Validation of Ultrasound Risk Stratification Systems for Cervical Lymph Node Metastasis in Patients with Thyroid Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics of the Study Population
2.2. Malignancy Risk Based on Each Ultrasound (US) Feature
2.3. Malignancy Risk According to US Classification
2.4. Malignancy Risk of Suspicious Lymph Nodes (LNs) According to Nodal Size and Number of Suspicious Features
2.5. Association of Nodal Size (Diameter), Shape, and Primary Tumor Characteristics with Malignancy in the LN Groups
2.6. Suggested Risk Stratification System of Cervical LNs in Patients with Thyroid Cancer
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. US Imaging and US-Guided Biopsy
4.3. Reference Standard
4.4. Image Analysis
4.5. Risk Stratification of Cervical LNs
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stack, B.C., Jr.; Ferris, R.L.; Goldenberg, D.; Haymart, M.; Shaha, A.; Sheth, S.; Sosa, J.A. American Thyroid Association Consensus Review and Statement Regarding the Anatomy, Terminology, and Rationale for Lateral Neck Dissection in Differentiated Thyroid Cancer. Thyroid 2012, 22, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, M.W.; Bauer, A.J.; Bernet, V.A.; Ferris, R.L.; Loevner, L.A.; Mandel, S.J.; Orloff, L.A.; Randolph, G.W.; Steward, D.L. American Thyroid Association Statement on Preoperative Imaging for Thyroid Cancer Surgery. Thyroid 2015, 25, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Montesano, T.; Torlontano, M.; Attard, M.; Monzani, F.; Tumino, D.; Costante, G.; Meringolo, D.; Bruno, R.; Trulli, F.; et al. Papillary Thyroid Cancer: Time Course of Recurrences During Postsurgery Surveillance. J. Clin. Endocrinol. Metab. 2013, 98, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Tufano, R.P.; Clayman, G.; Heller, K.S.; Inabnet, W.B.; Kebebew, E.; Shaha, A.; Steward, D.L.; Tuttle, R.M. Management of recurrent/persistent nodal disease in patients with differentiated thyroid cancer: A critical review of the risks and benefits of surgical intervention versus active surveillance. Thyroid 2015, 25, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Shaha, A.R. Complications of neck dissection for thyroid cancer. Ann. Surg. Oncol. 2008, 15, 397–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Baek, J.H.; Ha, E.J.; Sung, J.Y.; Shin, J.H.; Kim, J.-H.; Lee, M.K.; Jung, S.L.; Lee, Y.H.; Ahn, H.S.; et al. 2020 Imaging Guidelines for Thyroid Nodules and Differentiated Thyroid Cancer: Korean Society of Thyroid Radiology. Korean J. Radiol. 2021, 22, 840–860. [Google Scholar] [CrossRef]
- Hoang, J.K.; Oldan, J.D.; Mandel, S.J.; Policeni, B.; Agarwal, V.; Burns, J.; Bykowski, J.; Harvey, H.B.; Juliano, A.F.; Kennedy, T.A.; et al. ACR Appropriateness Criteria(®) Thyroid Disease. J. Am. Coll. Radiol. 2019, 16, S300–S314. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.J.; Lim, H.K.; Yoon, J.H.; Baek, J.H.; Do, K.H.; Choi, M.; Choi, J.A.; Lee, M.; Na, D.G. Primary Imaging Test and Appropriate Biopsy Methods for Thyroid Nodules: Guidelines by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency. Korean J. Radiol. 2018, 19, 623–631. [Google Scholar] [CrossRef]
- Sugitani, I.; Ito, Y.; Takeuchi, D.; Nakayama, H.; Masaki, C.; Shindo, H.; Teshima, M.; Horiguchi, K.; Yoshida, Y.; Kanai, T.; et al. Indications and Strategy for Active Surveillance of Adult Low-Risk Papillary Thyroid Microcarcinoma: Consensus Statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid 2021, 31, 183–192. [Google Scholar] [CrossRef]
- Leenhardt, L.; Erdogan, M.F.; Hegedus, L.; Mandel, S.; Paschke, R.; Rago, T.; Russ, G. 2013 European Thyroid Association Guidelines for Cervical Ultrasound Scan and Ultrasound-Guided Techniques in the Postoperative Management of Patients with Thyroid Cancer. Eur. Thyroid J. 2013, 2, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, E.J.; Chung, S.R.; Na, D.G.; Ahn, H.S.; Chung, J.; Lee, J.Y.; Park, J.S.; Yoo, R.-E.; Baek, J.H.; Baek, S.M.; et al. 2021 Korean thyroid imaging reporting and data system and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2021, 22, 2094–2123. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.-H.; Lee, Y.H.; Lim, H.K.; Moon, W.-J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leboulleux, S.; Girard, E.; Rose, M.; Travagli, J.P.; Sabbah, N.; Caillou, B.; Hartl, D.M.; Lassau, N.; Baudin, E.; Schlumberger, M. Ultrasound Criteria of Malignancy for Cervical Lymph Nodes in Patients Followed Up for Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2007, 92, 3590–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Na, D.G.; Baek, J.H.; Sung, J.Y.; Kim, J.-H.; Kim, J.K.; Choi, Y.J.; Seo, H. Thyroid Imaging Reporting and Data System Risk Stratification of Thyroid Nodules: Categorization Based on Solidity and Echogenicity. Thyroid 2016, 26, 562–572. [Google Scholar] [CrossRef]
- Rosário, P.W.S.; De Faria, S.; Bicalho, L.; Alves, M.F.G.; Borges, M.A.R.; Purisch, S.; Padrão, E.L.; Rezende, L.L.; Barroso, A.L. Ultrasonographic Differentiation between Metastatic and Benign Lymph Nodes in Patients with Papillary Thyroid Carcinoma. J. Ultrasound Med. 2005, 24, 1385–1389. [Google Scholar] [CrossRef]
- Ahuja, A.T.; Ying, M.; Ho, S.Y.; Antonio, G.; Lee, Y.P.; King, A.D.; Wong, K.T. Ultrasound of malignant cervical lymph nodes. Cancer Imaging 2008, 8, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Takashima, S.; Sone, S.; Takayama, F.; Wang, Q.; Kobayashi, T.; Horii, A.; Yoshida, J.I. Papillary thyroid carcinoma: MR diagnosis of lymph node metastasis. AJNR: Am. J. Neuroradiol. 1998, 19, 509–513. [Google Scholar]
- Hoang, J.K.; Branstetter, B.F.; Gafton, A.R.; Lee, W.K.; Glastonbury, C. Imaging of thyroid carcinoma with CT and MRI: Approaches to common scenarios. Cancer Imaging 2013, 13, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Kim, J.; Kwak, J.Y.; Kim, M.J.; Chang, H.-S.; Kim, E.-K. Preoperative Staging of Papillary Thyroid Carcinoma: Comparison of Ultrasound Imaging and CT. AJR Am. J. Roentgenol. 2009, 193, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Park, J.S.; Son, K.-R.; Kim, J.-H.; Jeon, S.J.; Na, D.G. Preoperative Diagnosis of Cervical Metastatic Lymph Nodes in Papillary Thyroid Carcinoma: Comparison of Ultrasound, Computed Tomography, and Combined Ultrasound with Computed Tomography. Thyroid 2008, 18, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Orloff, L.A. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope 2011, 121, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Sywak, M.; Cornford, L.; Roach, P.; Stalberg, P.; Sidhu, S.; Delbridge, L. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery 2006, 140, 1000–1005; discussion 1005–1007. [Google Scholar] [CrossRef]
- Ito, Y.; Tomoda, C.; Uruno, T.; Takamura, Y.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; Kuma, K.; Miyauchi, A. Preoperative ultrasonographic examination for lymph node metastasis: Usefulness when designing lymph node dissection for papillary microcarcinoma of the thyroid. World J. Surg. 2004, 28, 498–501. [Google Scholar]
- Cranshaw, I.M.; Carnaille, B. Micrometastases in thyroid cancer. An important finding? Surg. Oncol. 2008, 17, 253–258. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, B.-W.; Pyo, J.Y.; Hong, S.; Chang, H.-S.; Park, C.S. Macrometastasis in Papillary Thyroid Cancer Patients is Associated with Higher Recurrence in Lateral Neck Nodes. World J. Surg. 2018, 42, 123–129. [Google Scholar] [CrossRef]
- Jeon, M.J.; Yoon, J.H.; Han, J.M.; Yim, J.H.; Hong, S.J.; Song, D.E.; Ryu, J.-S.; Kim, T.Y.; Kim, W.B. The prognostic value of the metastatic lymph node ratio and maximal metastatic tumor size in pathological N1a papillary thyroid carcinoma. Eur. J. Endocrinol. 2013, 168, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Kuna, S.K.; Bracic, I.; Tesic, V.; Kuna, K.; Herceg, G.H.; Dodig, D. Ultrasonographic differentiation of benign from malignant neck lymphadenopathy in thyroid cancer. J. Ultrasound Med. 2006, 25, 1531–1537; quiz 1538–1540. [Google Scholar] [CrossRef]
- Sohn, Y.-M.; Kwak, J.Y.; Kim, E.-K.; Moon, H.J.; Kim, S.J.; Kim, M.J. Diagnostic Approach for Evaluation of Lymph Node Metastasis from Thyroid Cancer Using Ultrasound and Fine-Needle Aspiration Biopsy. Am. J. Roentgenol. 2010, 194, 38–43. [Google Scholar] [CrossRef]
- Kuo, S.-F.; Lin, S.-F.; Chao, T.-C.; Hsueh, C.; Lin, K.-J.; Lin, J.-D. Prognosis of Multifocal Papillary Thyroid Carcinoma. Int. J. Endocrinol. 2013, 2013, 809382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, R.E.; Kim, J.H.; Bae, J.M.; Hwang, I.; Kang, K.M.; Yun, T.J.; Choi, S.H.; Sohn, C.-H.; Rhim, J.H.; Park, S.-W.; et al. Ultrasonographic indeterminate lymph nodes in preoperative thyroid cancer patients: Malignancy risk and ultrasonographic findings predictive of malignancy. Korean J. Radiol. 2020, 21, 598–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Yin, L.; Wei, X.; Zhang, S.; Song, Y.; Luo, B.; Li, J.; Qian, L.; Cui, L.; Chen, W.; et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: The C-TIRADS. Endocrine 2020, 70, 256–279. [Google Scholar] [CrossRef] [PubMed]
- Katoh, R.; Sasaki, J.; Kurihara, H.; Suzuki, K.; Iida, Y.; Kawaoi, A. Multiple thyroid involvement (intraglandular metastasis) in papillary thyroid carcinoma. A clinicopathologic study of 105 consecutive patients. Cancer 1992, 70, 1585–1590. [Google Scholar] [CrossRef]
- Park, S.Y.; Park, Y.J.; Lee, Y.J.; Lee, H.S.; Choi, S.H.; Choe, G.; Jang, H.-C.; Park, S.H.; Park, D.J.; Cho, B.Y.; et al. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma: Evidence of independent clonal origin in distinct tumor foci. Cancer 2006, 107, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Shattuck, T.M.; Westra, W.H.; Ladenson, P.W.; Arnold, A. Independent Clonal Origins of Distinct Tumor Foci in Multifocal Papillary Thyroid Carcinoma. N. Engl. J. Med. 2005, 352, 2406–2412. [Google Scholar] [CrossRef]
- Al Afif, A.; Williams, B.A.; Rigby, M.H.; Bullock, M.J.; Taylor, S.M.; Trites, J.; Hart, R.D. Multifocal papillary thyroid cancer increases the risk of central lymph node metastasis. Thyroid 2015, 25, 1008–1012. [Google Scholar] [CrossRef]
- Qu, N.; Zhang, L.; Ji, Q.-H.; Zhu, Y.-X.; Wang, Z.-Y.; Shen, Q.; Wang, Y.; Li, D.-S. Number of tumor foci predicts prognosis in papillary thyroid cancer. BMC Cancer 2014, 14, 914. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.R.; Baek, J.H.; Choi, Y.J.; Sung, T.-Y.; Song, D.E.; Kim, T.Y.; Lee, J.H. Diagnostic algorithm for metastatic lymph nodes of differentiated thyroid carcinoma. Cancers 2021, 13, 1338. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, Y.I.; Lim, J.A.; Choi, H.S.; Cho, S.W.; Kim, K.W.; Park, H.J.; Paeng, J.C.; Park, Y.J.; Yi, K.H.; et al. Thyroglobulin in washout fluid from lymph node fine-needle aspiration biopsy in papillary thyroid cancer: Large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J. Clin. Endocrinol. Metab. 2013, 98, 1061–1068. [Google Scholar] [CrossRef]
- Nicastri, A.D.; Foote, F.W., Jr.; Frazell, E.L. Benign Thyroid Inclusions in Cervical Lymph Nodes. JAMA J. Am. Med Assoc. 1965, 194, 1–4. [Google Scholar] [CrossRef]
- Vassallo, P.; Wernecke, K.; Roos, N.; Peters, P.E. Differentiation of benign from malignant superficial lymphadenopathy: The role of high-resolution US. Radiology 1992, 183, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.R.; Baek, J.H.; Choi, Y.J.; Sung, T.-Y.; Song, D.E.; Kim, T.Y.; Lee, J.H. Sonographic assessment of the extent of extrathyroidal extension in thyroid cancer. Korean J. Radiol. 2020, 21, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Eun, C.K.; In, H.S.; Kim, M.; Jung, S.; Bae, S. Sonographic Differentiation of Asymptomatic Diffuse Thyroid Disease from Normal Thyroid: A Prospective Study. AJNR Am. J. Neuroradiol. 2010, 31, 1956–1960. [Google Scholar] [CrossRef] [Green Version]
Parameter | Benign | Malignant | p |
---|---|---|---|
No. of patients | 127 | 155 | - |
No. of female patients, N (%) | 95 (74.8%) | 115 (74.2%) | 0.951 |
Age at diagnosis (years) | 45.7 ± 12.0 | 47.5 ± 15.0 | 0.209 |
No. of LNs | 155 | 191 | - |
Method of diagnosis | 0.098 | ||
FNA | 133 (85.8%) | 157 (82.2%) | |
CNB | 30 (19.4%) | 22 (11.6%) | |
Both | 3 (1.9%) | 13 (6.8%) | |
Mean maximal size of largest primary tumor | 9.7 ± 6.5 | 11.7 ± 7.9 | 0.214 |
Mean maximal size of LN | 9.4 ± 4.4 | 11.1 ± 6.7 | 0.004 |
Mean SD of LN | 4.6 ± 2.0 | 7.1 ± 4.3 | <0.001 |
Laterality respect to the largest primary tumor | 0.066 | ||
Ipsilateral | 125 (80.6%) | 167 (88.4%) | |
Contralateral | 30 (19.4%) | 22 (11.6%) | |
Location | 0.001 | ||
Level I | 2 (1.3%) | 0 (0.0%) | |
Level II | 30 (19.4%) | 17 (8.9%) | |
Level III | 41 (26.5%) | 54 (28.3%) | |
Level IV | 61 (39.4%) | 85 (44.5%) | |
Level V | 7 (4.5%) | 2 (1.0%) | |
Level VI | 8 (5.1%) | 27 (14.1%) | |
Supraclavicular fossa | 6 (3.9%) | 6 (3.1%) |
Malignancy Risks | Univariable * | Multivariable * | |||||
---|---|---|---|---|---|---|---|
US Features | All (N, %) | No. of Malignant LNs (%) | Malignancy Risk (%) | Crude OR (95% CI) | p | Adjusted OR (95% CI) | p |
Any echogenic foci | 133 (38.4) | 117 (61.3) | 88.0 | 12.7 (7.0, 22.9) | <0.001 | 2.6 (1.0, 7.5) | 0.045 |
Punctate echogenic foci | 122 (35.3) | 110 (57.6) | 90.2 | 15.0 (7.8, 28.8) | <0.001 | ||
Large echogenic foci | 25 (7.2) | 21 (11.0) | 84.0 | 4.4 (1.5, 13.2) | 0.008 | ||
Hyperechogenicity | 148 (42.8) | 133 (69.6) | 89.8 | 18.0 (10.3, 35.0) | <0.001 | 11.9 (4.4, 31.9) | <0.001 |
Cystic change | 62 (17.9) | 60 (31.4) | 96.8 | 33.1 (7.9, 138.1) | <0.001 | 22.9 (2.8, 189.1) | 0.004 |
Abnormal vascularity | 86 (24.9) | 77 (40.3) | 87.1 | 2.6 (1.8, 3.7) | <0.001 | 2.0 (1.2, 3.4) | 0.014 |
Loss of hilum | 259 (74.9) | 175 (91.6) | 68.0 | 7.6 (0.9, 12.5) | <0.001 | ||
Eccentric hilum ** | 21 (6.1) | 3 (1.6) | 14.3 | ||||
Round shape (L/S ratio < 2.0) | 229 (66.2) | 156 (81.7) | 68.6 | 4.5 (2.8, 7.3) | <0.001 | ||
Round shape (L/S ratio < 1.5) | 106 (30.6) | 82 (42.9) | 77.4 | 3.8 (2.3, 6.5) | <0.001 | 2.1 (0.9, 5.0) | 0.107 |
LD > 10.7 mm *** | 108 (31.2) | 74 (38.7) | 71.3 | 2.5 (1.6, 4.1) | <0.001 | ||
SD > 5.4 mm *** | 147 (42.5) | 113 (59.2) | 76.9 | 5.4 (3.3, 8.7) | <0.001 | ||
Nonparallel | 12 (3.5) | 9 (4.7) | 75.0 | 2.4 (0.6, 9.0) | 0.198 | ||
Irregular shape | 36 (10.4) | 33 (17.3) | 91.7 | 10.1 (3.0, 33.5) | <0.001 |
Classification | All, n (%) | Benign, n (%) | Malignant, n (%) | Malignancy Risk (%) |
---|---|---|---|---|
KSThR | ||||
Probably benign | 80 (23.1%) | 78 (50.3%) | 2 (1.0%) | 2.5 |
Indeterminate | 69 (19.9%) | 49 (31.6%) | 20 (10.5%) | 29.0 |
Suspicious | 197 (56.9%) | 28 (18.1%) | 169 (88.5%) | 85.8 |
ETA | ||||
Normal | 46 (13.3%) | 45 (29.0%) | 1 (0.5%) | 2.2 |
Unclassified | 53 (15.3%) | 45 (29.0%) | 8 (4.2%) | 15.1 |
(1) Normal hilum + round shape | 5 (1.4%) | 5 (3.2%) | 0 (0%) | 0% |
(2) Normal hilum + increased size | 17 (4.9%) | 16 (10.3%) | 1 (0.5%) | 5.9% |
(3) Absent hilum + oval shape + normal size, no central vascularity | 31 (9.0%) | 24 (15.5%) | 7 (3.7%) | 22.6% |
Indeterminate | 56 (16.2%) | 41 (26.5%) | 15 (7.9%) | 26.8 |
Suspicious for malignancy | 191 (55.2%) | 24 (15.5%) | 167 (87.4%) | 87.4 |
Malignant LNs, N (%) | All Suspicious LNs, N (%) | Malignancy Risk (%) | |
---|---|---|---|
Size thresholds | |||
SD < 3 mm | 8 (4.7) | 11 (5.8) | 72.7 |
3≤ SD < 5 mm | 42 (24.9) | 54 (28.3) | 77.8 |
5≤ SD < 7 mm | 49 (29.0) | 57 (29.8) | 86.0 |
7≤ SD <10 mm | 38 (22.5) | 43 (22.5) | 88.4 |
SD ≥ 10 mm | 32 (18.9) | 32 (16.8) | 100.0 |
All | 169 (100.0) | 197 (100.0) | 85.8 |
Number of suspicious US features | |||
None | 22 | 149 | 14.8 |
1 | 21 (14.2) | 28 (11.1) | 75.0 |
2 | 72 (45.2) | 89 (37.7) | 80.9 |
3 | 54 (29.4) | 58 (28.3) | 93.1 |
4 | 22 (11.2) | 22 (11.5) | 100.0 |
Any suspicious feature | 169 (100.0) | 197 (100.0) | 85.8 |
US Features | Univariable | Multivariable | ||
---|---|---|---|---|
Crude OR (95% CI) | p | Adjusted OR (95% CI) | p | |
Diffuse thyroid disease | 1.03 (0.3, 3.3) | 0.964 | ||
Maximal diameter of largest tumor | 0.99 (0.9, 1.1) | 0.843 | ||
Gross ETE of largest tumor | 1.9 × 10−9 | 1.9 × 10−9 | ||
Multiplicity of tumor | 8.3 (2.7, 28.2) | <0.001 | 7.4 (2.0, 30.4) | 0.003 |
Bilaterality of tumor | 5.1 (1.1, 27.4) | 0.039 | 1.3 (0.2, 8.3) | 0.802 |
Laterality of LN a | 1.6 (0.2, 10.6) | 0.626 | ||
LD of LN | 0.83 (0.6, 1.2) | 0.18 | 0.8 (0.6, 1.1) | 0.259 |
SD of LN | 0.76 (0.5, 1.2) | 0.842 | ||
L/S ratio of LN | 0.67 (0.2, 2.0) | 0.471 | ||
Round shape (L/S < 2.0) | 1.5 (0.5, 4.5) | 0.451 | - | - |
Round shape (L/S < 1.5) | 1.0 (0.3, 3.4) | 0.964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.Y.; Yoo, R.-E.; Rhim, J.H.; Lee, K.H.; Choi, K.S.; Hwang, I.; Kang, K.M.; Kim, J.-h. Validation of Ultrasound Risk Stratification Systems for Cervical Lymph Node Metastasis in Patients with Thyroid Cancer. Cancers 2022, 14, 2106. https://doi.org/10.3390/cancers14092106
Lee JY, Yoo R-E, Rhim JH, Lee KH, Choi KS, Hwang I, Kang KM, Kim J-h. Validation of Ultrasound Risk Stratification Systems for Cervical Lymph Node Metastasis in Patients with Thyroid Cancer. Cancers. 2022; 14(9):2106. https://doi.org/10.3390/cancers14092106
Chicago/Turabian StyleLee, Ji Ye, Roh-Eul Yoo, Jung Hyo Rhim, Kyung Hoon Lee, Kyu Sung Choi, Inpyeong Hwang, Koung Mi Kang, and Ji-hoon Kim. 2022. "Validation of Ultrasound Risk Stratification Systems for Cervical Lymph Node Metastasis in Patients with Thyroid Cancer" Cancers 14, no. 9: 2106. https://doi.org/10.3390/cancers14092106
APA StyleLee, J. Y., Yoo, R. -E., Rhim, J. H., Lee, K. H., Choi, K. S., Hwang, I., Kang, K. M., & Kim, J. -h. (2022). Validation of Ultrasound Risk Stratification Systems for Cervical Lymph Node Metastasis in Patients with Thyroid Cancer. Cancers, 14(9), 2106. https://doi.org/10.3390/cancers14092106