Heterogeneity between Core Needle Biopsy and Synchronous Axillary Lymph Node Metastases in Early Breast Cancer Patients—A Comparison of HER2, Estrogen and Progesterone Receptor Expression Profiles during Primary Treatment Regime
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison of ER, PR and HER2 Status in t-CNB and LNM Using ≥1% vs. ≥10% Positivity Cut-Off Levels
3.2. Analysis of ER, PR and HER2 Discordance between t-CNB and LNM
3.3. Analysis of Intrinsic Subtype Discordance between LNM and t-CNB (Using ≥1% Cut-Off Value)
3.4. Correlation between Clinicopathological Parameters and Receptor Heterogeneity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meattini, I.; Bicchierai, G.; Saieva, C.; De Benedetto, D.; Desideri, I.; Becherini, C.; Abdulcadir, D.; Vanzi, E.; Boeri, C.; Gabbrielli, S.; et al. Impact of molecular subtypes classification concordance between preoperative core needle biopsy and surgical specimen on early breast cancer management: Single-institution experience and review of published literature. Eur. J. Surg. Oncol. 2017, 43, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, L.; Mao, Y.; Zhu, S.; Wu, J.; Huang, O.; Li, Y.; Chen, W.; Wang, J.; Yuan, Y.; et al. Preoperative core needle biopsy is accurate in determining molecular subtypes in invasive breast cancer. BMC Cancer 2013, 13, 390. [Google Scholar] [CrossRef] [Green Version]
- Hammond, M.E.; Hayes, D.F.; Wolff, A.C.; Mangu, P.B.; Temin, S. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Oncol. Pract. 2010, 6, 195–197. [Google Scholar] [CrossRef] [Green Version]
- Yi, M.; Huo, L.; Koenig, K.B.; Mittendorf, E.A.; Meric-Bernstam, F.; Kuerer, H.M.; Bedrosian, I.; Buzdar, A.U.; Symmans, W.F.; Crow, J.R.; et al. Which threshold for ER positivity? A retrospective study based on 9639 patients. Ann. Oncol. 2014, 25, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Schrodi, S.; Braun, M.; Andrulat, A.; Harbeck, N.; Mahner, S.; Kiechle, M.; Klein, E.; Schnelzer, A.; Schindlbeck, C.; Bauerfeind, I.; et al. Outcome of breast cancer patients with low hormone receptor positivity: Analysis of a 15-year population-based cohort. Ann. Oncol. 2021, 32, 1410–1424. [Google Scholar] [CrossRef] [PubMed]
- Gloyeske, N.C.; Dabbs, D.J.; Bhargava, R. Low ER+ breast cancer: Is this a distinct group? Am. J. Clin. Pathol. 2014, 141, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landmann, A.; Farrugia, D.J.; Zhu, L.; Diego, E.J.; Johnson, R.R.; Soran, A.; Dabbs, D.J.; Clark, B.Z.; Puhalla, S.L.; Jankowitz, R.C.; et al. Low Estrogen Receptor (ER)-Positive Breast Cancer and Neoadjuvant Systemic Chemotherapy: Is Response Similar to Typical ER-Positive or ER-Negative Disease? Am. J. Clin. Pathol. 2018, 150, 34–42. [Google Scholar] [CrossRef]
- Poon, I.K.; Tsang, J.Y.; Li, J.; Chan, S.K.; Shea, K.H.; Tse, G.M. The significance of highlighting the oestrogen receptor low category in breast cancer. Br. J. Cancer 2020, 123, 1223–1227. [Google Scholar] [CrossRef]
- Georgescu, R.; Boros, M.; Moncea, D.; Bauer, O.; Coros, M.-F.; Oprea, A.; Moldovan, C.; Podoleanu, C.; Stolnicu, C. Discordance Rate in Estrogen Receptor, Progesterone Receptor, HER2 Status, and Ki67 Index Between Primary Unifocal and Multiple Homogenous Breast Carcinomas and Synchronous Axillary Lymph Node Metastases Have an Impact on Therapeutic Decision. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 533–538. [Google Scholar] [CrossRef]
- Lindstrom, L.S.; Karlsson, E.; Wilking, U.M.; Johansson, U.; Hartman, J.; Lidbrink, E.K.; Hatschek, T.; Skoog, L.; Bergh, J. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J. Clin. Oncol. 2012, 30, 2601–2608. [Google Scholar] [CrossRef]
- Ba, J.L.; Liu, C.G.; Jin, F. Alterations in hormonal receptor expression and HER2 status between primary breast tumors and paired nodal metastases: Discordance rates and prognosis. Asian Pac. J. Cancer Prev. 2014, 15, 9233–9239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Liu, X.; Cui, S.; Li, L.; Tian, P.; Liu, S.; Li, Y.; Yin, M.; Zhang, C.; Mao, Q.; et al. The inconsistency of molecular subtypes between primary foci and metastatic axillary lymph nodes in Luminal A breast cancer patients among Chinese women, an indication for chemotherapy? Tumour Biol. 2016, 37, 9555–9563. [Google Scholar] [CrossRef] [PubMed]
- Cirocchi, R.; Amabile, M.I.; De Luca, A.; Frusone, F.; Tripodi, D.; Gentile, P.; Tabola, R.; Pironi, D.; Forte, F.; Monti, M.; et al. New classifications of axillary lymph nodes and their anatomical-clinical correlations in breast surgery. World J. Surg. Oncol. 2021, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Bromham, N.; Schmidt-Hansen, M.; Astin, M.; Hasler, E.; Reed, M.W. Axillary treatment for operable primary breast cancer. Cochrane Database Syst. Rev. 2017, 1, CD004561. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Basso, M.; Strippoli, A.; Dadduzio, V.; Cerchiaro, E.; Barile, R.; D’Argento, E.; Cassano, A.; Schinzari, G.; Barone, C. Hormone Receptor Status and HER2 Expression in Primary Breast Cancer Compared with Synchronous Axillary Metastases or Recurrent Metastatic Disease. Clin. Breast Cancer 2015, 15, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Ieni, A.; Barresi, V.; Caltabiano, R.; Cascone, A.M.; Del Sordo, R.; Cabibi, D.; Zeppa, P.; Lanzafame, S.; Sidoni, A.; Franco, V.; et al. Discordance rate of HER2 status in primary breast carcinomas versus synchronous axillary lymph node metastases: A multicenter retrospective investigation. Onco Targets Ther. 2014, 7, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, M.R.; Limiti, M.R.; Bari, M.; Zambenedetti, P.; Montagutti, A.; Ricci, F.; Pappagallo, G.L.; Sartori, D.; Vinante, O.; Mingazzini, P.L. Correlation between genetic and biological aspects in primary non-metastatic breast cancers and corresponding synchronous axillary lymph node metastasis. Breast Cancer Res. Treat. 2007, 101, 279–284. [Google Scholar] [CrossRef]
- Mannell, A.; Nel, C.E.; Smilg, J.S.; Haberfleld, J.; Nietz, S.; Candy, G.P. A prospective study of receptor profiles in breast cancer and the ipsilateral axillary lymph node metastases measured simultaneously in treatment naïve cases. S. Afr. J. Surg. 2020, 58, 86–90. [Google Scholar] [CrossRef]
- Vasconcelos, I.; Hussainzada, A.; Berger, S.; Fietze, E.; Linke, J.; Siedentopf, F.; Schoenegg, W. The St. Gallen surrogate classification for breast cancer subtypes successfully predicts tumor presenting features, nodal involvement, recurrence patterns and disease free survival. Breast 2016, 29, 181–185. [Google Scholar] [CrossRef]
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations From the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef]
- Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; Andre, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.; Biganzoli, L.; et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann. Oncol. 2020, 31, 1623–1649. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, S.J.; Thomas, J.S.; Langdon, S.P.; Harrison, D.J.; Faratian, D. Quantitative analysis of changes in ER, PR and HER2 expression in primary breast cancer and paired nodal metastases. Ann. Oncol. 2010, 21, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.X.; Lu, L.J.; Wang, R.J.; Jin, L.B.; Liu, S.C.; Li, H.Y.; Ren, G.S.; Wu, K.N.; Wang, D.L.; Kong, L.Q. Discordance and clinical significance of ER, PR, and HER2 status between primary breast cancer and synchronous axillary lymph node metastasis. Med. Oncol. 2014, 31, 798. [Google Scholar] [CrossRef]
- El Nemr Esmail, R.S.; El Farouk Abdel-Salam, L.O.; Abd El Ellah, M.M. Could the Breast Prognostic Biomarker Status Change During Disease Progression? An Immunohistochemical Comparison between Primary Tumors and Synchronous Nodal Metastasis. Asian Pac. J. Cancer Prev. 2015, 16, 4317–4321. [Google Scholar] [CrossRef] [Green Version]
- Falck, A.K.; Ferno, M.; Bendahl, P.O.; Ryden, L. Does analysis of biomarkers in tumor cells in lymph node metastases give additional prognostic information in primary breast cancer? World J. Surg. 2010, 34, 1434–1441. [Google Scholar] [CrossRef]
- Kinoe, H.; Yamanouchi, K.; Kuba, S.; Morita, M.; Sakimura, C.; Kanetaka, K.; Takatsuki, M.; Abe, K.; Yano, H.; Matsumoto, M.; et al. Discordance of hormone receptor, human epidermal growth factor receptor-2, and Ki-67 between primary breast cancer and synchronous axillary lymph node metastasis. J. BUON 2018, 23, 60–66. [Google Scholar]
- Zhao, S.; Xu, L.; Liu, W.; Lv, C.; Zhang, K.; Gao, H.; Wang, J.; Ma, R. Comparison of the expression of prognostic biomarkers between primary tumor and axillary lymph node metastases in breast cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 5744–5748. [Google Scholar]
- Aktas, B.; Kasimir-Bauer, S.; Muller, V.; Janni, W.; Fehm, T.; Wallwiener, D.; Pantel, K.; Tewes, M.; Group, D.S. Comparison of the HER2, estrogen and progesterone receptor expression profile of primary tumor, metastases and circulating tumor cells in metastatic breast cancer patients. BMC Cancer 2016, 16, 522. [Google Scholar] [CrossRef] [Green Version]
- Aurilio, G.; Disalvatore, D.; Pruneri, G.; Bagnardi, V.; Viale, G.; Curigliano, G.; Adamoli, L.; Munzone, E.; Sciandivasci, A.; De Vita, F.; et al. A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. Eur. J. Cancer 2014, 50, 277–289. [Google Scholar] [CrossRef] [Green Version]
- De Duenas, E.M.; Hernandez, A.L.; Zotano, A.G.; Carrion, R.M.; Lopez-Muniz, J.I.; Novoa, S.A.; Rodriguez, A.L.; Fidalgo, J.A.; Lozano, J.F.; Gasion, O.B.; et al. Prospective evaluation of the conversion rate in the receptor status between primary breast cancer and metastasis: Results from the GEICAM 2009-03 ConvertHER study. Breast Cancer Res. Treat. 2014, 143, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talmadge, J.E. Clonal selection of metastasis within the life history of a tumor. Cancer Res. 2007, 67, 11471–11475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almendro, V.; Fuster, G. Heterogeneity of breast cancer: Etiology and clinical relevance. Clin. Transl. Oncol. 2011, 13, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.; Ribeiro, F.R.; Pandis, N.; Andersen, J.A.; Heim, S.; Teixeira, M.R. Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res. Treat. 2007, 102, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Anders, C.K.; Hsu, D.S.; Broadwater, G.; Acharya, C.R.; Foekens, J.A.; Zhang, Y.; Wang, Y.; Marcom, P.K.; Marks, J.R.; Febbo, P.G.; et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J. Clin. Oncol. 2008, 26, 3324–3330. [Google Scholar] [CrossRef] [Green Version]
- Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010, 28, 3271–3277. [Google Scholar] [CrossRef]
- Curigliano, G.; Bagnardi, V.; Viale, G.; Fumagalli, L.; Rotmensz, N.; Aurilio, G.; Locatelli, M.; Pruneri, G.; Giudici, S.; Bellomi, M.; et al. Should liver metastases of breast cancer be biopsied to improve treatment choice? Ann. Oncol. 2011, 22, 2227–2233. [Google Scholar] [CrossRef]
- Martelotto, L.G.; Ng, C.K.; Piscuoglio, S.; Weigelt, B.; Reis-Filho, J.S. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014, 16, 210. [Google Scholar] [CrossRef] [Green Version]
- Marusyk, A.; Almendro, V.; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer 2012, 12, 323–334. [Google Scholar] [CrossRef]
- Wahl, G.M.; Spike, B.T. Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer 2017, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seol, H.; Lee, H.J.; Choi, Y.; Lee, H.E.; Kim, Y.J.; Kim, J.H.; Kang, E.; Kim, S.W.; Park, S.Y. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: Its clinicopathological significance. Mod. Pathol. 2012, 25, 938–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | No. of Patients | |
---|---|---|
n = 215 | % | |
Median age [years] (IQR) | 61 (50–73) | |
Premenopausal | 55 (25.6) | |
Perimenopausal | 5 (2.3) | |
Postmenopausal | 155 (72.1) | |
Surgery | ||
Sentinel node biopsy | 118 | 54.9 |
Axillary node dissection | 97 | 45.1 |
Pathological tumor stage | ||
pTis | 15 | 7 |
pT1 | 94 | 43.7 |
pT2 | 75 | 34.9 |
pT3 | 23 | 10.7 |
pT4 | 8 | 3.7 |
Pathological nodal status * | ||
pN0 | 19 | 8.8 |
pN1 | 129 | 60 |
pN2 | 50 | 23.2 |
pN3 | 17 | 8 |
Upfront therapy | ||
No therapy | 149 | 69.3 |
Neoadjuvant chemotherapy | 46 | 21.4 |
Endocrine therapy | 20 | 9.3 |
t-CNB analyzed | 215 | 100 |
t-CNB histology | ||
Invasive carcinoma of no special type | 159 | 74 |
Invasive lobular | 18 | 8.4 |
Mixed invasive ductal and lobular | 33 | 15.3 |
Other histology (e.g., metaplastic, mucinous) | 5 | 2.3 |
t-CNB grading | ||
G1 | 57 | 26.5 |
G2 | 115 | 53.5 |
G3 | 43 | 20 |
t-CNB intrinsic subtype | ||
Luminal A | 89 | 41.4 |
Luminal B/HER2+ | 25 | 11.6 |
Luminal B/HER2− | 57 | 26.5 |
HER2 enriched | 14 | 6.5 |
Triple negative | 17 | 7.9 |
Not available ** | 13 | 6 |
LNM analyzed | 211 | 98.1 |
LNM missing *** | 4 | 1.9 |
Median time [days] between t-CNB and surgery | ||
Overall | 65.6 | |
No neoadjuvant therapy | 23.8 | |
Neoadjuvant chemotherapy | 176.5 | |
Neoadjuvant endocrine therapy | 118.3 |
Parameters | t-CNB | LNM | |
---|---|---|---|
n (%) | n (%) | p-Value | |
ER analyzed | 215 (100) | 211 * (98.1) | |
positive (≥1%) | 180 (83.7) | 168 (78.1) | 0.02 |
positive (≥10%) | 179 (83.3) | 165 (76.7) | <0.01 |
p-value | 0.25 | 1 | |
PR analyzed | 215 (100) | 211 * (98.1) | |
positive (≥1%) | 166 (77.2) | 132 (61.4) | <0.001 |
positive (≥10%) | 153 (71.2) | 105 (48.8) | <0.001 |
p-value | <0.001 | <0.001 | |
HER2 analyzed | 215 (100) | 205 * (95.3) | |
positive | 41 (19.1) | 23 (10.7) | <0.01 |
Receptor | Change | Cut-Off ≥ 1% | Cut-Off ≥ 10% |
---|---|---|---|
n (%) | n (%) | ||
ER | Overall | 13(6) | 15 (6.9) |
Receptor loss | 11 (5.1) | 13 (6) | |
Receptor gain | 2 (0.9) | 2 (0.9) | |
PR | Overall | 43 (20) | 57 (26.5) |
Receptor loss | 37 (17.2) | 51 (23.7) | |
Receptor gain | 6 (2.8) | 6 (2.8) | |
HER2 | Overall | 26 (12.1) | 26 (12.1) |
Receptor loss | 21 (9.8) | 21 (9.8) | |
Receptor gain | 5 (2.3) | 5 (2.3) |
LNM/t-CNB | Estrogen (≥1%) | Progesterone (≥1%) | HER2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | no Loss/Gain | Loss/Gain | p-Value | no Loss/Gain | Loss/Gain | p-Value | no Loss/Gain | Loss/Gain | p-Value |
Median age [years] (IQR 1) | 62 (50–73) | 53 (50–59) | <0.01 | 61 (48–72) | 63 (51–75) | 0.14 | 61 (49–72) | 63 (51–74) | 0.65 |
Ki 67—LNM [%] (IQR 1) | 10 (2–30) | 40 (1–80) | 0.11 | 10 (2–30) | 5 (1–75) | 0.26 | 10 (2–40) | 7 (1–33) | 0.75 |
Ki 67—t-CNB [%] (IQR 1) | 15 (7–40) | 40 (7–66) | 0.18 | 15 (5–40) | 28 (10–40) | 0.91 | 15 (5–35) | 3 (14–67) | 0.01 |
Pathological tumor stage [n (%)] | |||||||||
pTis | 11 (5.6) | 3 (23.1) | 10 (6) | 4 (11.6) | 12 (6.7) | 2 (7.7) | |||
pT 1 | 89 (44.9) | 2 (15.4) | 75 (44.6) | 16 (37.2) | 78 (43.6) | 11 (42.3) | |||
pT 2 | 69 (34.8) | 5 (38.5) | 0.11 | 56 (33.3) | 17 (39.5) | <0.01 | 62 (34.6) | 8 (30.8) | 0.68 |
pT 3 | 21 (10.6) | 2 (15.4) | 23 (13.7) | 0 | 18 (10.1) | 5 (19.2) | |||
pT 4 | 7 (3.5) | 1 (7.7) | 4 (2.4) | 4 (9.3) | 8 (4.5) | 0 | |||
Neoadjuvant therapy [n (%)] | |||||||||
No therapy | 137 (69.5) | 8 (61.5) | 118 (70.7) | 27 (62.8) | 125 (70.2) | 15 (57.7) | |||
NACT 2 | 41 (20.8) | 4 (30.8) | 0.7 | 36 (21.6) | 9 (20.9) | 0.23 | 34 (19.1) | 10 (38.5) | 0.63 |
Endocrine therapy | 19 (9.6) | 1 (7.7) | 13 (7.8) | 7 (16.3) | 19 (10.7) | 1 (3.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weydandt, L.; Nel, I.; Kreklau, A.; Horn, L.-C.; Aktas, B. Heterogeneity between Core Needle Biopsy and Synchronous Axillary Lymph Node Metastases in Early Breast Cancer Patients—A Comparison of HER2, Estrogen and Progesterone Receptor Expression Profiles during Primary Treatment Regime. Cancers 2022, 14, 1863. https://doi.org/10.3390/cancers14081863
Weydandt L, Nel I, Kreklau A, Horn L-C, Aktas B. Heterogeneity between Core Needle Biopsy and Synchronous Axillary Lymph Node Metastases in Early Breast Cancer Patients—A Comparison of HER2, Estrogen and Progesterone Receptor Expression Profiles during Primary Treatment Regime. Cancers. 2022; 14(8):1863. https://doi.org/10.3390/cancers14081863
Chicago/Turabian StyleWeydandt, Laura, Ivonne Nel, Anne Kreklau, Lars-Christian Horn, and Bahriye Aktas. 2022. "Heterogeneity between Core Needle Biopsy and Synchronous Axillary Lymph Node Metastases in Early Breast Cancer Patients—A Comparison of HER2, Estrogen and Progesterone Receptor Expression Profiles during Primary Treatment Regime" Cancers 14, no. 8: 1863. https://doi.org/10.3390/cancers14081863
APA StyleWeydandt, L., Nel, I., Kreklau, A., Horn, L. -C., & Aktas, B. (2022). Heterogeneity between Core Needle Biopsy and Synchronous Axillary Lymph Node Metastases in Early Breast Cancer Patients—A Comparison of HER2, Estrogen and Progesterone Receptor Expression Profiles during Primary Treatment Regime. Cancers, 14(8), 1863. https://doi.org/10.3390/cancers14081863