Long Term Results and Prognostic Biomarkers for Anti-PD1 Immunotherapy Used after BRAFi/MEKi Combination in Advanced Cutaneous Melanoma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Analysis
3. Results
3.1. Patients Treated
3.2. Sequential Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keilholz, U.; Ascierto, P.; Dummer, R.; Robert, C.; Lorigan, P.; van Akkooi, A.; Arance, A.; Blank, C.; Sileni, V.C.; Donia, M.; et al. ESMO consensus conference recommendations on the management of metastatic melanoma: Under the auspices of the ESMO Guidelines Committee. Ann. Oncol. 2020, 31, 1435–1448. [Google Scholar] [CrossRef] [PubMed]
- Michielin, O.; van Akkooi, A.; Lorigan, P.; Ascierto, P.; Dummer, R.; Robert, C.; Arance, A.; Blank, C.; Sileni, V.C.; Donia, M.; et al. ESMO consensus conference recommendations on the management of locoregional melanoma: Under the auspices of the ESMO Guidelines Committee. Ann. Oncol. 2020, 31, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, P.; Wysocki, P.J.; Kozak, K.; Nasierowska-Guttmejer, A.; Jeziorski, A.; Wysocki, W.M.; Kalinka, E.; Świtaj, T.; Kamińska-Winciorek, G.; Czarnecka, A.M.; et al. Postępowanie diagnostyczno-terapeutyczne u chorych na czerniaki—zalecenia ekspertów. Onkol. W Prakt. Klin. Eduk. 2021. preprint. [Google Scholar]
- Rutkowski, P.; Wysocki, P.J.; Nasierowska-Guttmejer, A.; Jeziorski, A.; Wysocki, W.M.; Kalinka, E.; Świtaj, T.; Kozak, K.; Kamińska-Winciorek, G.; Czarnecka, A.M.; et al. Czerniak Skóry. Onkol. W Prakt. Klin. Eduk 2020, 6, 225–245. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Dummer, R.; Melero, I.; Palmieri, G.; Giannarelli, D.; Abrami, E.; Curvietto, M.; Simeone, E.; Grimaldi, A.M. SECOMBIT (sequential combo immuno and target therapy study): A three arms prospective, randomized phase II study to evaluate the best sequential approach with combo immunotherapy [ipilimumab (I)/nivolumab (N)] and combo target therapy [encorafenib (E)/binimetinib (B)] in patients with metastatic melanoma and BRAF mutation. J. Clin. Oncol. 2017, 35, TPS9598. [Google Scholar] [CrossRef]
- Atkins, M.B.; Lee, S.J.; Chmielowski, B.; Ribas, A.; Tarhini, A.A.; Truong, T.-G.; Davar, D.; O’Rourke, M.A.; Curti, B.D.; Brell, J.M.; et al. DREAMseq (Doublet, Randomized Evaluation in Advanced Melanoma Sequencing): A phase III trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 2021, 39, 356154. [Google Scholar] [CrossRef]
- Gibney, G.T.; Atkins, M.B. Choice of first-line therapy in metastatic melanoma. Cancer 2019, 125, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Chapman, P.B.; Sznol, M.; Lao, C.D.; Gonzalez, R.; Smylie, M.; Daniels, G.A.; Thompson, J.A.; Kudchadkar, R.; Sharfman, W.; et al. Safety and efficacy of combination nivolumab plus ipilimumab in patients with advanced melanoma: Results from a North American expanded access program (CheckMate 218). Melanoma Res. 2021, 31, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; McArthur, G.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Di Giacomo, A.M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): Updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016, 17, 1248–1260. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Long, G.; Flaherty, K.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; De Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2019, 30, 1848. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, P.; Kozak, K.; Owczarek, W.; Świtaj, T.; Cybulska-Stopa, B.; Wysocki, P.; Wysocki, W. Minimalne rekomendacje diagnostyczno-terapeutyczne u chorych na czerniaki w sytuacji ograniczonych zasobów i restrykcji związanych z pandemią SARS-CoV-2. Onkol. W Prakt. Klin. Eduk. 2020, 6, 69–73. [Google Scholar]
- Czarnecka, A.M.; Teterycz, P.; Mariuk-Jarema, A.; Lugowska, I.; Rogala, P.; Dudzisz-Sledz, M.; Switaj, T.; Rutkowski, P. Treatment Sequencing and Clinical Outcomes in BRAF-Positive and BRAF-Negative Unresectable and Metastatic Melanoma Patients Treated with New Systemic Therapies in Routine Practice. Target. Oncol. 2019, 14, 729–742. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.C.; Meeth, K.M.; Tsui, Y.C.; Srivastava, B.; Bosenberg, M.W.; Kaech, S.M. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res. 2014, 74, 3205–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 2006, 203, 1651–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilieva, K.M.; Correa, I.; Josephs, D.H.; Karagiannis, P.; Egbuniwe, I.U.; Cafferkey, M.J.; Spicer, J.; Harries, M.; Nestle, F.O.; Lacy, K.E.; et al. Effects of BRAF Mutations and BRAF Inhibition on Immune Responses to Melanoma. Mol. Cancer Ther. 2014, 13, 2769–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharkey, M.S.; Lizée, G.; Gonzales, M.I.; Patel, S.; Topalian, S.L. CD4+ T-Cell Recognition of Mutated B-RAF in Melanoma Patients Harboring the V599E Mutation. Cancer Res. 2004, 64, 1595–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somasundaram, R.; Swoboda, R.; Caputo, L.; Otvos, L.; Weber, B.; Volpe, P.; Van Belle, P.; Hotz, S.; Elder, D.E.; Marincola, F.M.; et al. Human Leukocyte Antigen-A2–Restricted CTL Responses to Mutated BRAF Peptides in Melanoma Patients. Cancer Res. 2006, 66, 3287–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, D.T.; Piris, A.; Cogdill, A.; Cooper, Z.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; et al. BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clin. Cancer Res. 2013, 19, 1225–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, C.Y.; Wang, D.Y.; Mason, R.; Smith, J.L.; Mckean, M.A.; Lo, S.; Guminski, A.D.; Long, G.V.; Carlino, M.S.; Atkinson, V.; et al. Activity of targeted therapy after failure of first-line immunotherapy in BRAF-mutant metastatic melanoma. J. Clin. Oncol. 2018, 36, 9532. [Google Scholar] [CrossRef]
- Rigo, R.; Doherty, J.; Koczka, K.; Kong, S.; Ding, P.Q.; Cheng, T.; Cheung, W.Y.; Monzon, J.G. Real World Outcomes in Patients with Advanced Melanoma Treated in Alberta, Canada: A Time-Era Based Analysis. Curr. Oncol. 2021, 28, 3978–3986. [Google Scholar] [CrossRef]
- Rogala, P.; Czarnecka, A.M.; Cybulska-Stopa, B.; Ostaszewski, K.; Piejko, K.; Ziętek, M.; Dziura, R.; Rutkowska, E.; Galus, Ł.; Kempa-Kamińska, N.; et al. Long-Term Outcomes of Targeted Therapy after First-Line Immunotherapy in BRAF-Mutated Advanced Cutaneous Melanoma Patients—Real-World Evidence. J. Clin. Med. 2022, 11, 2239. [Google Scholar] [CrossRef]
- Kong, B.Y.; Carlino, M.S.; Menzies, A.M. Biology and treatment of BRAF mutant metastatic melanoma. Melanoma Manag. 2016, 3, 33–45. [Google Scholar] [CrossRef]
- Larkin, J.; Lao, C.D.; Urba, W.J.; McDermott, D.F.; Horak, C.; Jiang, J.; Wolchok, J.D. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: A pooled analysis of 4 clinical trials. JAMA Oncol. 2015, 1, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Simeone, E.; Grimaldi, A.; Festino, L.; Giannarelli, D.; Vanella, V.; Palla, M.; Curvietto, M.; Esposito, A.; Palmieri, G.; Mozzillo, N.; et al. Correlation between previous treatment with BRAF inhibitors and clinical response to pembrolizumab in patients with advanced melanoma. OncoImmunology 2017, 6, e1283462. [Google Scholar] [CrossRef] [PubMed]
- Audibert, C.; Stuntz, M.; Glass, D. Treatment Sequencing in Advanced BRAF-Mutant Melanoma Patients: Current Practice in the United States. J. Pharm. Technol. 2017, 34, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Cybulska-Stopa, B.; Rogala, P.; Czarnecka, A.M.; Galus, Ł.; Dziura, R.; Rajczykowski, M.; Rutkowski, P. BRAF and MEK inhibitors rechallenge as effective treatment for patients with metastatic melanoma. Melanoma Res. 2020, 30, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, A.M.; Sobczuk, P.; Rogala, P.; Świtaj, T.; Placzke, J.; Kozak, K.; Mariuk-Jarema, A.; Spałek, M.; Dudzisz-Śledź, M.; Teterycz, P.; et al. Efficacy of immunotherapy beyond RECIST progression in advanced melanoma: A real-world evidence. Cancer Immunol. Immunother. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Szatkowska, L.; Sieczek, J.; Tekiela, K.; Ziętek, M.; Stachyra-Strawa, P.; Cisek, P.; Matkowski, R. Outcomes of Patients with Metastatic Melanoma—A Single-Institution Retrospective Analysis. Cancers 2022, 14, 1672. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Ostaszewski, K.; Borkowska, A.; Szumera-Ciećkiewicz, A.; Kozak, K.; Świtaj, T.; Rogala, P.; Kalinowska, I.; Koseła-Paterczyk, H.; Zaborowski, K.; et al. Efficacy of Neoadjuvant Targeted Therapy for Borderline Resectable III B-D or IV Stage BRAF V600 Mutation-Positive Melanoma. Cancers 2021, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- Mao, L.; Ding, Y.; Bai, X.; Sheng, X.; Dai, J.; Chi, Z.; Cui, C.; Kong, Y.; Fan, Y.; Xu, Y.; et al. Overall Survival of Patients With Unresectable or Metastatic BRAF V600-Mutant Acral/Cutaneous Melanoma Administered Dabrafenib Plus Trametinib: Long-Term Follow-Up of a Multicenter, Single-Arm Phase IIa Trial. Front. Oncol. 2021, 11, 3291. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.D.; Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Sileni, V.C.; Schachter, J.; Garbe, C.; et al. Five-year analysis on the long-term effects of dabrafenib plus trametinib (D + T) in patients with BRAF V600–mutant unresectable or metastatic melanoma. J. Clin. Oncol. 2019, 37, 9507. [Google Scholar] [CrossRef]
- Puzanov, I.; Ribas, A.; Robert, C.; Schachter, J.; Nyakas, M.; Daud, A.; Hamid, O. Association of BRAF V600E/K mutation status and prior BRAF/MEK inhibition with pembrolizumab outcomes in advanced melanoma: Pooled analysis of 3 clinical trials. JAMA Oncol. 2020, 8, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, N.; Gonzalez-Cao, M.; Sosa, A.; Berenguer, J.; Bracht, J.W.P.; Ito, M.; Rosell, R. The combination of checkpoint immunotherapy and targeted therapy in cancer. Ann. Transl. Med. 2017, 5, 388. [Google Scholar] [CrossRef] [Green Version]
- Ascierto, P.; Mandala, M.; Ferrucci, P.; Rutkowski, P.; Guidoboni, M.; Fernandez, A.A.; Ferraresi, V.; Maiello, E.; Guida, M.; Del Vecchio, M.; et al. Lba45 First Report of Efficacy and Safety from the Phase Ii Study Secombit (Sequential Combo Immuno and Targeted Therapy Study). Ann. Oncol. 2020, 31, S1173–S1174. [Google Scholar] [CrossRef]
- Ascierto, P.; Mandala, M.; Ferrucci, P.; Rutkowski, P.; Guidoboni, M.; Fernandez, A.A.; Ferraresi, V.; Maiello, E.; Guida, M.; Del Vecchio, M.; et al. LBA40 SECOMBIT: The best sequential approach with combo immunotherapy [ipilimumab (I) /nivolumab (N)] and combo target therapy [encorafenib (E)/binimetinib (B)] in patients with BRAF mutated metastatic melanoma: A phase II randomized study. Ann. Oncol. 2021, 32, S1316–S1317. [Google Scholar] [CrossRef]
- Giugliano, F.; Crimini, E.; Tarantino, P.; Zagami, P.; Uliano, J.; Corti, C.; Ascierto, P.A. Ascierto. First Line Treatment of Braf Mutated Advanced Melanoma: Does One Size Fit All? Cancer Treat. Rev. 2021, 99, 102253. [Google Scholar] [CrossRef]
- Orlova, K.; Ledin, E.; Zhukova, N.; Orlova, R.; Karabina, E.; Volkonskiy, M.; Stroyakovskiy, D.; Yurchenkov, A.; Protsenko, S.; Novik, A.; et al. Real-World Experience with Targeted Therapy in BRAF Mutant Advanced Melanoma Patients: Results from a Multicenter Retrospective Observational Study Advanced Melanoma in Russia (Experience) (ADMIRE). Cancers 2021, 13, 2529. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ji, Q.; Yan, X.; Lian, B.; Si, L.; Chi, Z.; Sheng, X.; Kong, Y.; Mao, L.; Bai, X.; et al. The Impact of Liver Metastasis on Anti-PD-1 Monoclonal Antibody Monotherapy in Advanced Melanoma: Analysis of Five Clinical Studies. Front. Oncol. 2020, 10, 546604. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Green, M.D.; Li, S.; Sun, Y.; Journey, S.N.; Choi, J.E.; Rizvi, S.M.; Qin, A.; Waninger, J.J.; Lang, X.; et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021, 27, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, J.; Wang, J.; Sun, C.; Zhu, X. Prognostic Value of Lactate Dehydrogenase for Melanoma Patients Receiving Anti-Pd-1/Pd-L1 Therapy: A Meta-Analysis. Medicine 2021, 100, e25318. [Google Scholar] [CrossRef] [PubMed]
- Van Wilpe, S.; Koornstra, R.; Den Brok, M.; De Groot, J.W.; Blank, C.; De Vries, J.; Gerritsen, W.; Mehra, N. Lactate dehydrogenase: A marker of diminished antitumor immunity. OncoImmunology 2020, 9, 1731942. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.M.; Carapeto, F.C.L.; Joon, A.Y.; Haydu, L.E.; Chen, H.; Wang, F.; Van Arnam, J.S.; McQuade, J.L.; Wani, K.; Kirkwood, J.M.; et al. Molecular and immunological associations of elevated serum lactate dehydrogenase in metastatic melanoma patients: A fresh look at an old biomarker. Cancer Med. 2020, 9, 8650–8661. [Google Scholar] [CrossRef]
- Koslowski, M.; Türeci, O.; Bell, C.; Krause, P.; Lehr, H.-A.; Brunner, J.; Seitz, G.; Nestle, F.O.; Huber, C.; Sahin, U. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res. 2002, 62, 6750–6755. [Google Scholar] [PubMed]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Shouval, R.; Teper, O.; Fein, J.A.; Danylesko, I.; Tov, N.S.; Yerushalmi, R.; Avigdor, A.; Vasilev, E.; Magen, H.; Nagler, A.; et al. LDH and renal function are prognostic factors for long-term outcomes of multiple myeloma patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2020, 55, 1736–1743. [Google Scholar] [CrossRef]
- Lindblad, K.E.; Lujambio, A. Liver metastases inhibit immunotherapy efficacy. Nat. Med. 2021, 27, 25–27. [Google Scholar] [CrossRef]
- Reschke, R.; Gussek, P.; Boldt, A.; Sack, U.; Köhl, U.; Lordick, F.; Gora, T.; Kreuz, M.; Reiche, K.; Simon, J.-C.; et al. Distinct Immune Signatures Indicative of Treatment Response and Immune-Related Adverse Events in Melanoma Patients under Immune Checkpoint Inhibitor Therapy. Int. J. Mol. Sci. 2021, 22, 8017. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, G.; Capone, M.; Sabbatino, F.; di Mauro, A.; Cantile, M.; Cerrone, M.; Madonna, G.; Grimaldi, A.M.; Mallardo, D.; Palla, M.; et al. The Ratio of Grzb(+)—Foxp3(+) over Cd3(+) T Cells as a Potential Predictor of Response to Nivolumab in Patients with Metastatic Melanoma. Cancers 2021, 13, 2325. [Google Scholar] [CrossRef]
- Schouwenburg, M.G.; Suijkerbuijk, K.P.; Koornstra, R.H.; Jochems, A.; Van Zeijl, M.C.; Eertwegh, A.J.V.D.; Haanen, J.B.; Aarts, M.J.; Van Akkooi, A.C.; Berkmortel, F.W.V.D.; et al. Switching to Immune Checkpoint Inhibitors upon Response to Targeted Therapy; The Road to Long-Term Survival in Advanced Melanoma Patients with Highly Elevated Serum LDH? Cancers 2019, 11, 1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dummer, R.; Long, G.V.; Robert, C.; Tawbi, H.A.; Flaherty, K.T.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Dutriaux, C.; et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600–Mutant Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.M.; Dumas, L.; Larkin, J.M. Atezolizumab, cobimetinib, and vemurafenib as first-line treatment for unresectable metastatic BRAF V600 mutated melanoma. Expert Rev. Anticancer Ther. 2022, 22, 17–25. [Google Scholar] [CrossRef] [PubMed]
Factor | Patients n = 207 | Percentage | |
---|---|---|---|
Sex | F | 106 | 51% |
M | 101 | 49% | |
Disease stage 1L TNM stage (AJCC 8th Edition) | III Localy advanced | 13 | 6% |
M1a | 30 | 14.5% | |
M1b | 30 | 14.5% | |
M1c | 87 | 42% | |
M1d | 47 | 23% | |
LDH 1L | Normal | 78 | 39% |
Over ULN | 124 | 61% | |
Less than 2× over ULN | 80 | 40% | |
More than 2× over ULN | 44 | 21% | |
No data | 5 | - | |
ECOG 1L | 0 | 77 | 37% |
1 | 124 | 60% | |
2 | 6 | 3% | |
Liver metastases 1L | No | 137 | 66% |
Yes | 70 | 34% | |
Brain metastases 1L | No | 160 | 77% |
Yes | 47 | 23% | |
First line treatment | Dabrafenib + trametinib | 141 | 68% |
Vemurafenib + cobimetinib | 64 | 31% | |
Encorafenib + binimetinib | 2 | 1% | |
Second line treatment | Nivolumab | 130 | 63% |
Pembrolizumab | 77 | 37% | |
LDH 2L | Normal | 81 | 39% |
Over ULN | 124 | 61% | |
Less than 2× over ULN | 84 | 41% | |
More than 2× over ULN | 40 | 20% | |
No data | 2 | - | |
ECOG 2L | 0 | 33 | 16% |
1 | 163 | 79% | |
2 | 10 | 5% | |
No data | 1 | - | |
Liver metastases 2L | No | 138 | 67% |
Yes | 69 | 33% | |
Brain metastases 2L | No | 135 | 65% |
Yes | 72 | 35% |
Treatment Response | Patients | Percentage | Patients | Percentage | p-Value | |
---|---|---|---|---|---|---|
Total | 1L | 2L | ||||
Best response | PD | 21 | 10% | 123 | 61% | <0.0001 |
SD | 71 | 34% | 39 | 19% | ||
PR | 106 | 51% | 32 | 16% | ||
CR | 9 | 5% | 9 | 4% | ||
ORR | 196 | 56% | 41 | 20% | <0.0001 | |
Not assessed | 0 | - | 4 | - | - | |
Time to PD | >6 m | 137 | 66% | 57 | 28 | - |
<6 m | 70 | 34% | 144 * | 72% | - | |
2L | Nivolumab | Pembrolizumab | ||||
Best response | PD | 76 | 60% | 47 | 62% | 0.99 |
SD | 25 | 20% | 14 | 18% | ||
PR | 20 | 16% | 12 | 16% | ||
CR | 6 | 4% | 3 | 4% | ||
ORR | 26 | 20% | 15 | 20% | 0.90 | |
Not assessed | 3 | - | 1 | - | - |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Factor | HR | CI 95% | p-Value | HR | CI 95% | p-Value |
Age | 1.0 | 0.9–1.0 | 0.6772 | - | ||
Sex | 0.91 | 0.7–1.2 | 0.5350 | - | ||
LDH over ULN 2L | 0.57 | 0.4–0.8 | 0.0005 | 0.62 | 0.4–0.9 | 0.0069 |
ECOG 0 2L | 0.24 | 0.1–0.5 | 0.0004 | 1.51 | 0.5–4.5 | 0.9237 |
ECOG 1 2L | 0.42 | 0.2–0.8 | 0.4320 | 2.42 | 0.8–6.9 | 0.0179 |
Brain metastases 2L | 0.58 | 0.4–0.8 | 0.0008 | 0.77 | 0.5–1.1 | 0.1807 |
Liver metastases 2L | 0.55 | 0.4–0.8 | 0.0002 | 0.66 | 0.5–0.9 | 0.0208 |
ORR 1L | 0.74 | 0.5–1.0 | 0.054 | 0.84 | 0.6–1.2 | 0.3408 |
Time to PD 1L > 6 m | 1.49 | 1.1–2.0 | 0.0115 | 1.38 | 1.0–1.9 | 0.0666 |
Factor | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | CI 95% | p-Value | HR | CI 95% | p-Value | |
Age | 1.00 | 1.0–1.0 | 0.9848 | - | ||
Sex | 1.14 | 0.8–1.6 | 0.4373 | - | ||
Brain metastases 1L | 0.57 | 0.4–0.8 | 0.0310 | 0.62 | 0.4–0.9 | 0.0165 |
Liver metastases 1L | 0.70 | 0.5–1.0 | 0.0406 | 0.88 | 0.6–1.3 | 0.4954 |
Brain metastases 2L | 0.58 | 0.4–0.8 | 0.0011 | 0.44 | 0.3–0.6 | <0.0001 |
Liver metastases 2L | 0.56 | 0.4–0.8 | 0.0007 | 0.69 | 0.5–1.0 | 0.0340 |
LDH over ULN 1L | 0.61 | 0.4–0.9 | 0.0042 | 0.54 | 0.4–0.8 | 0.0018 |
LDH over ULN 2L | 0.45 | 0.3–0.6 | <0.0001 | 0.49 | 0.3–0.7 | <0.0001 |
Objective response in 1L | 0.79 | 0.6–1.1 | 0.1421 | 0.87 | 0.6–1.4 | 0.4326 |
Objective response in 2L | 0.14 | 0.1–0.3 | <0.0001 | 0.13 | 0.1–0.2 | <0.0001 |
Time to PD 1L > 6 m | 2.64 | 1.9–3.7 | <0.0001 | 2.8 | 1.9–4.1 | <0.0001 |
LDH | Metastasis | Patients (n) | Median OS (Months) | |
---|---|---|---|---|
LDH normal | liver | without metastasis | 57 | 21.7 |
with metastasis | 19 | 21.0 | ||
brain | without metastasis | 69 | 25.2 | |
with metastasis | 9 | 18.8 | ||
liver and brain | without metastasis | 48 | 24.4 | |
with metastasis | 0 | - | ||
LDH elevated | liver | without metastasis | 68 | 16.2 |
with metastasis | 50 | 12.2 | ||
brain | without metastasis | 87 | 16.3 | |
with metastasis | 37 | 9.0 | ||
liver and brain | without metastasis | 49 | 19.0 | |
with metastasis | 18 | 7.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogala, P.; Czarnecka, A.M.; Cybulska-Stopa, B.; Ostaszewski, K.; Piejko, K.; Ziętek, M.; Dziura, R.; Rutkowska, E.; Galus, Ł.; Kempa-Kamińska, N.; et al. Long Term Results and Prognostic Biomarkers for Anti-PD1 Immunotherapy Used after BRAFi/MEKi Combination in Advanced Cutaneous Melanoma Patients. Cancers 2022, 14, 2123. https://doi.org/10.3390/cancers14092123
Rogala P, Czarnecka AM, Cybulska-Stopa B, Ostaszewski K, Piejko K, Ziętek M, Dziura R, Rutkowska E, Galus Ł, Kempa-Kamińska N, et al. Long Term Results and Prognostic Biomarkers for Anti-PD1 Immunotherapy Used after BRAFi/MEKi Combination in Advanced Cutaneous Melanoma Patients. Cancers. 2022; 14(9):2123. https://doi.org/10.3390/cancers14092123
Chicago/Turabian StyleRogala, Paweł, Anna M. Czarnecka, Bożena Cybulska-Stopa, Krzysztof Ostaszewski, Karolina Piejko, Marcin Ziętek, Robert Dziura, Ewa Rutkowska, Łukasz Galus, Natasza Kempa-Kamińska, and et al. 2022. "Long Term Results and Prognostic Biomarkers for Anti-PD1 Immunotherapy Used after BRAFi/MEKi Combination in Advanced Cutaneous Melanoma Patients" Cancers 14, no. 9: 2123. https://doi.org/10.3390/cancers14092123
APA StyleRogala, P., Czarnecka, A. M., Cybulska-Stopa, B., Ostaszewski, K., Piejko, K., Ziętek, M., Dziura, R., Rutkowska, E., Galus, Ł., Kempa-Kamińska, N., Seredyńska, J., Bal, W., Kozak, K., Surus-Hyla, A., Kubiatowski, T., Kamińska-Winciorek, G., Suwiński, R., Mackiewicz, J., & Rutkowski, P. (2022). Long Term Results and Prognostic Biomarkers for Anti-PD1 Immunotherapy Used after BRAFi/MEKi Combination in Advanced Cutaneous Melanoma Patients. Cancers, 14(9), 2123. https://doi.org/10.3390/cancers14092123