Systemic Therapy De-Escalation in Early-Stage Triple-Negative Breast Cancer: Dawn of a New Era?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Standard of Care of TNBC
3. Molecular Heterogeneity of TNBC
4. De-Escalation Opportunities in Early-Stage TNBC
4.1. De-Escalation of Systemic Therapy in Early TNBC
4.1.1. De-Escalation of Systemic Therapy in Low Clinical Risk Group
4.1.2. De-Escalation by Using Anthracycline-Sparing Approach in Low Risk Early TNBC
4.1.3. De-Escalation of Neoadjuvant Systemic Therapy
4.1.4. De-Escalation of Adjuvant Systemic Therapy
5. Biomarkers and Imaging to Guide Systemic Therapy De-Escalation
5.1. Prognostic and Predictive Biomarkers
5.1.1. Tumor Microenvironment Biomarkers Predicting pCR
5.1.2. PD-L1 as a Predictor of pCR
5.1.3. Immune Gene Signature as a Predictor of pCR
5.1.4. Circulating Tumor DNA (ctDNA) as a Predictor of pCR
5.2. Targeted Strategies to Improve pCR
5.2.1. Tumor-Associated Macrophages in the Tumor Microenvironment
5.2.2. PARP Inhibitors for Germline BRCA Mutation
5.2.3. PI3K/AKT/mTOR Targeted Therapies
5.2.4. Epidermal Growth Factor Receptor (EGFR) Targeted Therapies
5.2.5. Antiangiogenic Agents
5.2.6. Androgen Receptor Targeting
5.3. Novel Clinical Trial Design Based on Imaging Response
6. Conclusions and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kummel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Hersh, E.H.; King, T.A. De-escalating axillary surgery in early-stage breast cancer. Breast, 2021; in press. [Google Scholar] [CrossRef]
- Hwang, E.S.; Lichtensztajn, D.Y.; Gomez, S.L.; Fowble, B.; Clarke, C.A. Survival after lumpectomy and mastectomy for early stage invasive breast cancer: The effect of age and hormone receptor status. Cancer 2013, 119, 1402–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golshan, M.; Loibl, S.; Wong, S.M.; Houber, J.B.; O’Shaughnessy, J.; Rugo, H.S.; Wolmark, N.; McKee, M.D.; Maag, D.; Sullivan, D.M.; et al. Breast Conservation after Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer: Surgical Results from the BrighTNess Randomized Clinical Trial. JAMA Surg. 2020, 155, e195410. [Google Scholar] [CrossRef] [PubMed]
- Vagia, E.; Mahalingam, D.; Cristofanilli, M. The Landscape of Targeted Therapies in TNBC. Cancers 2020, 12, 916. [Google Scholar] [CrossRef] [Green Version]
- Carey, L.A. De-escalating and escalating systemic therapy in triple negative breast cancer. Breast 2017, 34 (Suppl. 1), S112–S115. [Google Scholar] [CrossRef]
- Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [Google Scholar] [CrossRef]
- Theriault, R.L.; Litton, J.K.; Mittendorf, E.A.; Chen, H.; Meric-Bernstam, F.; Chavez-Macgregor, M.; Morrow, P.K.; Woodward, W.A.; Sahin, A.; Hortobagyi, G.N.; et al. Age and survival estimates in patients who have node-negative T1ab breast cancer by breast cancer subtype. Clin. Breast Cancer 2011, 11, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Bevers, T.B.; Helvie, M.; Bonaccio, E.; Calhoun, K.E.; Daly, M.B.; Farrar, W.B.; Garber, J.E.; Gray, R.; Greenberg, C.C.; Greenup, R.; et al. Breast Cancer Screening and Diagnosis, Version 3.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2018, 16, 1362–1389. [Google Scholar] [CrossRef] [Green Version]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Steenbruggen, T.G.; van Werkhoven, E.; van Ramshorst, M.S.; Dezentje, V.O.; Kok, M.; Linn, S.C.; Siesling, S.; Sonke, G.S. Adjuvant chemotherapy in small node-negative triple-negative breast cancer. Eur. J. Cancer 2020, 135, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Comprehensive Cancer Centre The Netherlands. Dutch Guideline Breast Cancer NABON 2012. Available online: https://www.oncoline.nl/uploaded/docs/mammacarcinoom/Dutch%20Breast%20Cancer%20Guideline%202012.pdf. (accessed on 2 January 2022).
- Early Breast Cancer Trialists’ Collaborative Group; Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; et al. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012, 379, 432–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, J.L.; Flynn, P.J.; Yothers, G.; Asmar, L.; Geyer, C.E., Jr.; Jacobs, S.A.; Robert, N.J.; Hopkins, J.O.; O’Shaughnessy, J.A.; Dang, C.T.; et al. Anthracyclines in Early Breast Cancer: The ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J. Clin. Oncol. 2017, 35, 2647–2655. [Google Scholar] [CrossRef]
- Masuda, N.; Lee, S.J.; Ohtani, S.; Im, Y.H.; Lee, E.S.; Yokota, I.; Kuroi, K.; Im, S.A.; Park, B.W.; Kim, S.B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmana, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
- The ASCO Post. Available online: https://ascopost.com/news/march-2022/adjuvant-olaparib-significantly-improves-overall-survival-in-germline-brca-mutated-breast-cancer/#:~:text=Improved%20Overall%20Survival,0009 (accessed on 27 March 2022).
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kummel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC. Ann. Oncol. 2021, 32, 1198–1200. [Google Scholar] [CrossRef]
- Tarantino, P.; Corti, C.; Schmid, P.; Cortes, J.; Mittendorf, E.A.; Rugo, H.; Tolaney, S.M.; Bianchini, G.; Andre, F.; Curigliano, G. Immunotherapy for early triple negative breast cancer: Research agenda for the next decade. NPJ Breast Cancer 2022, 8, 23. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef]
- Loibl, S.; Schneeweiss, A.; Huober, J.B.; Braun, M.; Rey, J.; Blohmer, J.U.; Furlanetto, J.; Zahm, D.M.; Hanusch, C.; Thomalla, J.; et al. Durvalumab improves long-term outcome in TNBC: Results from the phase II randomized GeparNUEVO study investigating neodjuvant durvalumab in addition to an anthracycline/taxane based neoadjuvant chemotherapy in early triple-negative breast cancer (TNBC). J. Clin. Oncol. 2021, 39, 506. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, B.D.; Jovanovic, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol. 2014, 232, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Qian, D.; Ku, J.K.; Lai, L.L. Metaplastic breast cancer: Clinical features and outcomes. Am. Surg. 2005, 71, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, F.; Finetti, P.; Cervera, N.; Charafe-Jauffret, E.; Mamessier, E.; Adelaide, J.; Debono, S.; Houvenaeghel, G.; Maraninchi, D.; Viens, P.; et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 2006, 66, 4636–4644. [Google Scholar] [CrossRef] [Green Version]
- Gerratana, L.; Basile, D.; Buono, G.; De Placido, S.; Giuliano, M.; Minichillo, S.; Coinu, A.; Martorana, F.; De Santo, I.; Del Mastro, L.; et al. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev. 2018, 68, 102–110. [Google Scholar] [CrossRef]
- Asghar, U.S.; Barr, A.R.; Cutts, R.; Beaney, M.; Babina, I.; Sampath, D.; Giltnane, J.; Lacap, J.A.; Crocker, L.; Young, A.; et al. Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clin. Cancer Res. 2017, 23, 5561–5572. [Google Scholar] [CrossRef] [Green Version]
- Vaz-Luis, I.; Ottesen, R.A.; Hughes, M.E.; Mamet, R.; Burstein, H.J.; Edge, S.B.; Gonzalez-Angulo, A.M.; Moy, B.; Rugo, H.S.; Theriault, R.L.; et al. Outcomes by tumor subtype and treatment pattern in women with small, node-negative breast cancer: A multi-institutional study. J. Clin. Oncol. 2014, 32, 2142–2150. [Google Scholar] [CrossRef]
- Ren, Y.X.; Hao, S.; Jin, X.; Ye, F.G.; Gong, Y.; Jiang, Y.Z.; Shao, Z.M. Effects of adjuvant chemotherapy in T1N0M0 triple-negative breast cancer. Breast 2019, 43, 97–104. [Google Scholar] [CrossRef]
- An, X.; Lei, X.; Huang, R.; Luo, R.; Li, H.; Xu, F.; Yuan, Z.; Wang, S.; de Nonneville, A.; Goncalves, A.; et al. Adjuvant chemotherapy for small, lymph node-negative, triple-negative breast cancer: A single-center study and a meta-analysis of the published literature. Cancer 2020, 126 (Suppl. 16), 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- de Nonneville, A.; Goncalves, A.; Zemmour, C.; Cohen, M.; Classe, J.M.; Reyal, F.; Colombo, P.E.; Jouve, E.; Giard, S.; Barranger, E.; et al. Adjuvant chemotherapy in pT1ab node-negative triple-negative breast carcinomas: Results of a national multi-institutional retrospective study. Eur. J. Cancer 2017, 84, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Lu, Y.; Luo, H.; Yang, O.; He, J.; Xu, H.; Hu, Z. The role of chemotherapy in patients with T1bN0M0 triple-negative breast cancer: A real-world competing risk analysis. J. Cancer 2021, 12, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Pinder, M.C.; Duan, Z.; Goodwin, J.S.; Hortobagyi, G.N.; Giordano, S.H. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J. Clin. Oncol. 2007, 25, 3808–3815. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, A.S.; Niu, J.; Giordano, S.H.; Zhao, H.; Wolff, A.C.; Chavez-MacGregor, M. Acute myeloid leukemia and myelodysplastic syndrome after adjuvant chemotherapy: A population-based study among older breast cancer patients. Cancer 2018, 124, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Nitz, U.; Gluz, O.; Clemens, M.; Malter, W.; Reimer, T.; Nuding, B.; Aktas, B.; Stefek, A.; Pollmanns, A.; Lorenz-Salehi, F.; et al. West German Study PlanB Trial: Adjuvant Four Cycles of Epirubicin and Cyclophosphamide Plus Docetaxel Versus Six Cycles of Docetaxel and Cyclophosphamide in HER2-Negative Early Breast Cancer. J. Clin. Oncol. 2019, 37, 799–808. [Google Scholar] [CrossRef]
- Guo, S.; Shi, Y.; Lu, S.; He, Y.; Jin, G.; Zhang, S.; Li, X. The taxane-based chemotherapy triplet is superior to the doublet in one to nine node-positive but not node-negative triple-negative breast cancer: Results from a retrospective analysis. J. Cancer 2020, 11, 6653–6662. [Google Scholar] [CrossRef]
- Gluz, O.; Nitz, U.; Liedtke, C.; Christgen, M.; Grischke, E.M.; Forstbauer, H.; Braun, M.; Warm, M.; Hackmann, J.; Uleer, C.; et al. Comparison of Neoadjuvant Nab-Paclitaxel+Carboplatin vs. Nab-Paclitaxel+Gemcitabine in Triple-Negative Breast Cancer: Randomized WSG-ADAPT-TN Trial Results. J. Natl. Cancer Inst. 2018, 110, 628–637. [Google Scholar] [CrossRef]
- Gluz, O.; Kolberg-Liedtke, C.; Prat, A.; Christgen, M.; Gebauer, D.; Kates, R.; Pare, L.; Grischke, E.M.; Forstbauer, H.; Braun, M.; et al. Efficacy of deescalated chemotherapy according to PAM50 subtypes, immune and proliferation genes in triple-negative early breast cancer: Primary translational analysis of the WSG-ADAPT-TN trial. Int. J. Cancer 2020, 146, 262–271. [Google Scholar] [CrossRef]
- Sharma, P.; Kimler, B.F.; O’Dea, A.; Nye, L.; Wang, Y.Y.; Yoder, R.; Staley, J.M.; Prochaska, L.; Wagner, J.; Amin, A.L.; et al. Randomized Phase II Trial of Anthracycline-free and Anthracycline-containing Neoadjuvant Carboplatin Chemotherapy Regimens in Stage I-III Triple-negative Breast Cancer (NeoSTOP). Clin. Cancer Res. 2021, 27, 975–982. [Google Scholar] [CrossRef]
- Gianni, L.; Huang, C.-S.; Egle, D.; Bermejo, B.; Zamagni, C.; Thill, M.; Anton, A.; Zambelli, S.; Bianchini, G.; Russo, S.; et al. Abstract GS3-04: Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. Cancer Res. 2020, 80, GS3-04. [Google Scholar] [CrossRef]
- Adams, S.; Gray, R.J.; Demaria, S.; Goldstein, L.; Perez, E.A.; Shulman, L.N.; Martino, S.; Wang, M.; Jones, V.E.; Saphner, T.J.; et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. 2014, 32, 2959–2966. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Muller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Mathieu, M.C.; Guarneri, V.; Conte, P.; Delaloge, S.; Andre, F.; Goubar, A. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. 2015, 26, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- De Jong, V.M.T.; Wang, Y.; Opdam, M.; Hoeve, N.; Jozwiak, K.; Hauotmann, M.; Stathonikos, N.; Horlings, H.; Broeks, A.; Michiels, S.; et al. 159O Prognostic value of tumour infiltrating lymphocytes in young triple negative breast cancer patients who did not receive adjuvant systemic treatment; by the PARADIGM study group. Ann. Oncol. 2020, 31, S303. [Google Scholar] [CrossRef]
- Park, J.H.; Jonas, S.F.; Bataillon, G.; Criscitiello, C.; Salgado, R.; Loi, S.; Viale, G.; Lee, H.J.; Dieci, M.V.; Kim, S.B.; et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann. Oncol. 2019, 30, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J. Clin. Oncol. 2019, 37, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.H.; Li, C.X.; Liu, M.; Jiang, J.Y. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: A meta-analysis. BMC Cancer 2020, 20, 1150. [Google Scholar] [CrossRef]
- Loi, S.; Salgado, R.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al. Tumor infiltrating lymphocyte stratification of prognostic staging of early-stage triple negative breast cancer. NPJ Breast Cancer 2022, 8, 3. [Google Scholar] [CrossRef]
- Bianchini, G.; Wang, X.Q.; Danenberg, E.; Huang, C.; Egle, D.; Callari, M.; Bermejo, B.; Zamagni, C.; Thill, M.; Anton, A.; et al. Abstract GS1-00: Single-cell spatial analysis by imaging mass cytometry and immunotherapy response in triple-negative breast cancer (TNBC) in the NeoTRIPaPDL1 trial. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 7 December 2021. [Google Scholar]
- Beckers, R.K.; Selinger, C.I.; Vilain, R.; Madore, J.; Wilmott, J.S.; Harvey, K.; Holliday, A.; Cooper, C.L.; Robbins, E.; Gillett, D.; et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2016, 69, 25–34. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denkert, C.; von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 2015, 33, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Riva, F.; Bidard, F.C.; Houy, A.; Saliou, A.; Madic, J.; Rampanou, A.; Hego, C.; Milder, M.; Cottu, P.; Sablin, M.P.; et al. Patient-Specific Circulating Tumor DNA Detection during Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Clin. Chem. 2017, 63, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radovich, M.; Jiang, G.; Hancock, B.A.; Chitambar, C.; Nanda, R.; Falkson, C.; Lynce, F.C.; Gallagher, C.; Isaacs, C.; Blaya, M.; et al. Association of Circulating Tumor DNA and Circulating Tumor Cells after Neoadjuvant Chemotherapy with Disease Recurrence in Patients with Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Hancock, B.A.; Solzak, J.P.; Brinza, D.; Scafe, C.; Miller, K.D.; Radovich, M. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. NPJ Breast Cancer 2017, 3, 24. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Swigart, L.B.; Wu, H.T.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Tin, A.; Salari, R.; Shchegrova, S.; Pawar, H.; et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann. Oncol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Santoni, M.; Romagnoli, E.; Saladino, T.; Foghini, L.; Guarino, S.; Capponi, M.; Giannini, M.; Cognigni, P.D.; Ferrara, G.; Battelli, N. Triple negative breast cancer: Key role of Tumor-Associated Macrophages in regulating the activity of anti-PD-1/PD-L1 agents. Biochim. Biophys. Acta Rev. Cancer 2018, 1869, 78–84. [Google Scholar] [CrossRef]
- Tung, N.; Arun, B.; Hacker, M.R.; Hofstatter, E.; Toppmeyer, D.L.; Isakoff, S.J.; Borges, V.; Legare, R.D.; Isaacs, C.; Wolff, A.C.; et al. TBCRC 031: Randomized Phase II Study of Neoadjuvant Cisplatin Versus Doxorubicin-Cyclophosphamide in Germline BRCA Carriers with HER2-Negative Breast Cancer (the INFORM trial). J. Clin. Oncol. 2020, 38, 1539–1548. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Goncalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Litton, J.K.; Scoggins, M.E.; Hess, K.R.; Adrada, B.E.; Murthy, R.K.; Damodaran, S.; DeSnyder, S.M.; Brewster, A.M.; Barcenas, C.H.; Valero, V.; et al. Neoadjuvant Talazoparib for Patients with Operable Breast Cancer with a Germline BRCA Pathogenic Variant. J. Clin. Oncol. 2020, 38, 388–394. [Google Scholar] [CrossRef]
- Litton, J.K.; Beck, J.T.; Jones, J.M.; Andersen, J.; Blum, J.L.; Mina, L.A.; Brig, R.; Danso, M.A.; Yuan, Y.; Abbattista, A.; et al. Neoadjuvant talazoparib in patients with germline BRCA1/2 (gBRCA1/2) mutation-positive, early HER2-negative breast cancer (BC): Results of a phase 2 study. J. Clin. Oncol. 2021, 39, 505. [Google Scholar] [CrossRef]
- Kim, S.B.; Dent, R.; Im, S.A.; Espie, M.; Blau, S.; Tan, A.R.; Isakoff, S.J.; Oliveira, M.; Saura, C.; Wongchenko, M.J.; et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017, 18, 1360–1372. [Google Scholar] [CrossRef]
- Oliveira, M.; Saura, C.; Nuciforo, P.; Calvo, I.; Andersen, J.; Passos-Coelho, J.L.; Gil Gil, M.; Bermejo, B.; Patt, D.A.; Ciruelos, E.; et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann. Oncol. 2019, 30, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Gandhi, S.; Tokumaru, Y.; Yan, L.; Yamada, A.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. Conflicting roles of EGFR expression by subtypes in breast cancer. Am. J. Cancer Res. 2021, 11, 5094–5110. [Google Scholar] [PubMed]
- Nakai, K.; Hung, M.C.; Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer Res. 2016, 6, 1609–1623. [Google Scholar]
- Cameron, D.; Brown, J.; Dent, R.; Jackisch, C.; Mackey, J.; Pivot, X.; Steger, G.G.; Suter, T.M.; Toi, M.; Parmar, M.; et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): Primary results of a randomised, phase 3 trial. Lancet Oncol. 2013, 14, 933–942. [Google Scholar] [CrossRef]
- Sikov, W.M.; Berry, D.A.; Perou, C.M.; Singh, B.; Cirrincione, C.T.; Tolaney, S.M.; Kuzma, C.S.; Pluard, T.J.; Somlo, G.; Port, E.R.; et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 2015, 33, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Sikov, W.M.; Polley, M.-Y.; Twohy, E.; Perou, C.M.; Singh, B.; Berry, D.A.; Tolaney, S.M.; Somlo, G.; Port, E.R.; Ma, C.X.; et al. CALGB (Alliance) 40603: Long-term outcomes (LTOs) after neoadjuvant chemotherapy (NACT) +/- carboplatin (Cb) and bevacizumab (Bev) in triple-negative breast cancer (TNBC). J. Clin. Oncol. 2019, 37, 591. [Google Scholar] [CrossRef]
- Traina, T.A.; Miller, K.; Yardley, D.A.; Eakle, J.; Schwartzberg, L.S.; O’Shaughnessy, J.; Gradishar, W.; Schmid, P.; Winer, E.; Kelly, C.; et al. Enzalutamide for the Treatment of Androgen Receptor-Expressing Triple-Negative Breast Cancer. J. Clin. Oncol. 2018, 36, 884–890. [Google Scholar] [CrossRef]
- Bonnefoi, H.; Grellety, T.; Tredan, O.; Saghatchian, M.; Dalenc, F.; Mailliez, A.; L’Haridon, T.; Cottu, P.; Abadie-Lacourtoisie, S.; You, B.; et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann. Oncol. 2016, 27, 812–818. [Google Scholar] [CrossRef]
- Ramanathan, R.; Choudry, H.; Jones, H.; Girgis, M.; Gooding, W.; Kalinski, P.; Bartlett, D.L. Phase II Trial of Adjuvant Dendritic Cell Vaccine in Combination with Celecoxib, Interferon-alpha, and Rintatolimod in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Metastases. Ann. Surg. Oncol. 2021, 28, 4637–4646. [Google Scholar] [CrossRef] [PubMed]
- Muthuswamy, R.; Wang, L.; Pitteroff, J.; Gingrich, J.R.; Kalinski, P. Combination of IFNalpha and poly-I:C reprograms bladder cancer microenvironment for enhanced CTL attraction. J. Immunother. Cancer 2015, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthuswamy, R.; Corman, J.M.; Dahl, K.; Chatta, G.S.; Kalinski, P. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8(+) T cells. Prostate 2016, 76, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
Stage | AJCC Stage Definition | International Guideline | Recommendation |
---|---|---|---|
T1aN0M0 | Tumor >1 mm but ≤ 5 mm in greatest dimension, no evidence of regional LN metastasis identified | NCCN [10] | No adjuvant therapy (category 2A). Adjuvant chemotherapy may be considered in patients with high-risk features (e.g., young patients with high grade histology) (category 2B) |
ASCO [11] | Should not routinely offer Neoadjuvant therapy | ||
St.Gallen [13] | No adjuvant chemotherapy | ||
Dutch [14,15] | No adjuvant chemotherapy | ||
T1bN0M0 | Tumor > 5 mm but </=10 mm in greatest dimension, no evidence of regional LN metastasis identified | NCCN [10] | Consider adjuvant chemotherapy (category 2A) |
ASCO [11] | Should not routinely offer neoadjuvant therapy | ||
St.Gallen [13] | Adjuvant chemotherapy | ||
Dutch [14,15] | No adjuvant chemotherapy | ||
T1cN0M0 | Tumor > 10 mm but </=20 mm in greatest dimension, no evidence of regional LN metastasis identified | NCCN [10] | Adjuvant chemotherapy (category 1) |
ASCO [11] | Offer neoadjuvant therapy | ||
St.Gallen [13] | Adjuvant chemotherapy | ||
Dutch [14,15] | Adjuvant chemotherapy recommended if tumor grade 3 or if >/=grade 2 and age </= 35 years |
ONGOING CLINICAL TRIALS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trial Name/Identifier | Variable | Study Type, Phase, Estimated Enrollment | Study Design | Population | Setting | Intervention | Primary Outcome Measures | Secondary Outcome Measures | Estimated Primary Completion Date | Results |
NeoTRIPaPDL1/NCT02620280 | PDL1 | Interventional, Phase 3, N = 278 | RCT | early-stage TNBC | Neoadjuvant | Carboplatin (AUC2 IV on day 1 and day 8), Abraxane (125 mg/m2 IV on day 1 and day 8), +/−Atezolizumab (1200 mg IV on day 1) for 8 cycles, surgery, followed by AC/EC/or FEC for 4 cycles | EFS | pCR, DFS, Adverse events | May 2022 | interim results: pCR data resulted 43.5% with atezolizumab vs. 40.8% without OR 1.11 |
NeoPACT/NCT03639948 | PDL1 | Interventional, Phase 2, N = 100 | single arm | early-stage TNBC | Neoadjuvant | Carboplatin (AUC: 6 IV), Docetaxel (75 mg/m2, IV), Pembrolizumab (200 mg, IV) every 21 days for 6 cycles | pCR | MRD, RFS | November 2024 | |
NeoSTAR/NCT04230109 | Antibody-Drug Conjugate, PDL1 | Interventional, Phase 2, N = 51 | two separate cohorts | early-stage TNBC | Neoadjuvant | Monotherapy cohort: Sacituzumab Govitecan IV (D1 and 8 per 21-day cycle) for 4 cycles (monotherapy cohort), Combination Cohort: Sacituzumab Govitecan IV + Pembrolizumab IV (per 21-day cycle), for 4 cycles; if complete response may proceed directly to surgery, if not chemotherapy per physician | pCR at 12 weeks | DFS, OS, BCS rate, Adverse Events, QoL | October 2024 | |
IMpassion031 NCT03197935 | PDL1 | Interventional, Phase 3, N = 333 | RCT | early-stage TNBC | Neoadjuvant | Atezolizumab (840 mg) IV q2 weeks with nab-paclitaxel (125 mg/m2) Q1 week for 12 weeks, followed by atezolizumab (840 mg) q2 weeks with doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/m2) q2 weeks for 4 doses. Followed by adjuvant atezolizumab at a fixed dose of 1200 mg IV q3 weeks for 11 doses, for a total of approximately 12 months of atezolizumab therapy. | pCR in ITT, pCR in PDL1 positive group | EFS, DFS, OS, Adverse Events, | October 2022 | Improved pCR in atezolizumab group (57.6% vs. 41%), and in PDl1 positive group (68.8% vs. 49.3%. |
NCT04331067 | TIL | Interventional, Phase 1b/2, N = 50 | RCT | Stage II/III TNBC | Neoadjuvant | Paclitaxel 80 mg/m2 weekly, Carboplatin AUC 5 q3 weeks, Nivolumab 240 mg q2 weeks all for 12 weeks +/− Cabiralizumab 4 mg/kg q2 weeks for 2 weeks | % change in TILs and TAMs, safety | pCR, RFS, safety | December 2022 | |
NCT02689427 | ARi with paclitaxel | Interventional, Phase IIB, N = 37 | single arm | Stage I–III AR positive TNBC | Neoadjuvant | enzalutamide PO QD on days 1–7 and paclitaxel IV on D1, repeated every 7 days for upto 12 cycles followed by surgery | pCR and residual cancer burden index, | PFS, biomarker response level | June 2023 | |
COMPLETED CLINICAL TRIALS | ||||||||||
Trial Name/Identifier | Variable | Study Type, Phase, Estimated Enrollment | Study Design | Population | Setting | Intervention | Primary Outcome Measures | Secondary Outcome Measures | Estimated Primary Completion Date | Results |
GeparNUEVO NCT02685059 | PDL1 | Interventional, Phase 2, N = 174 | RCT | early-stage TNBC | Neoadjuvant | Durvalumab/placebo monotherapy (0.75 g i.v.) for the first 2 weeks (window phase), followed by D/placebo plus nab-paclitaxel 125 mg/m² weekly for 12 weeks, followed by D/placebo plus epirubicin/cyclophosphamide (EC) q2 weeks for 4 cycles. | pCR | pCR per arm, clinical response, BCR, Molecular markers, gene expression, toxicity and compliance, survival | March 2018 | Improved long term outcomes in durvalumab group |
NeoTALA NCT03499353 | PARPi | Interventional, Phase 2, N = 61 | single arm | early-stage HER2 negative breast cancer with BRCA 1 or 2 mutation | Neoadjuvant | Talazoparib PO 1 mg per day for 24 weeks followed by surgery | pCR in evaluable analysis set | pCR in ITT analysis set, residual cancer burden, probability of being event free at 3 years, probability of being alive at 3 years, AE | September 2020 | interim results: pCR in 45.8% in evaluable and 49.2% in intention to treat patients, terminated due to change in clinical development strategy |
WSG-ADAPT-TN trial, NCT01815242 | Interventional, Phase 2, N = 336 | RCT | early-stage TNBC | Neoadjuvant | nab-paclitaxel 125 mg/m2/gemcitabine 1000 mg/m2 d1,8 q3w vs.nab-paclitaxel 125 mg/m2/carboplatin AUC2 day 1,8 q3w for 4 cycles | pCR | None | May 2020 | pCR was higher in nab-paclitaxel/carboplatin group (45.9% vs. 28.7%) | |
NeoSTOP NCT02413320 | Interventional, Phase 2, N = 101 | RCT | early-stage TNBC | Neoadjuvant | Carboplatin + docetaxel q3weeks for 4 cycles comapred with carboplatin + standard ACT | pCR | MRD | February 2020 | pCR (54%), EFS, OS similar in both groups | |
FAIRLANE NCT02301988 | PIK3CA/AKT/mTOR | Interventional, Phase 2, N = 151 | RCT | early-stage TNBC | Neoadjuvant | Ipatasertib vs. placebo orally daily on Days 1–21 of each 28-day cycle for 3 cycles and paclitaxel IV qweek for 3 cycles (12 total doses) | pCR | ORR, AE | August 2017 | Increase in pCR in the ipatasertib group, but was not statistically significant (17% vs. 13%) |
NCT01097642 | EGFR | Interventional, Phase 2, N = 40 | RCT | early-stage TNBC | Neoadjuvant | Ixabepilone alone vs. Ixabepilone given in combination with cetuximab | pCR | RFS, safety and toxicity | December 2019 | Pending results |
NCT02282345 | PARPi | Interventional, Phase 2, N = 33 | single arm | early-stage breast cancer w/BRCA 1 or 2 mutations, 15/20 are TNBC | Neoadjuvant | Talazoparib PO QD on days 1–28 for 6 cycles, followed by standard of care per physician | No of patients enrolled, toxicity | Clinical response | April 2021 | 53% pCR with single agent talazoparib. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.K.; Roy, A.M.; Gupta, A.; Takabe, K.; Dhakal, A.; Opyrchal, M.; Kalinski, P.; Gandhi, S. Systemic Therapy De-Escalation in Early-Stage Triple-Negative Breast Cancer: Dawn of a New Era? Cancers 2022, 14, 1856. https://doi.org/10.3390/cancers14081856
Gupta RK, Roy AM, Gupta A, Takabe K, Dhakal A, Opyrchal M, Kalinski P, Gandhi S. Systemic Therapy De-Escalation in Early-Stage Triple-Negative Breast Cancer: Dawn of a New Era? Cancers. 2022; 14(8):1856. https://doi.org/10.3390/cancers14081856
Chicago/Turabian StyleGupta, Ravi Kumar, Arya Mariam Roy, Ashish Gupta, Kazuaki Takabe, Ajay Dhakal, Mateusz Opyrchal, Pawel Kalinski, and Shipra Gandhi. 2022. "Systemic Therapy De-Escalation in Early-Stage Triple-Negative Breast Cancer: Dawn of a New Era?" Cancers 14, no. 8: 1856. https://doi.org/10.3390/cancers14081856
APA StyleGupta, R. K., Roy, A. M., Gupta, A., Takabe, K., Dhakal, A., Opyrchal, M., Kalinski, P., & Gandhi, S. (2022). Systemic Therapy De-Escalation in Early-Stage Triple-Negative Breast Cancer: Dawn of a New Era? Cancers, 14(8), 1856. https://doi.org/10.3390/cancers14081856