothelial Growth Factor–Targeted Therapy? Oncologist 2011, 16, 1565–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, G.S.; Waikar, S.S.; Johnson, A.E.W.; Buchbinder, E.I.; Haq, R.; Hodi, F.S.; Schoenfeld, J.D.; Ott, P.A. Complex inter-relationship of body mass index, gender and serum creatinine on survival: Exploring the obesity paradox in melanoma patients treated with checkpoint inhibition. J. Immunother. Cancer 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, D.; Bajaj, S.; Yu, J.; Hsu, M.; Balar, A.; Pavlick, A.; Weber, J.; Osman, I.; Zhong, J. The complex relationship between body mass index and response to immune checkpoint inhibition in metastatic melanoma patients. J. Immunother. Cancer 2019, 7, 222. [Google Scholar] [CrossRef] [Green Version]
- Pencheva, N.; Buss, C.; Posada, J.; Merghoub, T.; Tavazoie, S.F. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 2014, 156, 986–1001. [Google Scholar] [CrossRef] [Green Version]
- McQuade, J.L.; Daniel, C.R.; Hess, K.R.; Mak, C.; Wang, D.Y.; Rai, R.R.; Park, J.J.; Haydu, L.E.; Spencer, C.; Wongchenko, M.; et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 2018, 19, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Aguilar, E.G.; Luna, J.I.; Dunai, C.; Khuat, L.T.; Le, C.; Mirsoian, A.; Minnar, C.M.; Stoffel, K.M.; Sturgill, I.R.; et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 2019, 25, 141–151. [Google Scholar] [CrossRef]
- Xie, J.; Lesaffre, E.; Kesteloot, H. The relationship between animal fat intake, cigarette smoking, and lung cancer. Cancer Causes Control. 1991, 2, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Wu, J.; Wu, Y.; Lin, X.; Xu, C.; Lian, X. High-Fat Diet-Related Obesity Promotes Urethane-Induced Lung Tumorigenesis in C57BL/6J Mice. Front. Oncol. 2021, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.K.; Im, H.K.; Watson, S.; Johnson, E.; Wigfield, C.H.; Vigneswaran, W.T. Association of body mass index and outcomes after major lung resection. Eur. J. Cardio-Thorac. Surg. 2014, 45, e94–e99. [Google Scholar] [CrossRef]
- Thomas, P.; Berbis, J.; Falcoz, P.-E.; Le Pimpec-Barthes, F.; Bernard, A.; Jougon, J.; Porte, H.; Alifano, M.; Dahan, M.; Alauzen, M.; et al. National perioperative outcomes of pulmonary lobectomy for cancer: The influence of nutritional status. Eur. J. Cardio-Thorac. Surg. 2014, 45, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Gulack, B.C.; Kim, S.; Fernandez, F.G.; Ferguson, M.K. Operative risk for major lung resection increases at extremes of body mass index. Ann. Thorac. Surg. 2017, 103, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsunaga, T.; Imashimizu, K.; Banno, T.; Takamochi, K.; Oh, S.; Suzuki, K. Body mass index as a prognostic factor in resected lung cancer: Obesity or underweight, which is the risk factor? Thorac. Cardiovasc. Surg. 2015, 63, 551–557. [Google Scholar] [CrossRef]
- Nakagawa, T.; Toyazaki, T.; Chiba, N.; Ueda, Y.; Gotoh, M. Prognostic value of body mass index and change in body weight in postoperative outcomes of lung cancer surgery. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 560–566. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Huang, J.; Fan, J.; Du, H.; Liu, L.; Che, G. Systematic review of prognostic roles of body mass index for patients undergoing lung cancer surgery: Does the ‘obesity paradox’ really exist? Eur. J. Cardio-Thorac. Surg. 2017, 51, 817–828. [Google Scholar] [CrossRef]
- Attaran, S.; McShane, J.; Whittle, I.; Poullis, M.; Shackcloth, M. A propensity-matched comparison of survival after lung resection in patients with a high versus low body mass index. Eur. J. Cardio-Thorac. Surg. 2012, 42, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Cheung, M.C.; Pedroso, F.E.; Byrne, M.M.; Koniaris, L.G.; Zimmers, T.A. Obesity and weight loss at presentation of lung cancer are associated with opposite effects on survival. J. Surg. Res. 2011, 170, e75–e83. [Google Scholar] [CrossRef] [Green Version]
- Kashiwabara, K.; Yamane, H.; Tanaka, H. Toxicity and prognosis in overweight and obese women with lung cancer receiving carboplatin-paclitaxel doublet chemotherapy. Cancer Investig. 2013, 31, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Kichenadasse, G.; Miners, J.O.; Mangoni, A.A.; Rowland, A.; Hopkins, A.; Sorich, M. Association Between Body Mass Index and Overall Survival with Immune Checkpoint Inhibitor Therapy for Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2020, 6, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Yap, W.-K.; Shih, M.-C.; Kuo, C.; Pai, P.-C.; Chou, W.-C.; Chang, K.-P.; Tsai, M.-H.; Tsang, N.-M. Development and Validation of a Nomogram for Assessing Survival in Patients with Metastatic Lung Cancer Referred for Radiotherapy for Bone Metastases. JAMA Netw. Open 2018, 1, 183242. [Google Scholar] [CrossRef]
- Petrella, F.; Radice, D.; Borri, A.; Galetta, D.; Gasparri, R.; Solli, P.; Veronesi, G.; Spaggiari, L. The impact of preoperative body mass index on respiratory complications after pneumonectomy for non-small-cell lung cancer. Results from a series of 154 consecutive standard pneumonectomies. Eur. J. Cardio-Thorac. Surg. 2011, 39, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Fourcade, J.; Pagliano, O.; Chauvin, J.-M.; Sander, C.; Kirkwood, J.M.; Zarour, H.M. IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells. Cancer Res. 2015, 75, 1635–1644. [Google Scholar] [CrossRef] [Green Version]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, K.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Marino, P.D. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: When overweight becomes favorable. J. Immunother. Cancer 2019, 7, 57. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, F.; Pérez, A.P.; de la Cruz-Merino, L.; Sánchez-Margalet, V. Obesity and Breast Cancer: Role of Leptin. Front. Oncol. 2019, 9, 596. [Google Scholar] [CrossRef]
- Murphy, W.J.; Longo, D.L. The Surprisingly Positive Association Between Obesity and Cancer Immunotherapy Efficacy. Jama 2019, 321, 1247–1248. [Google Scholar] [CrossRef]
- Münzberg, H.; Myers, M.G., Jr. Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 2005, 8, 566–570. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Kunnumakkara, A.B.; Harikumar, K.B.; Gupta, S.R.; Tharakan, S.T.; Koca, C.; Dey, S.; Sung, B. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Ann. N. Y. Acad. Sci. 2009, 1171, 59–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Peters, S.; Gettinger, S.; Johnson, M.L.; Jänne, P.A.; Garassino, M.C.; Christoph, D.; Toh, C.K.; Rizvi, N.A.; Chaft, J.E.; Costa, E.C.; et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1–selected advanced non–small-cell lung cancer (BIRCH). J. Clin. Oncol. 2017, 35, 2781. [Google Scholar] [CrossRef] [PubMed]
- Ghesmaty Sangachin, M.; Cavuoto, L.A.; Wang, Y. Use of various obesity measurement and classification methods in occupational safety and health research: A systematic review of the literature. BMC Obes. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Poirier, P.; Després, J.-P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation 2018, 137, 1391–1406. [Google Scholar] [CrossRef]
- Ardesch, F.H.; Ruiter, R.; Mulder, M.; LaHousse, L.; Stricker, B.H.C.; Jong, J.C.K.-D. The obesity paradox in lung cancer: Associations with body size versus body shape. Front. Oncol. 2020, 10, 2430. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Smith, B.; Wong, M.; Bennett, J.; Ebbeling, C.; Wong, J.M.W.; Strauss, B.J.G.; Shepherd, J. Multicomponent density models for body composition: Review of the dual energy X-ray absorptiometry volume approach. Obes. Rev. 2021, 22, e13274. [Google Scholar] [CrossRef]
- de-Mateo-Silleras, B.; de-la-Cruz-Marcos, S.; Alonso-Izquierdo, L.; Camina-Martín, M.A.; Marugán-de-Miguelsanz, J.M.; Redondo-del-Río, M.P. Bioelectrical impedance vector analysis in obese and overweight children. PLoS ONE 2019, 14, e0211148. [Google Scholar] [CrossRef]
- Czernichow, S.; Kengne, A.-P.; Huxley, R.; Batty, G.; De Galan, B.; Grobbee, D.; Pillai, A.; Zoungas, S.; Marre, M.; Woodward, M.; et al. Comparison of waist-to-hip ratio and other obesity indices as predictors of cardiovascular disease risk in people with type-2 diabetes: A prospective cohort study from ADVANCE. Eur. J. Prev. Cardiol. 2011, 18, 312–319. [Google Scholar] [CrossRef]
- Hidayat, K.; Du, X.; Chen, G.; Shi, M.; Shi, B. Abdominal Obesity and Lung Cancer Risk: Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2016, 8, 810. [Google Scholar] [CrossRef]
- Irlbeck, T.; Massaro, J.; Bamberg, F.; O’Donnell, C.J.; Hoffmann, U.; Fox, C.S. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: The Framingham Heart Study. Int. J. Obes. 2010, 34, 781–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Rexrode, K.M.; van Dam, R.M.; Li, T.Y.; Hu, F.B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: Sixteen years of follow-up in US women. Circulation 2008, 117, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Barberio, A.M.; Alareeki, A.; Viner, B.; Pader, J.; Vena, J.E.; Arora, P.; Friedenreich, C.M.; Brenner, D.R. Central body fatness is a stronger predictor of cancer risk than overall body size. Nat. Commun. 2019, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Agurs-Collins, T.; Ross, S.A.; Dunn, B.K. The Many Faces of Obesity and Its Influence on Breast Cancer Risk. Front. Oncol. 2019, 9, 765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef]
- Kabat, G.C.; Kim, M.; Hunt, J.R.; Chlebowski, R.T.; Rohan, T.E. Body mass index and waist circumference in relation to lung cancer risk in the Women’s Health Initiative. Am. J. Epidemiol. 2008, 168, 158–169. [Google Scholar] [CrossRef]
- Lam, T.K.; Moore, S.C.; Brinton, L.A.; Smith, L.; Hollenbeck, A.R.; Gierach, G.L.; Freedman, N.D. Anthropometric measures and physical activity and the risk of lung cancer in never-smokers: A prospective cohort study. PLoS ONE 2013, 8, e70672. [Google Scholar]
- Olson, J.E.; Yang, P.; Schmitz, K.; Vierkant, R.A.; Cerhan, J.R.; Sellers, T.A. Differential association of body mass index and fat distribution with three major histologic types of lung cancer: Evidence from a cohort of older women. Am. J. Epidemiol. 2002, 156, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Drinkard, C.R.; Sellers, T.A.; Potter, J.D.; Zheng, W.; Bostlck, R.M.; Nelson, C.L.; Folsom, A.R. Association of body mass index and body fat distribution with risk of lung cancer in older women. Am. J. Epidemiol. 1995, 142, 600. [Google Scholar] [CrossRef]
- Soler, J.T.; Folsom, A.R.; Kaye, S.A.; Prineas, R.J. Associations of abdominal adiposity, fasting insulin, sex hormone binding globulin, and estrone with lipids and lipoproteins in post-menopausal women. Atherosclerosis 1989, 79, 21–27. [Google Scholar] [CrossRef]
- Mohamed-Ali, V.; Pinkney, J.; Coppack, S. Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 1145–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H. Diabetes but not insulin increases the risk of lung cancer: A Taiwanese population-based study. PLoS ONE 2014, 9, e101553. [Google Scholar] [CrossRef]
- Tseng, C.H. Higher risk of mortality from lung cancer in Taiwanese people with diabetes. Diabetes Res. Clin. Pract. 2013, 102, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Daousi, C.; Casson, I.F.; Gill, G.V.; MacFarlane, I.A.; Wilding, J.P.; Pinkney, J.H. Prevalence of obesity in type 2 diabetes in secondary care: Association with cardiovascular risk factors. Postgrad. Med. J. 2006, 82, 280–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, R.J.O.; Niraula, S.; Stambolic, V.; Goodwin, P.J. Metformin in cancer: Translational challenges. J. Mol. Endocrinol. 2012, 48, R31–R43. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.S.; Groman, A.; Meagher, A.; Demmy, T.; Warren, G.W.; Yendamuri, S. Metformin and Not Diabetes Influences the Survival of Resected Early Stage NSCLC Patients. J. Cancer Sci. Ther. 2014, 6, 217–222. [Google Scholar]
- Currie, C.J.; Poole, C.D.; Jenkins-Jones, S.; Gale, E.A.; Johnson, J.A.; Morgan, C.L. Mortality after incident cancer in people with and without type 2 diabetes: Impact of metformin on survival. Diabetes Care 2012, 35, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, P.J.; Pritchard, K.I.; Ennis, M.; Clemons, M.; Graham, M.; Fantus, I.G. Insulin-lowering effects of metformin in women with early breast cancer. Clin. Breast Cancer 2008, 8, 501–505. [Google Scholar] [CrossRef]
- Whitburn, J.; Edwards, C.M.; Sooriakumaran, P. Metformin and prostate cancer: A new role for an old drug. Curr. Urol. Rep. 2017, 18, 46. [Google Scholar] [CrossRef] [Green Version]
- Ugwueze, C.V.; Ogamba, O.J.; Young, E.E.; Onyenekwe, B.M.; Ezeokpo, B.C. Metformin: A possible option in cancer chemotherapy. Anal. Cell. Pathol. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.S.; Gong, S.F.; Si, W.; Jiang, T.; Li, Q.L.; Wang, T.J.; Wang, W.J.; Wu, R.Y.; Jiang, K. Effect of metformin on cell proliferation, apoptosis, migration and invasion in A172 glioma cells and its mechanisms. Mol. Med. Rep. 2019, 20, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Griss, T.; Vincent, E.; Egnatchik, R.; Chen, J.; Ma, E.H.; Faubert, B.; Viollet, B.; DeBerardinis, R.J.; Jones, R.G. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis. PLoS Biol. 2015, 13, e1002309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, D.R.; Morris, A.D. Metformin in cancer treatment and prevention. Annu. Rev. Med. 2015, 66, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Alenghat, F.J.; Davis, A.M. Management of Blood Cholesterol. JAMA 2019, 321, 800–801. [Google Scholar] [CrossRef] [PubMed]
- Dighe, S.G.; Yan, L.; Mukherjee, S.; McGillicuddy, C.S.; Hulme, K.L.; Hochwald, S.N.; Yendamuri, S.; Bain, A.J.; Robillard, K.T.; Moysich, K.B.; et al. Clinical and Lifestyle-Related Prognostic Indicators among Esophageal Adenocarcinoma Patients Receiving Treatment at a Comprehensive Cancer Center. Cancers 2021, 13, 4653. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, L.; Clark, A.B.; Bhutta, H.Y.; Chan, S.S.; Lewis, M.P.; Hart, A.R. Association between statin use after diagnosis of esophageal cancer and survival: A population-based cohort study. Gastroenterology 2016, 150, 854–865.e851. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Khan, A.; Liu, Y.; El-Serag, H.B.; Thrift, A.P. The association between statin use after diagnosis and mortality risk in patients with esophageal cancer: A retrospective cohort study of United States veterans. Off. J. Am. Coll. Gastroenterol. ACG 2018, 113, 1310. [Google Scholar] [CrossRef]
- Lin, J.J.; Ezer, N.; Sigel, K.; Mhango, G.; Wisnivesky, J.P. The effect of statins on survival in patients with stage IV lung cancer. Lung Cancer 2016, 99, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.K.; Petrucci, C.; Barbi, J.; Seager, R.J.; Pabla, S.; Yendamuri, S. Obesity-Specific Association of Statin Use and Reduced Risk of Recurrence of Early Stage NSCLC. JTO Clin. Res. Rep. 2021, 2, 100254. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues–the biology of pear shape. Biol. Sex Differ. 2012, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuente-Martín, E.; Argente-Arizón, P.; Ros, P.; Argente, J.; Chowen, J.A. Sex differences in adipose tissue: It is not only a question of quantity and distribution. Adipocyte 2013, 2, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; McClusky, R.; Chen, J.; Beaven, S.W.; Tontonoz, P.; Arnold, A.P.; Reue, K. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012, 8, e1002709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardsley, M.Z.; Kowal, K.; Levy, C.; Gosek, A.; Ayari, N.; Tartaglia, N.; Lahlou, N.; Winder, B.; Grimes, S.; Ross, J.L. 47, XYY syndrome: Clinical phenotype and timing of ascertainment. J. Pediatr. 2013, 163, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cowley, L.A.; Liu, X.-S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy. Molecules 2019, 24, 3214. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Gange, S.J.; Rose, N.R.; Graham, N.M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 1997, 84, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Voskuhl, R. Sex differences in autoimmune diseases. Biol. Sex Differ. 2011, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qiao, W.; Jiang, Y.; Zhu, M.; Shao, J.; Ren, P.; Liu, D.; Li, W. Effect of sex on the efficacy of patients receiving immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer Med. 2019, 8, 4023–4031. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ju, Q.; Jia, K.; Yu, J.; Shi, H.; Wu, H.; Jiang, M. Correlation between sex and efficacy of immune checkpoint inhibitors (PD-1 and CTLA-4 inhibitors). Int. J. Cancer. 2018, 143, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Grassadonia, A.; Sperduti, I.; Vici, P.; Iezzi, L.; Brocco, D.; Gamucci, T.; Pizzuti, L.; Maugeri-Saccà, M.; Marchetti, P.; Cognetti, G.; et al. Effect of Gender on the Outcome of Patients Receiving Immune Checkpoint Inhibitors for Advanced Cancer: A Systematic Review and Meta-Analysis of Phase III Randomized Clinical Trials. J. Clin. Med. 2018, 7, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, J.A.; Vallejos, C.S.; Raez, L.E.; Mas, L.A.; Ruiz, R.; Torres-Roman, J.S.; Morante, Z.; Araujo, J.M.; Gomez, H.L.; Aguilar, A. Gender and outcomes in non-small cell lung cancer: An old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 2018, 3, e000344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Org, E.; Mehrabian, M.; Parks, B.W.; Shipkova, P.; Liu, X.; Drake, T.A.; Lusis, A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut. Microbes. 2016, 7, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Loeb, L.A.; Ernster, V.L.; Warner, K.; Abbotts, J.; Laszlo, J. Smoking and lung cancer: An overview. Cancer Res. 1984, 44, 5940–5958. [Google Scholar]
- Cornfield, J.; Haenszel, W.; Hammond, E.C.; Lilienfeld, A.M.; Shimkin, M.B.; Wynder, E.L. Smoking and lung cancer: Recent evidence and a discussion of some questions. J. Natl. Cancer Inst. 1959, 22, 173–203. [Google Scholar] [CrossRef]
- Correa, P.; Fontham, E.; Pickle, L.W.; Lin, Y.; Haenszel, W. Passive smoking and lung cancer. Lancet 1983, 322, 595–597. [Google Scholar] [CrossRef]
- Trichopoulos, D.; Kalandidi, A.; Sparros, L.; Macmahon, B. Lung cancer and passive smoking. Int. J. Cancer 1981, 27, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dare, S.; Mackay, D.F.; Pell, J.P. Relationship between smoking and obesity: A cross-sectional study of 499,504 middle-aged adults in the UK general population. PLoS ONE 2015, 10, e0123579. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Tsujino, I.; Konno, S.; Ito, Y.M.; Takashina, C.; Sato, T.; Isadaa, A.; Ohira, H.; Ohtsuka, Y.; Fukutomi, Y. Association between smoking status and obesity in a nationwide survey of Japanese adults. PLoS ONE 2016, 11, e0148926. [Google Scholar] [CrossRef] [Green Version]
- Mineur, Y.S.; Abizaid, A.; Rao, Y.; Salas, R.; DiLeone, R.J.; Gündisch, D.; Diano, S.; De Biasi, M.; Horvath, T.L.; Gao, X.-B.; et al. Nicotine decreases food intake through activation of POMC neurons. Science 2011, 332, 1330–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, D.R., Jr.; Gottenborg, S. Smoking and weight: The Minnesota Lipid Research Clinic. Am. J. Public Health 1981, 71, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Shaper, A.G.; Walker, M. Weight change, body weight and mortality: The impact of smoking and ill health. Int. J. Epidemiol. 2001, 30, 777–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, S.A.; Folsom, A.R.; Prineas, R.J.; Potter, J.; Gapstur, S.M. The association of body fat distribution with lifestyle and reproductive factors in a population study of postmenopausal women. Int. J. Obes. 1990, 14, 583–591. [Google Scholar] [CrossRef]
- Shimokata, H.; Muller, D.C.; Andres, R. Studies in the distribution of body fat: III. Effects of cigarette smoking. Jama 1989, 261, 1169–1173. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Khaw, K.-T. Cigarette smoking and increased central adiposity. Ann. Intern. Med. 1989, 111, 783–787. [Google Scholar] [CrossRef]
- Yun, J.E.; Kimm, H.; Choi, Y.J.; Jee, S.H.; Huh, K.B. Smoking is associated with abdominal obesity, not overall obesity, in men with type 2 diabetes. J. Prev. Med. Public Health 2012, 45, 316–322. [Google Scholar] [CrossRef]
- Lindholm, A.; Roswall, J.; Alm, B.; Almquist-Tangen, G.; Bremander, A.; Dahlgren, J.; Staland-Nyman, C.; Bergman, S. Body mass index classification misses to identify children with an elevated waist-to-height ratio at 5 years of age. Pediatr. Res. 2019, 85, 30–35. [Google Scholar] [CrossRef]
- Christakoudi, S.; Tsilidis, K.K.; Muller, D.C.; Freisling, H.; Weiderpass, E.; Overvad, K.; Soderberg, S.; Haggstrom, C.; Pischon, T.; Dahm, C.C. A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: Results from a large European cohort. Sci. Rep. 2020, 10, 14541. [Google Scholar] [CrossRef]
- Khandekar, M.J.; Cohen, P.; Spiegelman, B.M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 2011, 11, 886–895. [Google Scholar] [CrossRef]
Author | BMI Definition (kg/m2) | Number of Patients | Conclusions |
---|---|---|---|
Ferguson [104] | Overweight (25–29.9) Obese (30–34.9) Very obese (>35) | 1369 | Patients in the overweight, obese, and very obese categories had a lower rate of complications than patients with a BMI < 25 (OR: 0.72 p = 0.048) |
Thomas [105] | Overweight (25–30) Obese (>30) | 19,635 | Overweight patients had lower mortality (OR: 0.72 p = 0.002) and obese patients had lower mortality (OR: 0.52 p < 0.001) compared to normal-weight patients and a statistically significant protective effect of obesity was observed in surgical complications |
Williams [106] | Overweight (25–29.9) Obese I (30–34.9) Obese II (35–39.9) Obese III (>40) | 41,466 | Obese III patients had significantly higher rates of pulmonary complications (p < 0.001), but overweight, Obese I and Obese II patients had a lower risk of pulmonary complications and any post-operative event |
Matsunaga [107] | Overweight (25–30) Obese (>30) | 1518 | Overweight and obese patients did not experience higher rates of pulmonary complications |
Nakagawa [108] | Underweight (<18.5) Normal (18.5–25) Overweight (25–30) Obese (>30) | 1311 | Only underweight BMI was a poor prognostic factor for DFS (p = 0.03) OS (p = 0.03) |
Lam [13] | Overweight (25–30) Obese (>30) | 291 | Increasing BMI was associated with improved survival (p = 0.011) and Obese individuals had a decrease of 31–58% (HR = 0.68 ± 0.21) |
Attaran [110] | Obese (BMI > 30) | 337 | Survival rate was higher for obese patients (p = 0.02) on univariate analysis and (p = 0.04) on multivariate analysis |
Petrella [115] | Obese (>25) | 154 | The high BMI group had a higher incidence of respiratory complications (p = 0.002) but there was no significant difference in ICU admission, LOS, and 30 day mortality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitsche, L.J.; Mukherjee, S.; Cheruvu, K.; Krabak, C.; Rachala, R.; Ratnakaram, K.; Sharma, P.; Singh, M.; Yendamuri, S. Exploring the Impact of the Obesity Paradox on Lung Cancer and Other Malignancies. Cancers 2022, 14, 1440. https://doi.org/10.3390/cancers14061440
Nitsche LJ, Mukherjee S, Cheruvu K, Krabak C, Rachala R, Ratnakaram K, Sharma P, Singh M, Yendamuri S. Exploring the Impact of the Obesity Paradox on Lung Cancer and Other Malignancies. Cancers. 2022; 14(6):1440. https://doi.org/10.3390/cancers14061440
Chicago/Turabian StyleNitsche, Lindsay Joyce, Sarbajit Mukherjee, Kareena Cheruvu, Cathleen Krabak, Rohit Rachala, Kalyan Ratnakaram, Priyanka Sharma, Maddy Singh, and Sai Yendamuri. 2022. "Exploring the Impact of the Obesity Paradox on Lung Cancer and Other Malignancies" Cancers 14, no. 6: 1440. https://doi.org/10.3390/cancers14061440
APA StyleNitsche, L. J., Mukherjee, S., Cheruvu, K., Krabak, C., Rachala, R., Ratnakaram, K., Sharma, P., Singh, M., & Yendamuri, S. (2022). Exploring the Impact of the Obesity Paradox on Lung Cancer and Other Malignancies. Cancers, 14(6), 1440. https://doi.org/10.3390/cancers14061440