Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Glossary and Terminology
1.2. Background
1.3. Aim of the Study
- Objective 1: Explain the fundamentals of the three biorecognition technologies (molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules).
- Objective 2: Establish the advantages and disadvantages of these technologies and their applications and perspectives in cancer diagnosis and therapeutics.
- Objective 3: Report and analyze the results of the literature search about the current use of these technologies in the development of biosensors for cancer diagnosis.
- RQ1: Is it possible to implement these technologies for the detection of cancer?If the answer is yes, then the following questions can be addressed:
- RQ2: Which of these three technologies has been more extensively studied?
- RQ3: What types of cancer have been detected using these three technologies?
- RQ4: Is it possible to detect different cancer types using a single biomarker or cancer entity?
- RQ5: What methods are used for the detection of cancer by using these biomarkers or cancer entities?
- RQ6: Which biomarkers and cancer entities are the most commonly studied?
- RQ7: What are the cancer detection levels reached using these three technologies?
2. Methodology
2.1. Data Sources and Searches
2.2. Inclusion and Exclusion Criteria
2.3. Data Management
3. Results
3.1. Molecularly Imprinted Polymers
3.2. Recombinant Antibodies (Antibody-Based Molecules)
3.3. Antibody Mimetic Molecules
4. Discussion
4.1. Scientific Literature Analysis
4.2. Limitations of the Study
4.3. Future Perspectives
5. Conclusions
- RQ1: Is it possible to implement these technologies to detect cancer?Yes, these technologies can be used for cancer detection. Because of the low levels of detection in some examples, it has been shown to be very promising.
- RQ2: Which of these three technologies has been more studied?Antibody mimetic molecules were the most used biorecognition technology to detect cancer, comprising 93.1% of the studies. Subsequently, the molecularly imprinted polymers and recombinant antibodies correspond to 6.1% and 0.8%, respectively.
- RQ3: What types of cancer can be detected using these three technologies?With the study of the systematic review of the literature, we observed that it is possible to detect twelve types of cancer with these technologies. The most relevant types of cancer were multiple, breast, leukemia, colorectal, and lung. However, it is pertinent to highlight that these three technologies may also be efficient in detecting other types of cancer if more studies are conducted in the field.
- RQ4: Is it possible to detect different cancer types using a single biomarker or cancer entity?Yes, the biomarkers or cancer entities that are used to detect more than one type of cancer are classified into a category called “multiple.”
- RQ5: What methods are used for the detection of cancer by using these biomarkers?The detection methods are electrochemical, optical, magnetic, hybrid (photoelectrochemical, magneto-optical, etc.), microcantilever, and nanopore sequencing. The most common method was the electrochemical, followed by the optical.
- RQ6: Which biomarkers and cancer entities are the most commonly studied?The most studied biomarkers and cancer entities were carcinoembryonic antigen (16.8%), MCF-7 cells (13%), exosomes (12.2%), mucin 1 (10.7%), and human epidermal growth factor receptor 2 (7.6%).
- RQ7: What are the detection levels reached using these three technologies?Biomarkers were detected in concentrations from aM to nM, exosomes in 103–105 particles/mL, and cancer cells in 1–300 cells/mL. Nonetheless, these technologies may be refined in the future to further lower detection levels.Although applications using these technologies are commercially available, there is still a large room for improvements to make them more competitive. Antibodies still dominate the market, but the development of cheap and effective diagnostic devices for cancer is continuously promoting the use of biorecognition engineering technologies. These technologies are emerging tools for developing biosensors and other diagnostic strategies to detect cancer in challenging situations such as the ones found in developing countries and among vulnerable populations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABY-025 | Second-generation anti-HER2 affibody molecule. |
ABY-029 | Anti-EGFR affibody molecule. |
AFP | Alpha-fetoprotein. |
ALX-0141 | Bivalent nanobody that targets nuclear factor kappa B ligand. |
ALX-0651 | Nanobody that inhibits CXCR4. |
AMD | Age-related macular degeneration. |
AMM | Antibody mimetic molecules. |
AS1411 | DNA aptamer targeting nucleolin. |
Au NPs | Gold nanoparticles. |
AX102 | DNA aptamer that is highly selective for PDGF-B. |
BLM | Bleomycin. |
BMS-986089 | Myostatin inhibitor. |
CA125 | Cancer antigen 125. |
CEA | Carcinoembryonic antigen. |
CTC | Circulating tumor cells. |
DARPin | Designed ankyrin repeat proteins. |
DR5Nb1 | Nanobody that targets human death receptor 5 (DR5). |
EMA | European Medicines Agency. |
EPCAM | Epithelial cell adhesion molecule. |
FDA | Food and Drug Administration. |
FGFR3 | Fibroblast growth factor receptor 3. |
Glu-FH | Human fibroblast growth-factor-inducible 14 with glucose. |
GPC1 | Glypican 1. |
GMP | Good manufacturing practices. |
HA | Hyaluronic acid. |
HABP | Hyaluronic acid binding protein. |
HeA2_3 | Aptamer with affinity for HER2 protein. |
HER2 | Human epidermal growth factor receptor 2. |
HGF | Hepatocyte growth factor. |
HSA | Human serum albumin. |
IL-2 | Human interleukin 2. |
IL-6 | Interleukin 6. |
LDHs | Layered double hydroxides. |
MIP | Molecularly imprinted polymers. |
MP0112 | Long-acting VEGF inhibitor. |
MP0250 | DARPin drug candidate with three specificities: vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and human serum albumin (HSA). |
MP0274 | DARPin® therapeutic candidate designed to bind to HER2. |
MP7 | Aptamer that functionally inhibits the PD-L1. |
MRI | Magnetic resonance imaging. |
MUC1 | Mucin 1. |
miRNAs | MicroRNAs. |
NOX-A12 | RNA oligonucleotide (olaptesed pegol) that binds and neutralizes CXCL12. |
PET | Positron emission tomography. |
PRS-050 | Anticalin with high affinity for vascular endothelial growth factor A (VEGF-A). |
PRS-343 | Anticalin fusion protein targeting the oncogenic tumor antigen HER2. |
PSMA | Prostate-specific membrane antigen. |
PSA | Prostate specific antigen. |
RLT | Radioligand therapy. |
RA | Recombinant antibodies. |
SELEX | Systematic evolution of ligands by exponential enrichment. |
TACAs | Tumor-associated carbohydrate antigens. |
VEGF | Vascular endothelial growth factor. |
xPSM-A10 | Aptamer that inhibits the enzymatic function of PSMA. |
18F-BMS986192 | Programmed cell death ligand 1 (PD-L1) adnectin PET tracer. |
6-MP | 6-mercaptopurine. |
References
- Wilchek, M.; Bayer, E.A.; Livnah, O. Essentials of Biorecognition: The (Strept) Avidin–Biotin System as a Model for Protein-Protein and Protein-Ligand Interaction. Immunol. Lett. 2006, 103, 27–32. [Google Scholar] [CrossRef]
- Williams, D.H.; Stephens, E.; O’Brien, D.P.; Zhou, M. Understanding Noncovalent Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-induced Reductions in Motion within Receptors and Enzymes. Angew. Chem. Int. Ed. 2004, 43, 6596–6616. [Google Scholar] [CrossRef] [PubMed]
- Landry, J.; Ke, Y.; Yu, G.-L.; Zhu, X. Measuring Affinity Constants of 1450 Monoclonal Antibodies to Peptide Targets with a Microarray-Based Label-Free Assay Platform. J. Immunol. Methods 2015, 417, 86–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mountain, A.; Adair, J. Engineering Antibodies for Therapy. Biotechnol. Genet. Eng. Rev. 1992, 10, 1–142. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, K.; Štrukelj, B.; Berlec, A. Non-Immunoglobulin Scaffolds: A Focus on Their Targets. Trends Biotechnol. 2015, 33, 408–418. [Google Scholar] [CrossRef]
- Haßel, S.; Mayer, G. Aptamers as Therapeutic Agents: Has the Initial Euphoria Subsided? Mol. Diagn. Ther. 2019, 23, 301–309. [Google Scholar] [CrossRef]
- Kyle, S. Affimer Proteins: Theranostics of the Future? Trends Biochem. Sci. 2018, 43, 230–232. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Lyon Fr. Int. Agency Res. Cancer 2018, 1–6. [Google Scholar]
- Yoon, J.-Y. Introduction to Biosensors: From Electric Circuits to Immunosensors; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 3-319-27413-9. [Google Scholar]
- Bazin, I.; Tria, S.A.; Hayat, A.; Marty, J.-L. New Biorecognition Molecules in Biosensors for the Detection of Toxins. Biosens. Bioelectron. 2017, 87, 285–298. [Google Scholar] [CrossRef]
- Kissinger, P.T. Biosensors—A Perspective. Biosens. Bioelectron. 2005, 20, 2512–2516. [Google Scholar] [CrossRef]
- Birch, J.R.; Racher, A.J. Antibody Production. Adv. Drug Deliv. Rev. 2006, 58, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Hanly, W.C.; Artwohl, J.E.; Bennett, B.T. Review of Polyclonal Antibody Production Procedures in Mammals and Poultry. ILAR J. 1995, 37, 93–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic Antibodies: Successes, Limitations and Hopes for the Future. Br. J. Pharmacol. 2009, 157, 220–233. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Clarivate. Web of Science. Available online: https://webofknowledge.com (accessed on 10 December 2021).
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular Imprinting Science and Technology: A Survey of the Literature for the Years up to and Including 2003. J. Mol. Recognit. Interdiscip. J. 2006, 19, 106–180. [Google Scholar] [CrossRef]
- Cieplak, M.; Kutner, W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941. [Google Scholar] [CrossRef] [PubMed]
- Mahony, J.; Nolan, K.; Smyth, M.; Mizaikoff, B. Molecularly Imprinted Polymers—Potential and Challenges in Analytical Chemistry. Anal. Chim. Acta 2005, 534, 31–39. [Google Scholar] [CrossRef]
- Baggiani, C.; Anfossi, L.; Giovannoli, C. Molecular Imprinted Polymers as Synthetic Receptors for the Analysis of Myco-and Phyco-Toxins. Analyst 2008, 133, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Rangel, P.X.M.; Laclef, S.; Xu, J.; Panagiotopoulou, M.; Kovensky, J.; Bui, B.T.S.; Haupt, K. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanolabels: Affinity Tools for Cellular Bioimaging of Glycans. Sci. Rep. 2019, 9, 3923. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Qin, Y.-T.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Epitope Molecularly Imprinted Polymer Nanoparticles for Chemo-/Photodynamic Synergistic Cancer Therapy Guided by Targeted Fluorescence Imaging. ACS Appl. Mater. Interfaces 2020, 12, 13360–13370. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Cao, P.-P.; He, Z.-Y.; He, X.-W.; Li, W.-Y.; Li, Y.-H.; Zhang, Y.-K. Targeted Imaging and Targeted Therapy of Breast Cancer Cells via Fluorescent Double Template-Imprinted Polymer Coated Silicon Nanoparticles by an Epitope Approach. Nanoscale 2019, 11, 17018–17030. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhang, M.; Zhang, Y.; Ma, Z.-B.; Xiao, N.-N.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Preparation of Dual-Template Epitope Imprinted Polymers for Targeted Fluorescence Imaging and Targeted Drug Delivery to Pancreatic Cancer BxPC-3 Cells. ACS Appl. Mater. Interfaces 2019, 11, 32431–32440. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Kitayama, Y.; Kiguchi, K.; Yamada, T.; Akasaka, H.; Sasaki, R.; Takeuchi, T. Gold Nanoparticle-Incorporated Molecularly Imprinted Microgels as Radiation Sensitizers in Pancreatic Cancer. ACS Appl. Bio Mater. 2019, 2, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pathak, P.K.; Prasad, B.B. Electrocatalytic Imprinted Polymer of N-Doped Hollow Carbon Nanosphere–Palladium Nanocomposite for Ultratrace Detection of Anticancer Drug 6-Mercaptopurine. ACS Appl. Mater. Interfaces 2019, 11, 16065–16074. [Google Scholar] [CrossRef]
- Miersch, S.; Sidhu, S. Synthetic Antibodies: Concepts, Potential and Practical Considerations. Methods 2012, 57, 486–498. [Google Scholar] [CrossRef]
- Kedzierski, S.; Khoshnejad, M.; Caltagirone, G.T. Synthetic Antibodies: The Emerging Field of Aptamers. Bioprocess. J. 2012, 11, 46–49. [Google Scholar] [CrossRef]
- Crivianu-Gaita, V.; Thompson, M. Aptamers, Antibody ScFv, and Antibody Fab’fragments: An Overview and Comparison of Three of the Most Versatile Biosensor Biorecognition Elements. Biosens. Bioelectron. 2016, 85, 32–45. [Google Scholar] [CrossRef]
- Bazan, J.; Całkosiński, I.; Gamian, A. Phage Display—A Powerful Technique for Immunotherapy: 1. Introduction and Potential of Therapeutic Applications. Hum. Vaccines Immunother. 2012, 8, 1817–1828. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Huang, J.; Li, W.; Zhang, Z.; Zhu, M.; Feng, Y.; Zhao, Y.; Li, Y.; Lu, S.; He, S. Screening and Identification of a CD44v6 Specific Peptide Using Improved Phage Display for Gastric Cancer Targeting. Ann. Transl. Med. 2020, 8, 1442. [Google Scholar] [CrossRef]
- Tadano, H.; Tsukahara, T.; Mizushima, E.; Akamatsu, A.; Watanabe, K.; Nojima, I.; Kubo, T.; Kanaseki, T.; Hirohashi, Y.; Sato, N. Development of an Artificial Antibody Specific for HLA/Peptide Complex Derived from Cancer Stem-like Cell/Cancer-Initiating Cell Antigen DNAJB8. Br. J. Cancer 2020, 123, 1387–1394. [Google Scholar] [CrossRef]
- Sales-Dias, J.; Ferreira, A.; Lamy, M.; Domenici, G.; Monteiro, S.M.; Pires, A.; Lemos, A.R.; Kucheryava, K.; Nobre, L.S.; Sousa, P.M. Development of Antibodies against the Notch Ligand Delta-Like-1 by Phage Display with Activity against Breast Cancer Cells. New Biotechnol. 2021, 64, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, L.; Sananes, A.; Zur, Y.; Cohen, S.; Dhara, K.; Gelkop, S.; Ben Zeev, E.; Shahar, A.; Lobel, L.; Akabayov, B. Nanobodies Targeting Prostate-Specific Membrane Antigen for the Imaging and Therapy of Prostate Cancer. J. Med. Chem. 2020, 63, 7601–7615. [Google Scholar] [CrossRef] [PubMed]
- Skerra, A. Alternative Non-Antibody Scaffolds for Molecular Recognition. Curr. Opin. Biotechnol. 2007, 18, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.X.; Kwon, Y.J. Aptamers: The “Evolution” of SELEX. Methods 2016, 106, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.; Duarte, A.C.; Rocha-Santos, T.A. Analytical Applications of Affibodies. TrAC Trends Anal. Chem. 2015, 65, 73–82. [Google Scholar] [CrossRef]
- Tiede, C.; Bedford, R.; Heseltine, S.J.; Smith, G.; Wijetunga, I.; Ross, R.; AlQallaf, D.; Roberts, A.P.; Balls, A.; Curd, A. Affimer Proteins Are Versatile and Renewable Affinity Reagents. Elife 2017, 6, e24903. [Google Scholar] [CrossRef] [PubMed]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical Applications of Aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020, 12, 646. [Google Scholar] [CrossRef]
- Diepstraten, S.T.; Anderson, M.A.; Czabotar, P.E.; Lessene, G.; Strasser, A.; Kelly, G.L. The Manipulation of Apoptosis for Cancer Therapy Using BH3-Mimetic Drugs. Nat. Rev. Cancer 2022, 22, 45–64. [Google Scholar] [CrossRef]
- Lau, J.; Jacobson, O.; Niu, G.; Lin, K.-S.; Bénard, F.; Chen, X. Bench to Bedside: Albumin Binders for Improved Cancer Radioligand Therapies. Bioconjugate Chem. 2019, 30, 487–502. [Google Scholar] [CrossRef]
- Wang, H.; Wu, T.; Li, M.; Tao, Y. Recent Advances in Nanomaterials for Colorimetric Cancer Detection. J. Mater. Chem. B 2021, 9, 921–938. [Google Scholar] [CrossRef] [PubMed]
- Nativi, C.; Papi, F.; Roelens, S. Tn Antigen Analogues: The Synthetic Way to “Upgrade” an Attracting Tumour Associated Carbohydrate Antigen (TACA). Chem. Commun. 2019, 55, 7729–7736. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, Z.; Majidzadeh, A.K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater. Sci. Eng. 2020, 6, 1852–1873. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, Y.; Jiang, N.; Wang, J.; Yu, M.; Zhuang, X. Preparation of Aptamer Responsive DNA Functionalized Hydrogels for the Sensitive Detection of α-Fetoprotein Using SERS Method. Bioconjugate Chem. 2020, 31, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cui, B.; Ma, Y.; Yan, X.; Xia, L.; Zhou, N.; Wang, M.; He, L.; Zhang, Z. Three-Dimensional Nitrogen-Doped Mesoporous Carbon Nanomaterials Derived from Plant Biomass: Cost-Effective Construction of Label-Free Electrochemical Aptasensor for Sensitively Detecting Alpha-Fetoprotein. Anal. Chim. Acta 2019, 1078, 125–134. [Google Scholar] [CrossRef]
- Chen, J.; Hu, W.; Wei, J.; Yu, F.; Wu, L.; Wang, C.; Wang, W.; Zuo, S.; Shang, B.; Chen, Q. An Electrochemical Aptasensing Platform for Carbohydrate Antigen 125 Based on the Use of Flower-like Gold Nanostructures and Target-Triggered Strand Displacement Amplification. Microchim. Acta 2019, 186, 388. [Google Scholar] [CrossRef]
- Chen, M.; Han, R.; Wang, W.; Li, Y.; Luo, X. Antifouling Aptasensor Based on Self-Assembled Loop-Closed Peptides with Enhanced Stability for CA125 Assay in Complex Biofluids. Anal. Chem. 2021, 93, 13555–13563. [Google Scholar] [CrossRef]
- Sadasivam, M.; Sakthivel, A.; Nagesh, N.; Hansda, S.; Veerapandian, M.; Alwarappan, S.; Manickam, P. Magnetic Bead-Amplified Voltammetric Detection for Carbohydrate Antigen 125 with Enzyme Labels Using Aptamer-Antigen-Antibody Sandwiched Assay. Sens. Actuators B Chem. 2020, 312, 127985. [Google Scholar] [CrossRef]
- Shao, K.; Wang, L.; Wen, Y.; Wang, T.; Teng, Y.; Shen, Z.; Pan, Z. Near-Infrared Carbon Dots-Based Fluorescence Turn on Aptasensor for Determination of Carcinoembryonic Antigen in Pleural Effusion. Anal. Chim. Acta 2019, 1068, 52–59. [Google Scholar] [CrossRef]
- Shamsuddin, S.H.; Jayne, D.G.; Tomlinson, D.C.; McPherson, M.J.; Millner, P.A. Selection and Characterisation of Affimers Specific for CEA Recognition. Sci. Rep. 2021, 11, 744. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, S.; Xue, J.; Zhou, X.; Lu, W.; Li, G.; Cao, X. Highly Sensitive Detection of Cytochrome c in the NSCLC Serum Using a Hydrophobic Paper Based—Gold Nanourchin Substrate. Biomed. Opt. Express 2020, 11, 7062–7078. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Song, Y.; Liu, J.; Zhou, N.; Zhang, C.; He, L.; Zhang, Z.; Liu, Z. Two-Dimensional Porphyrin-Based Covalent Organic Framework: A Novel Platform for Sensitive Epidermal Growth Factor Receptor and Living Cancer Cell Detection. Biosens. Bioelectron. 2019, 126, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Thangsunan, P.; Lal, N.; Tiede, C.; Moul, S.; Robinson, J.I.; Knowles, M.A.; Stockley, P.G.; Beales, P.A.; Tomlinson, D.C.; McPherson, M.J. Affimer-Based Impedimetric Biosensors for Fibroblast Growth Factor Receptor 3 (FGFR3): A Novel Tool for Detection and Surveillance of Recurrent Bladder Cancer. Sens. Actuators B Chem. 2021, 326, 128829. [Google Scholar] [CrossRef]
- Piloto, A.M.L.; Ribeiro, D.S.; Rodrigues, S.S.M.; Santos, J.L.; Sales, M.G.F. Label-Free Quantum Dot Conjugates for Human Protein IL-2 Based on Molecularly Imprinted Polymers. Sens. Actuators B Chem. 2020, 304, 127343. [Google Scholar] [CrossRef] [Green Version]
- Tertis, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric Aptasensor for the Label-Free and Selective Detection of Interleukin-6 for Colorectal Cancer Screening. Biosens. Bioelectron. 2019, 137, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, T.; Cui, L.; Li, Y.; Yang, F.; Zhang, X. Label-Free and Dual-Amplified Electrochemical Bioanalysis of MUC1 Based on an Inorganic-Organic Polymer Hybrid Mimic Peroxidase (AuNPs@ Cu7S4@ Cu/Mn-AzoPPOP) and Catalytic Hairpin Assembly. Sens. Actuators B Chem. 2021, 345, 130332. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, Y.E.; Lee, J.E.; Lee, H.J. A Surface Plasmon Resonance Biosensor in Conjunction with a DNA Aptamer-Antibody Bioreceptor Pair for Heterogeneous Nuclear Ribonucleoprotein A1 Concentrations in Colorectal Cancer Plasma Solutions. Biosens. Bioelectron. 2020, 154, 112065. [Google Scholar] [CrossRef]
- Chauhan, A.; Dhenadhayalan, N.; Lin, K.-C. Evanescent Wave Cavity Ring-down Spectroscopy Based Interfacial Sensing of Prostate-Specific Antigen. Sens. Actuators B Chem. 2021, 330, 129284. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Z.; Ma, C.; Yan, Y. A Fluorometric Aptamer Based Assay for Prostate Specific Antigen Based on Enzyme-Assisted Target Recycling. Sens. Actuators B Chem. 2020, 302, 127178. [Google Scholar] [CrossRef]
- Fu, Y.; Zou, K.; Liu, M.; Zhang, X.; Du, C.; Chen, J. Highly Selective and Sensitive Photoelectrochemical Sensing Platform for VEGF165 Assay Based on the Switching of Photocurrent Polarity of CdS QDs by Porous Cu2O-CuO Flower. Anal. Chem. 2019, 92, 1189–1196. [Google Scholar] [CrossRef]
- Li, H.; Warden, A.R.; Su, W.; He, J.; Zhi, X.; Wang, K.; Zhu, L.; Shen, G.; Ding, X. Highly Sensitive and Portable MRNA Detection Platform for Early Cancer Detection. J. Nanobiotechnology 2021, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.; Bi, Y.; Sun, M.; Bai, J.; Zhou, M. Ultrasensitive Electrochemiluminescence Biosensing Platform for MiRNA-21 and MUC1 Detection Based on Dual Catalytic Hairpin Assembly. Anal. Chim. Acta 2020, 1105, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Teng, X.; Li, Y.; Deng, R.; Li, J. Cascade Transcription Amplification of RNA Aptamer for Ultrasensitive MicroRNA Detection. Anal. Chem. 2019, 91, 5295–5302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Q.; Ba, Y.; Cheng, J.; Yang, H.; Cui, Y.; Kong, J.; Zhang, X. F-Containing Initiatior for Ultrasensitive Fluorescent Detection of Lung Cancer DNA via Atom Transfer Radical Polymerization. Anal. Chim. Acta 2020, 1094, 99–105. [Google Scholar] [CrossRef]
- Huang, R.; He, L.; Li, S.; Liu, H.; Jin, L.; Chen, Z.; Zhao, Y.; Li, Z.; Deng, Y.; He, N. A Simple Fluorescence Aptasensor for Gastric Cancer Exosome Detection Based on Branched Rolling Circle Amplification. Nanoscale 2020, 12, 2445–2451. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Q.; Jiang, W.; Zhang, H.; Cai, C. Dual-Aptamer-Assisted AND Logic Gate for Cyclic Enzymatic Signal Amplification Electrochemical Detection of Tumor-Derived Small Extracellular Vesicles. Anal. Chem. 2021, 93, 11298–11304. [Google Scholar] [CrossRef]
- Wu, D.; Yu, Y.; Jin, D.; Xiao, M.-M.; Zhang, Z.-Y.; Zhang, G.-J. Dual-Aptamer Modified Graphene Field-Effect Transistor Nanosensor for Label-Free and Specific Detection of Hepatocellular Carcinoma-Derived Microvesicles. Anal. Chem. 2020, 92, 4006–4015. [Google Scholar] [CrossRef]
- Liu, M.-X.; Zhang, H.; Zhang, X.-W.; Chen, S.; Yu, Y.-L.; Wang, J.-H. Nanozyme Sensor Array plus Solvent-Mediated Signal Amplification Strategy for Ultrasensitive Ratiometric Fluorescence Detection of Exosomal Proteins and Cancer Identification. Anal. Chem. 2021, 93, 9002–9010. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Wei, X.; Fan, Y.; Qian, H.; Li, S.; Xiang, Y.; Ding, S. Surface Plasmon Resonance Biosensor Using Hydrogel-AuNP Supramolecular Spheres for Determination of Prostate Cancer-Derived Exosomes. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.; Li, J.; Wang, M.; Wang, C.; Hu, B.; Zhou, N.; Zhang, Z. 0D/2D Heteronanostructure–Integrated Bimetallic CoCu-ZIF Nanosheets and MXene-Derived Carbon Dots for Impedimetric Cytosensing of Melanoma B16-F10 Cells. Microchim. Acta 2021, 188, 1–12. [Google Scholar] [CrossRef]
- Wang, S.-S.; Zhao, X.-P.; Liu, F.-F.; Younis, M.R.; Xia, X.-H.; Wang, C. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood. Anal. Chem. 2019, 91, 4413–4420. [Google Scholar] [CrossRef] [PubMed]
- Gopinathan, P.; Chiang, N.-J.; Wang, C.-H.; Sinha, A.; Tsai, Y.-C.; Tu, H.-C.; Hung, S.-C.; Hsu, P.-H.; Shan, Y.-S.; Lee, G.-B. Aptamer Probed Isolation of Circulating Tumor Cells in Cholangiocarcinoma Patients. Sens. Actuators B Chem. 2020, 322, 128569. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Dou, L.; Wang, Y.; Sun, K.; Zhang, X.; Song, G.; Zhao, C.; Li, K.; Bai, Y. Detection of Circulating Tumor Cells in Breast Cancer Patients by Nanopore Sensing with Aptamer-Mediated Amplification. ACS Sens. 2020, 5, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, X.; He, S.; Gao, Z.; Di, Y.; Lu, K.; Li, K.; Wang, J. Aptamer-DNA Concatamer-Quantum Dots Based Electrochemical Biosensing Strategy for Green and Ultrasensitive Detection of Tumor Cells via Mercury-Free Anodic Stripping Voltammetry. Biosens. Bioelectron. 2019, 126, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Deng, W.; He, Y.; Li, X.; Song, J.; Liu, R.; Yang, G.; Li, L. Ultrasensitive Aptasensor for Isolation and Detection of Circulating Tumor Cells Based on CeO2@ Ir Nanorods and DNA Walker. Biosens. Bioelectron. 2020, 168, 112516. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liang, D.; Zhao, D.; Yang, M. Photoelectrochemical Detection of Circulating Tumor Cells Based on Aptamer Conjugated Cu2O as Signal Probe. Biosens. Bioelectron. 2020, 151, 111976. [Google Scholar] [CrossRef]
- Li, C.; Zhang, M.; Zhang, Z.; Tang, J.; Zhang, B. Microcantilever Aptasensor for Detecting Epithelial Tumor Marker Mucin 1 and Diagnosing Human Breast Carcinoma MCF-7 Cells. Sens. Actuators B Chem. 2019, 297, 126759. [Google Scholar] [CrossRef]
- Dou, B.; Xu, L.; Jiang, B.; Yuan, R.; Xiang, Y. Aptamer-Functionalized and Gold Nanoparticle Array-Decorated Magnetic Graphene Nanosheets Enable Multiplexed and Sensitive Electrochemical Detection of Rare Circulating Tumor Cells in Whole Blood. Anal. Chem. 2019, 91, 10792–10799. [Google Scholar] [CrossRef]
- Rebelo, T.S.; Costa, R.; Brandão, A.T.; Silva, A.F.; Sales, M.G.F.; Pereira, C.M. Molecularly Imprinted Polymer SPE Sensor for Analysis of CA-125 on Serum. Anal. Chim. Acta 2019, 1082, 126–135. [Google Scholar] [CrossRef]
- Xu, X.; Ji, J.; Chen, P.; Wu, J.; Jin, Y.; Zhang, L.; Du, S. Salt-Induced Gold Nanoparticles Aggregation Lights up Fluorescence of DNA-Silver Nanoclusters to Monitor Dual Cancer Markers Carcinoembryonic Antigen and Carbohydrate Antigen 125. Anal. Chim. Acta 2020, 1125, 41–49. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Wang, L.; Lu, Y.; Li, J.; Lu, D.; Zhou, T.; Huang, Z.; Huang, J.; Huang, H. Interference-Free and High Precision Biosensor Based on Surface Enhanced Raman Spectroscopy Integrated with Surface Molecularly Imprinted Polymer Technology for Tumor Biomarker Detection in Human Blood. Biosens. Bioelectron. 2019, 143, 111599. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Niu, S.; Ge, J.; Luan, Q.; Jie, G. 3D DNA Nanosphere-Based Photoelectrochemical Biosensor Combined with Multiple Enzyme-Free Amplification for Ultrasensitive Detection of Cancer Biomarkers. Biosens. Bioelectron. 2020, 147, 111778. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Oka, Y.; Jeong, H.; Ohmuro-Matsuyama, Y.; Ueda, H. Detection and Destruction of HER2-positive Cancer Cells by Ultra Quenchbody-siRNA Complex. Biotechnol. Bioeng. 2020, 117, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Lahcen, A.A.; Rauf, S.; Aljedaibi, A.; de Oliveira Filho, J.I.; Beduk, T.; Mani, V.; Alshareef, H.N.; Salama, K.N. Laser-Scribed Graphene Sensor Based on Gold Nanostructures and Molecularly Imprinted Polymers: Application for Her-2 Cancer Biomarker Detection. Sens. Actuators B Chem. 2021, 347, 130556. [Google Scholar] [CrossRef]
- Gu, C.; Guo, C.; Li, Z.; Wang, M.; Zhou, N.; He, L.; Zhang, Z.; Du, M. Bimetallic ZrHf-Based Metal-Organic Framework Embedded with Carbon Dots: Ultra-Sensitive Platform for Early Diagnosis of HER2 and HER2-Overexpressed Living Cancer Cells. Biosens. Bioelectron. 2019, 134, 8–15. [Google Scholar] [CrossRef]
- Tian, S.; Zeng, K.; Yang, A.; Wang, Q.; Yang, M. A Copper Based Enzyme-Free Fluorescence ELISA for HER2 Detection. J. Immunol. Methods 2017, 451, 78–82. [Google Scholar] [CrossRef]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. CA125 and Ovarian Cancer: A Comprehensive Review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef]
- Telugunta, R.; Sinha, S.; Sumant, O. Cancer Biomarkers Market; Allied Market Research: Portland, OR, USA, 2020. [Google Scholar]
- Xu, S.; Wang, L.; Liu, Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew. Chem. Int. Ed. 2021, 60, 3858–3869. [Google Scholar] [CrossRef]
- Bodoki, A.E.; Iacob, B.-C.; Bodoki, E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers 2019, 11, 2085. [Google Scholar] [CrossRef] [Green Version]
- Hrynchak, I.; Santos, L.; Falcão, A.; Gomes, C.M.; Abrunhosa, A.J. Nanobody-Based Theranostic Agents for HER2-Positive Breast Cancer: Radiolabeling Strategies. Int. J. Mol. Sci. 2021, 22, 10745. [Google Scholar] [CrossRef]
- Hosseindokht, M.; Bakherad, H.; Zare, H. Nanobodies: A Tool to Open New Horizons in Diagnosis and Treatment of Prostate Cancer. Cancer Cell Int. 2021, 21, 580. [Google Scholar] [CrossRef] [PubMed]
- Boulenouar, H.; Amar, Y.; Bouchoutrouch, N.; Faouzi, M.; Cherrah, Y.; Sefrioui, H. Nanobodies and Their Medical Applications. Genet. Mol. Res. 2020, 19, 1–12. [Google Scholar] [CrossRef]
- Fu, Z.; Xiang, J. Aptamers, the Nucleic Acid Antibodies, in Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 2793. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, M.; Skerra, A. Engineered Protein Scaffolds as Next-Generation Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Surpeta, B.; Sequeiros-Borja, C.E.; Brezovsky, J. Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and Engineering. Int. J. Mol. Sci. 2020, 21, 2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Filter Step on Web of Science | Number Records Obtained |
---|---|
All fields: cancer* and biosens* | 12,439 |
Languages: English | 12,344 |
Document types: Articles | 9953 |
Year published: 2000–2021 | 9829 |
Topic: cancer* and biosens* | 6586 |
Topic: molecular* imprint* polymer* OR synthetic antibod* OR phage display OR recombinant antibod* OR aptamer* OR affimer* OR affibody* | 904 |
Publication years: 2019–2021 | 362 |
Abstract analysis: duplicates, out of the scope of cancer detection, not reporting limit of detection or lowest concentration, and journal quartile different from 1 | 131 |
Inclusion Criteria | Exclusion Criteria |
---|---|
Scientific articles present in Web of Science | Documents different from scientific articles (reviews, proceedings papers, book chapters, meeting abstracts, etc.) |
Articles related to cancer detection | Articles published in languages different from English |
Articles related to biosensor development | Articles outside the scope of the biorecognition engineering technologies |
Articles published from 2000 to 2021 | |
Articles published in high impact journals (Quartile 1) |
Advantages | Disadvantages |
---|---|
Its production is cheaper than conventional antibodies because animal or cell lines are not required. It is capable of withstanding harsh conditions: temperatures up to 80 °C and pH range: 2 to 9. It can be easily manufactured in large quantities directly on the devices, so reactors are not needed. Life span at room temperature: 6 to 12 months. | Template leakage. Poor accessibility of the binding sites. Low binding capacity. Non-specific binding. It is difficult to create polymer cavities specific for complex molecules such as proteins. Relatively unstable three-dimensional conformations. Possible rearrangement processes inside the polymer. Poor solubility of the template in solvents, solid substrate. |
Advantages | Disadvantages |
---|---|
Its production is less expensive than conventional technologies because it does not require animals or animal cell lines. The structure of the biorecognition element can be manipulated to improve affinity. It can be produced in recombinant bacteria bioreactors with a higher yield than animal cell lines. An increased repertoire of analytes: non-immunogenic small molecules can be analyzed. | It requires library design for recombinant technology. It requires genetic engineering facilities. It contains immunogenic regions that can generate negative immune responses in patients. The use of recombinant technology and protein engineering is usually time-consuming. |
Advantages | Disadvantages |
---|---|
Smaller size: more recognition sites in the same surface area increase the sensor’s sensitivity. Libraries with random sequences of DNA, RNA, or amino acids can be used. Directed evolution improves the affinity for the target molecule: KD range 10−9 to 10−12. The selection of the best candidates can improve thermodynamic and chemical stability. It can use specific functional groups for the attachment on biosensors surfaces. Candidates with reduced immunogenic effects can be selected. It has an extensive repertoire of analytes that are not immunogenic. | It requires library selection and combinatorial mutagenesis. It produces weaker signals than antibodies in some cases. The design and selection methods are complex and time-consuming. In some cases, the use of these technologies is limited by patents and intellectual property rights. |
Article Number | Biomarker or Cancer Entity | Biomarker Abbreviation | Biorecognition Technology | Detection Methods | Limit of Detection/Lowest Concentration Tested * | Cancer Type | Real Patient Samples | Sample Type | Number of Cancer Patients | Reference |
---|---|---|---|---|---|---|---|---|---|---|
1 | Alpha-fetoprotein | AFP | Aptamer (AMM) | Magneto-optical | 50 pg/mL (0.71 pM) | Liver | No | NA | NA | Wang et al. [46] |
2 | Alpha-fetoprotein | AFP | Aptamer (AMM) | Electrochemical | 60.8 fg/mL (0.87 fM) | Multiple | Yes | Serum | 12 | Huang et al. [47] |
3 | Cancer antigen 125 | CA125 | Aptamer (AMM) | Electrochemical | 5.0 pg/mL (45.5 fM) | Ovarian | No | NA | NA | Chen et al. [48] |
4 | Cancer antigen 125 | CA125 | Aptamer (AMM) | Electrochemical | 0.027 U/mL | Ovarian | Yes | Serum | 5 | Chen et al. [49] |
5 | Cancer antigen 125 | CA125 | Aptamer (AMM) | Magneto-electrochemical | 0.08 U/mL | Ovarian | No | NA | NA | Sadasivam et al. [50] |
6 | Carcinoembryonic antigen | CEA | Aptamer (AMM) | Optical | 0.02 pg/mL (0.1 fM) | Lung | No | NA | NA | Shao et al. [51] |
7 | Carcinoembryonic antigen | CEA | Phage display and Affimer (AMM) | Optical | nM * | Colorectal | No | NA | NA | Shamsuddin et al. [52] |
8 | Cytochrome C | CYC | Aptamer (AMM) | Optical | 1.79 pg/mL (0.15 pM) | Lung | Yes | Serum | NS | Sun et al. [53] |
9 | Epidermal growth factor receptor and MCF-7 cells | EGFR | Aptamer (AMM) | Electrochemical | 5.64 fg/mL (33.2 aM) EGFR and 61 cells/mL MCF-7 | Breast | Yes | Serum | NS | Yan et al. [54] |
10 | Fibroblast growth factor receptor 3 | FGFR3 | Affimer (AMM) | Electrochemical | pM * | Bladder | No | NA | NA | Thangsunan et al. [55] |
11 | Human interleukin 2 | IL-2 | Molecularly imprinted polymer (MIP) | Optical | 5.91 fg/mL (0.37 fM) | Multiple | No | NA | NA | Piloto et al. [56] |
12 | Interleukin 6 | IL-6 | Aptamer (AMM) | Electrochemical | 1.6 pg/mL (76.2 fM) | Colorectal | Yes | Blood | 3 | Tertis et al. [57] |
13 | Mucin 1 | MUC1 | Aptamer (AMM) | Electrochemical | 0.72 fg/mL (5 aM) | Multiple | No | NA | NA | Zhao et al. [58] |
14 | Nuclear ribonucleoprotein A1 | HNRNPA1 | Affimer (AMM) | Optical | 0.1 nM | Colorectal | Yes | Plasma | 8 | Lee et al. [59] |
15 | Prostate-specific antigen | PSA | Aptamer (AMM) | Optical | 0.54 fM (18.6 fg/mL) | Prostate | No | NA | NA | Chauhan et al. [60] |
16 | Prostate-specific antigen | PSA | Aptamer (AMM) | Electrochemical | 0.043 pg/mL (1.26 fM) | Prostate | No | NA | NA | Chen et al. [61] |
17 | Vascular endothelial growth factor 165 | VEGF165 | Aptamer (AMM) | Photoelectrochemical | 0.3 fM | Breast | No | NA | NA | Fu et al. [62] |
18 | Glypican 1 mRNA | GPC1 mRNA | Aptamer (AMM) | Optical | 100 fM | Pancreatic | No | NA | NA | Li et al. [63] |
19 | MicroRNA-21 and Mucin 1 | miRNA-21 and MUC1 | Aptamer (AMM) | Optical | 11 aM miRNA-21 and 0.4 fg/mL (3.3 aM) MUC1 | Multiple | No | NA | NA | Li et al. [64] |
20 | MicroRNAs | miRNAs | Aptamer (AMM) | Optical | 5.12 aM | Multiple | No | NA | NA | Zhou et al. [65] |
21 | Target DNA | NA | Aptamer (AMM) | Magneto-optical | 35.5 aM | Lung | No | NA | NA | Zhang et al. [66] |
22 | Exosomes | NA | Aptamer (AMM) | Electrochemical | 17 particles/mL | Breast | Yes | Plasma | NS | Kashefi-Kheyrabadi et al. [20] |
23 | Exosomes | NA | Aptamer (AMM) | Optical | 4.27 × 104 particles/mL | Gastric | Yes | Plasma | NS | Huang et al. [67] |
24 | Exosomes | NA | Aptamer (AMM) | Electrochemical | 920 particles/μL (92 × 103 particles/mL) | Leukemia | No | NA | NA | Yu et al. [68] |
25 | Exosomes | NA | Aptamer (AMM) | Electrochemical | 84 particles/μL (8.4 × 103 particles/mL) | Liver | Yes | Blood | 10 | Wu et al. [69] |
26 | Exosomes | NA | Aptamer (AMM) | Optical | 2.5 × 103 particles/mL | Multiple | Yes | Serum | 12 | Liu et al. [70] |
27 | Exosomes | NA | Aptamer (AMM) | Optical | 1 × 105 particles/mL | Prostate | Yes | Serum | 10 | Chen et al. [71] |
28 | B16-F10 cells | NA | Aptamer (AMM) | Electrochemical | 33 cells/mL | Melanoma | No | NA | NA | Liu et al. [72] |
29 | CCRF-CEM and MCF-7 cells | NA | Aptamer (AMM) | Photoelectrochemical | 5 cells/mL CCRF-CEM and 10 cells/mL MCF-7 | Multiple | No | NA | NA | Wang et al. [73] |
30 | Circulating tumor cells | NA | Aptamer (AMM) | Magneto-optical | >1 cell/mL | Liver | Yes | Blood | NS | Gopinathan et al. [74] |
31 | Circulating tumor cells | NA | Aptamer (AMM) | Nanopore sequencing | 1 cell/mL | Breast | Yes | Blood | 7 | Li et al. [75] |
32 | K562 cells | NA | Aptamer (AMM) | Electrochemical | 60 cells/mL | Leukemia | No | NA | NA | Zheng et al. [76] |
33 | MCF-7 cells | NA | Aptamer (AMM) | Electrochemical | 1 cell/mL | Breast | Yes | Blood | 8 | Shen et al. [77] |
34 | MCF-7 cells | NA | Aptamer (AMM) | Magneto-photoelectrochemical | 1 cell/mL | Breast | No | NA | NA | Luo et al. [78] |
35 | MCF-7 cells and Mucin 1 | MUC1 | Aptamer (AMM) | Microcantilever | 213 cells/mL and 0.9 nM MUC1 | Breast | No | NA | NA | Li et al. [79] |
36 | Ramos and CCRF-CEM cells | NA | Aptamer (AMM) | Magneto-electrochemical | 4 cells/mL Ramos and 3 cells/mL CCRF-CEM | Leukemia | Yes | Blood | NS | Dou et al. [80] |
Article Number | Biomarker or Cancer Entity | Biomarker Abbreviation | Biorecognition Technology | Detection Methods | Limit of Detection/Lowest Concentration Tested * | Cancer Type | Real Patient Samples | Sample Type | Number of Cancer Patients | Reference |
---|---|---|---|---|---|---|---|---|---|---|
1 | Carbohydrate antigen 125 | CA125 | Molecularly imprinted polymer (MIP) | Electrochemical | 0.01 U/mL | Ovarian | No | NA | NA | Rebelo et al. [81] |
2 | Carbohydrate antigen 125 | CA125 | Aptamer (AMM) | Optical | 0.015 U/mL CA125 | Multiple | Yes | Serum | 2 | Xu et al. [82] |
3 | Carcinoembryonic antigen | CEA | Molecularly imprinted polymer (MIP) | Magneto-optical | 0.064 pg/mL (0.35 fM) | Multiple | Yes | Serum | 3 | Lin et al. [83] |
4 | Carcinoembryonic antigen | CEA | Aptamer (AMM) | Photoelectrochemical | 0.12 fg/mL (0.66 aM) | Multiple | Yes | Serum | NS | Gao et al. [84] |
5 | Human epidermal growth factor receptor 2 | HER2 | Recombinant antibody (RA) | Optical | 20 pM | Breast | No | NA | NA | Dong et al. [85] |
6 | Human epidermal growth factor receptor 2 | HER2 | Molecularly imprinted polymer (MIP) | Electrochemical | 0.43 ng/mL (2.3 pM) | Breast | No | NA | NA | Lahcen et al. [86] |
7 | Human epidermal growth factor receptor 2 and MCF-7 cells | HER2 | Aptamer (AMM) | Electrochemical | 19 fg/mL (0.1 fM) HER2 and 23 cells/mL | Breast | No | NA | NA | Gu et al. [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayoral-Peña, K.; González Peña, O.I.; Orrantia Clark, A.M.; Flores-Vallejo, R.d.C.; Oza, G.; Sharma, A.; De Donato, M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers 2022, 14, 1867. https://doi.org/10.3390/cancers14081867
Mayoral-Peña K, González Peña OI, Orrantia Clark AM, Flores-Vallejo RdC, Oza G, Sharma A, De Donato M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers. 2022; 14(8):1867. https://doi.org/10.3390/cancers14081867
Chicago/Turabian StyleMayoral-Peña, Kalaumari, Omar Israel González Peña, Alexia María Orrantia Clark, Rosario del Carmen Flores-Vallejo, Goldie Oza, Ashutosh Sharma, and Marcos De Donato. 2022. "Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods" Cancers 14, no. 8: 1867. https://doi.org/10.3390/cancers14081867
APA StyleMayoral-Peña, K., González Peña, O. I., Orrantia Clark, A. M., Flores-Vallejo, R. d. C., Oza, G., Sharma, A., & De Donato, M. (2022). Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers, 14(8), 1867. https://doi.org/10.3390/cancers14081867