Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Material
2.2. Patient-Derived Scaffold Generation and Cryosectioning
2.3. Cell Culture Methods
2.4. Gene Expression Analysis
2.5. Statistical Analyses
3. Results
3.1. Patient-Derived Scaffold Cultures Modulate Gene Expression Profiles in Patient- and Cancer Cell Line-Dependent Manners
3.2. Patient-Derived Scaffold-Induced Gene Expression Changes Were Associated with Clinico-Pathological Data and Disease Progression of the Original Tumor
3.3. The Concordance in ERα-Status between Patient-Derived Scaffolds and the Adapting Cancer Cell Line Strengthened the Link between PDS-Dependent Gene Expression Changes and Intrinsic Characteristics of the Original Cancer
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Senthebane, D.A.; Rowe, A.; Thomford, N.E.; Shipanga, H.; Munro, D.; Al Mazeedi, M.A.M.; Almazyadi, H.A.M.; Kallmeyer, K.; Dandara, C.; Pepper, M.S.; et al. The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int. J. Mol. Sci. 2017, 18, 1586. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Lisa, M. Coussens, Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell 2012, 21, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 2012, 196, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Sensi, F.; D’Angelo, E.; D’Aronco, S.; Molinaro, R.; Agostini, M. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. J. Cell. Physiol. 2018, 234, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, M.; Chen, H.; Lee, B.H.; Lee, J.Y.H.; Yip, Y.S.; Tan, N.S.; Tan, L.P. Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework. Sci. Rep. 2019, 9, 8997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barney, L.E.; Dandley, E.C.; Jansen, L.E.; Reich, N.G.; Mercurio, A.M.; Peyton, S.R. A cell-ECM screening method to predict breast cancer metastasis. Integr. Biol. 2015, 7, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Dittmer, J.; Leyh, B. The impact of tumor stroma on drug response in breast cancer. Semin. Cancer Biol. 2015, 31, 3–15. [Google Scholar] [CrossRef]
- Belgodere, J.; King, C.T.; Bursavich, J.B.; Burow, M.E.; Martin, E.C.; Jung, J.P. Engineering Breast Cancer Microenvironments and 3D Bioprinting. Front. Bioeng. Biotechnol. 2018, 6, 66. [Google Scholar] [CrossRef]
- Svanström, A.; Rosendahl, J.; Salerno, S.; Leiva, M.C.; Gregersson, P.; Berglin, M.; Bogestål, Y.; Lausmaa, J.; Oko, A.; Chinga-Carrasco, G.; et al. Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery. Biomed. Mater. 2021, 16, 045046. [Google Scholar] [CrossRef]
- Sachs, N.; De Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, M.; D’Angelo, E.; Crotti, S.; Sensi, F.; Urbani, L.; Maghin, E.; Burns, A.; De Coppi, P.; Fassan, M.; Rugge, M.; et al. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J. Cell Physiol. 2018, 233, 5937–5948. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.L.; Rios, E.; Silva, A.C.; Neves, S.C.; Caires, H.R.; Pinto, A.T.; Duraes, C.; Carvalho, F.A.; Cardoso, A.P.; Santos, N.C.; et al. Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials 2017, 124, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, B.; Li, S.; Jin, Q.; Dai, Y. Human breast cancer decellularized scaffolds promote epithelial-to-mesenchymal transitions and stemness of breast cancer cells in vitro. J. Cell. Physiol. 2019, 234, 9447–9456. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, G.; Li, S.; Yuan, H.; Yun, Z.; Zhang, W.; Zhang, S.; Dai, Y.; Ma, Y. Decellularized breast matrix as bioactive microenvironment for in vitro three-dimensional cancer culture. J. Cell. Physiol. 2018, 234, 3425–3435. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Flynn, T.J.; Chen, J.; Trinkle, C.; Xu, R. Development of an ex vivo breast cancer lung colonization model utilizing a decellularized lung matrix. Integr. Biol. 2015, 7, 1518–1525. [Google Scholar] [CrossRef] [Green Version]
- Koh, I.; Cha, J.; Park, J.; Choi, J.; Kang, S.G.; Kim, P. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model. Sci. Rep. 2018, 8, 4608. [Google Scholar] [CrossRef]
- Landberg, G.; Fitzpatrick, P.; Isakson, P.; Jonasson, E.; Karlsson, J.; Larsson, E.; Svanström, A.; Rafnsdottir, S.; Persson, E.; Gustafsson, A.; et al. Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment. Biomaterials 2019, 235, 119705. [Google Scholar] [CrossRef]
- Parkinson, G.T.; Salerno, S.; Ranji, P.; Håkansson, J.; Bogestål, Y.; Wettergren, Y.; Ståhlberg, A.; Lindskog, E.B.; Landberg, G. Patient-derived scaffolds as a model of colorectal cancer. Cancer Med. 2020, 10, 867–882. [Google Scholar] [CrossRef]
- Landberg, G.; Jonasson, E.; Gustafsson, A.; Fitzpatrick, P.; Isakson, P.; Karlsson, J.; Larsson, E.; Svanström, A.; Rafnsdottir, S.; Persson, E.; et al. Characterization of cell-free breast cancer patient-derived scaffolds using liquid chromatography-mass spectrometry/mass spectrometry data and RNA sequencing data. Data Brief 2020, 31, 105860. [Google Scholar] [CrossRef]
- Leiva, M.C.; Garre, E.; Gustafsson, A.; Svanström, A.; Bogestål, Y.; Håkansson, J.; Ståhlberg, A.; Landberg, G. Breast cancer patient-derived scaffolds as a tool to monitor chemotherapy responses in human tumor microenvironments. J. Cell. Physiol. 2020, 236, 4709–4724. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, A.; Garre, E.; Leiva, M.C.; Salerno, S.; Ståhlberg, A.; Landberg, G. Patient-derived scaffolds as a drug-testing platform for endocrine therapies in breast cancer. Sci. Rep. 2021, 11, 13334. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Wittwer, C.T. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baqai, T.; Shousha, S. Oestrogen receptor negativity as a marker for high-grade ductal carcinoma in situ of the breast. Histopathology 2003, 42, 440–447. [Google Scholar] [CrossRef]
- Ungefroren, H.; Sebens, S.; Seidl, D.; Lehnert, H.; Hass, R. Interaction of tumor cells with the microenvironment. Cell Commun. Signal. 2011, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.; Peyman, S.; Speirs, V. Current and Emerging 3D Models to Study Breast Cancer. Adv. Exp. Med. Biol. 2019, 1152, 413–427. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef]
- Alemany-Ribes, M.; Semino, C.E. Bioengineering 3D environments for cancer models. Adv. Drug Deliv. Rev. 2014, 79–80, 40–49. [Google Scholar] [CrossRef]
- Akrap, N.; Andersson, D.; Bom, E.; Gregersson, P.; Ståhlberg, A.; Landberg, G. Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools. Stem Cell Rep. 2016, 6, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.A.; Akrap, N.; Garre, E.; Magnusson, Y.; Harrison, H.; Andersson, D.; Jonasson, E.; Rafnsdottir, S.; Choudhry, H.; Buffa, F.; et al. The mevalonate precursor enzyme HMGCS1 is a novel marker and key mediator of cancer stem cell enrichment in luminal and basal models of breast cancer. PLoS ONE 2020, 15, e0236187. [Google Scholar] [CrossRef]
- Kao, J.; Salari, K.; Bocanegra, M.; Choi, Y.-L.; Girard, L.; Gandhi, J.; Kwei, K.A.; Hernandez-Boussard, T.; Wang, P.; Gazdar, A.F.; et al. Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery. PLoS ONE 2009, 4, e6146. [Google Scholar] [CrossRef] [PubMed]
- Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011, 13, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillmore, C.M.; Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008, 10, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poltavets, V.; Kochetkova, M.; Pitson, S.M.; Samuel, M.S. The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Front. Oncol. 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Zu, Y.; Li, J.; Du, S.; Xu, Y.; Zhang, L.; Jiang, L.; Wang, Z.; Chien, S.; Yang, C. Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci. Rep. 2016, 6, 20395. [Google Scholar] [CrossRef] [Green Version]
- DiMeo, T.A.; Anderson, K.; Phadke, P.; Fan, C.; Perou, C.M.; Naber, S.; Kuperwasser, C. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res. 2009, 69, 5364–5373. [Google Scholar] [CrossRef] [Green Version]
- Yook, J.I.; Li, X.Y.; Ota, I.; Hu, C.; Kim, H.S.; Kim, N.H.; Cha, S.Y.; Ryu, J.K.; Choi, Y.J.; Kim, J.; et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 2006, 8, 1398–1406. [Google Scholar] [CrossRef]
- Conacci-Sorrell, M.; Simcha, I.; Ben-Yedidia, T.; Blechman, J.; Savagner, P.; Ben-Ze’ev, A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of beta-catenin signaling, Slug, and MAPK. J. Cell Biol. 2003, 163, 847–857. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Martin, T.A.; Goyal, A.; Watkins, G.; Jiang, W.G. Expression of the Transcription Factors Snail, Slug, and Twist and Their Clinical Significance in Human Breast Cancer. Ann. Surg. Oncol. 2005, 12, 488–496. [Google Scholar] [CrossRef]
- Opdenaker, L.M.; Arnold, K.M.; Pohlig, R.T.; Padmanabhan, J.S.; Flynn, D.C.; Sims-Mourtada, J. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer. Breast Cancer Targets Ther. 2014, 6, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Marcato, P.; Dean, C.A.; Giacomantonio, C.A.; Lee, P.W. Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011, 10, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Pu, T.; Guo, P.; Wei, B.; Zhang, Z.; Zhang, H.; Zhong, X.; Zheng, H.; Chen, L.; Bu, H.; et al. ALDH(+)/CD44(+) cells in breast cancer are associated with worse prognosis and poor clinical outcome. Exp. Mol. Pathol. 2016, 100, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wu, N.; Huang, Y.; Li, Q.; Liu, C.; Liang, M.; Zhou, W.; Liu, X.; Wang, S. Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer. Diagn. Pathol. 2015, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz, A.; Topa, J.; Nagel, A.; Skokowski, J.; Seroczynska, B.; Stokowy, T.; Welnicka-Jaskiewicz, M.; Zaczek, A.J. Spectrum of Epithelial-Mesenchymal Transition Phenotypes in Circulating Tumour Cells from Early Breast Cancer Patients. Cancers 2019, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Pinilla, S.M.; Sarrio, D.; Moreno-Bueno, G.; Rodriguez-Gil, Y.; Martinez, M.A.; Hernandez, L.; Hardisson, D.; Reis-Filho, J.S.; Palacios, J. Sox2: A possible driver of the basal-like phenotype in sporadic breast cancer. Mod. Pathol. 2007, 20, 474–481. [Google Scholar] [CrossRef]
- Nagata, T.; Shimada, Y.; Sekine, S.; Hori, R.; Matsui, K.; Okumura, T.; Sawada, S.; Fukuoka, J.; Tsukada, K. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer 2012, 21, 96–101. [Google Scholar] [CrossRef]
- Callegari, C.C.; Cavalli, I.J.; Lima, R.S.; Jucoski, T.S.; Torresan, C.; Urban, C.A.; Kuroda, F.; Anselmi, K.F.; Cavalli, L.R.; Ribeiro, E.M. Copy number and expression analysis of FOSL1, GSTP1, NTSR1, FADD and CCND1 genes in primary breast tumors with axillary lymph node metastasis. Cancer Genet. 2016, 209, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Soysal, S.; Tzankov, A.; Muenst, S.E. Role of the Tumor Microenvironment in Breast Cancer. Pathobiology 2015, 82, 142–152. [Google Scholar] [CrossRef]
- Shimizu, K.; Iyoda, T.; Okada, M.; Yamasaki, S.; Fujii, S.I. Immune suppression and reversal of the suppressive tumor microenvironment. Int. Immunol. 2018, 30, 445–455. [Google Scholar] [CrossRef]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef] [PubMed]
- Putti, T.C.; El-Rehim, D.M.A.; Rakha, E.A.; Paish, C.E.; Lee, A.H.; Pinder, S.E.; Ellis, I. Estrogen receptor-negative breast carcinomas: A review of morphology and immunophenotypical analysis. Mod. Pathol. 2004, 18, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.M.; Suresh, P.K.; Pai, R.R. Clinicopathological Features of Triple Negative Breast Carcinoma. J. Clin. Diagn. Res. 2017, 11, EC05–EC08. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, X.; Shang, M.; Zhang, Y.; Xia, B.; Niu, M.; Pang, D. Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J. Surg. Oncol. 2013, 107, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Gil Kim, B.; Jang, Y.; Kang, S.; Lee, J.H.; Cho, N.H. The stromal loss of miR-4516 promotes the FOSL1-dependent proliferation and malignancy of triple negative breast cancer. Cancer Lett. 2019, 469, 256–265. [Google Scholar] [CrossRef]
All | ER+ | ER− | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grade | ERα | PR | LN | Grade | PR | LN | Grade | PR | LN | |||
MCF7 | Proliferation | MKI67 | 0.893 | 0.135 | 0.075 | 0.721 | 0.632 | 0.538 | 0.495 | 0.955 | 0.068 | 0.421 |
CCNA2 | 0.933 | 0.300 | 0.032 * | 0.560 | 0.607 | 0.196 | 0.975 | 0.737 | 0.035 * | 0.080 | ||
CCNB2 | 0.321 | 0.925 | 0.214 | 0.112 | 0.109 | 0.188 | 0.353 | 0.263 | 0.261 | 0.083 | ||
EMT | VIM | 0.291 | 0.624 | 0.703 | 0.604 | 0.304 | 0.400 | 0.525 | 0.434 | 0.888 | 0.573 | |
SNAI1 | 0.015 *§ | 0.132 | 0.241 | 0.547 | 0.019 *§ | 0.641 | 0.231 | 0.502 | 0.888 | 0.237 | ||
SNAI2 | 0.01 *§ | 0.760 | 0.153 | 0.945 | 0.005 **§ | 0.204 | 0.800 | 1.000 | 0.206 | 0.633 | ||
FOSL1 | 0.052 | 0.487 | 0.170 | 0.047 * | 0.025 *§ | 0.269 | 0.134 | 0.695 | 0.888 | 0.474 | ||
Pluripotency | NANOG | 0.679 | 0.960 | 0.359 | 0.769 | 0.712 | 0.211 | 0.481 | 1.000 | 0.399 | 0.965 | |
POU5F1 | 0.236 | 0.970 | 0.725 | 0.511 | 0.141 | 0.578 | 0.299 | 0.371 | 0.673 | 0.408 | ||
NEAT1 | 0.174 | 0.682 | 0.457 | 0.148 | 0.120 | 0.575 | 0.135 | 0.146 | 0.673 | 0.762 | ||
SOX2 | 0.571 | 0.017 * | 0.492 | 0.715 | 0.438 | 0.952 | 0.721 | 0.655 | 0.160 | 0.947 | ||
BCSC | CD44 | 0.108 | 0.345 | 0.966 | 0.201 | 0.131 | 0.700 | 0.436 | 0.867 | 0.261 | 0.237 | |
ABCG2 | 0.140 | 0.759 | 0.226 | 0.754 | 0.074 | 0.370 | 0.316 | 0.911 | 0.035 * | 0.327 | ||
ALDH1A3 | 0.03 *§ | 0.874 | 0.528 | 0.833 | 0.014 *§ | 0.627 | 0.875 | 0.955 | 0.574 | 0.395 | ||
T-47D | Proliferation | MKI67 | 0.260 | 0.258 | 0.118 | 0.609 | 0.451 | 0.322 | 0.330 | 0.01 *§ | 0.673 | 0.633 |
CCNA2 | 0.342 | 0.627 | 0.416 | 0.781 | 0.626 | 0.749 | 0.616 | 0.034 * | 0.261 | 0.829 | ||
CCNB2 | 0.024 * | 0.360 | 0.637 | 0.858 | 0.064 | 0.357 | 0.837 | 0.434 | 0.261 | 0.744 | ||
EMT | VIM | 0.004 **§ | 0.113 | 0.262 | 0.424 | 0.026 * | 0.490 | 0.333 | 0.314 | 0.574 | 0.829 | |
SNAI1 | 0.865 | 0.524 | 0.893 | 0.117 | 0.797 | 0.947 | 0.157 | 0.823 | 0.261 | 0.515 | ||
SNAI2 | 0.734 | 0.618 | 0.888 | 0.530 | 0.796 | 0.884 | 0.374 | 0.602 | 1.000 | |||
FOSL1 | 0.705 | 0.211 | 0.056 | 0.320 | 0.930 | 0.015 *§ | 0.889 | 0.399 | 0.136 | 0.036 * | ||
Pluripotency | NANOG | 0.427 | 0.668 | 0.579 | 0.671 | 0.306 | 0.941 | 0.386 | 0.678 | 0.655 | 0.673 | |
POU5F1 | 0.264 | 0.390 | 0.092 | 0.075 | 0.429 | 0.256 | 0.046 * | 0.314 | 0.122 | 0.897 | ||
NEAT1 | 0.198 | 0.859 | 0.001 **§ | 0.086 | 0.098 | 0.005 **§ | 0.083 | 0.911 | 0.049 * | 0.897 | ||
SOX2 | 0.303 | 0.950 | 0.811 | 0.956 | 0.316 | 0.696 | 0.868 | 1.000 | 0.655 | 0.321 | ||
BCSC | CD44 | 0.062 | 0.137 | 0.070 | 0.590 | 0.185 | 0.230 | 0.988 | 0.737 | 0.779 | 0.146 | |
ABCG2 | 0.476 | 0.546 | 0.638 | 0.431 | 0.418 | 0.911 | 0.402 | 0.146 | 0.325 | 0.897 | ||
ALDH1A3 | 0.328 | 0.063 | 0.132 | 0.024 * | 0.348 | 0.324 | 0.034 * | 0.219 | 0.261 | 0.460 | ||
MDA-MB-231 | Proliferation | MKI67 | 0.875 | 0.131 | 0.078 | 0.855 | 0.975 | 0.352 | 0.426 | 0.676 | 0.187 | 0.559 |
CCNA2 | 0.383 | 0.089 | 0.176 | 0.599 | 0.672 | 0.512 | 0.511 | 0.552 | 0.923 | 0.779 | ||
CCNB2 | 0.307 | 0.769 | 0.383 | 0.979 | 0.219 | 0.197 | 0.813 | 0.381 | 0.791 | 0.710 | ||
EMT | VIM | 0.274 | 0.186 | 0.770 | 0.285 | 0.423 | 0.259 | 0.125 | 0.305 | 1.000 | 0.620 | |
SNAI1 | 0.512 | 0.559 | 0.345 | 0.730 | 0.378 | 0.157 | 0.505 | 0.305 | 0.923 | 0.620 | ||
SNAI2 | 0.712 | 0.511 | 0.166 | 0.691 | 0.451 | 0.435 | 0.320 | 0.933 | 0.264 | 0.535 | ||
FOSL1 | 0.825 | 0.719 | 0.962 | 0.255 | 0.771 | 0.763 | 0.426 | 0.933 | 0.923 | 0.710 | ||
Pluripotency | NANOG | 0.846 | 0.489 | 0.929 | 0.878 | 0.919 | 0.941 | 0.511 | 0.800 | 0.198 | 0.259 | |
POU5F1 | 0.503 | 0.579 | 0.514 | 0.783 | 0.540 | 0.710 | 0.324 | 0.933 | 0.549 | 0.318 | ||
NEAT1 | 0.972 | 0.927 | 0.098 | 0.669 | 0.994 | 0.102 | 0.921 | 0.476 | 0.132 | 0.128 | ||
SOX2 | 0.690 | 0.960 | 0.138 | 0.213 | 0.715 | 0.107 | 0.148 | 0.476 | 0.549 | 0.902 | ||
BCSC | CD44 | 0.605 | 0.105 | 0.369 | 0.846 | 0.671 | 0.787 | 0.833 | 0.790 | 1.000 | 0.740 | |
ABCG2 | 0.598 | 0.633 | 0.778 | 0.359 | 0.648 | 0.823 | 0.328 | 0.933 | 0.264 | 0.902 | ||
ALDH1A3 | 0.156 | 0.612 | 0.478 | 0.818 | 0.284 | 0.435 | 0.640 | 0.371 | 0.429 | 0.831 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garre, E.; Gustafsson, A.; Leiva, M.C.; Håkansson, J.; Ståhlberg, A.; Kovács, A.; Landberg, G. Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics. Cancers 2022, 14, 2172. https://doi.org/10.3390/cancers14092172
Garre E, Gustafsson A, Leiva MC, Håkansson J, Ståhlberg A, Kovács A, Landberg G. Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics. Cancers. 2022; 14(9):2172. https://doi.org/10.3390/cancers14092172
Chicago/Turabian StyleGarre, Elena, Anna Gustafsson, Maria Carmen Leiva, Joakim Håkansson, Anders Ståhlberg, Anikó Kovács, and Göran Landberg. 2022. "Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics" Cancers 14, no. 9: 2172. https://doi.org/10.3390/cancers14092172
APA StyleGarre, E., Gustafsson, A., Leiva, M. C., Håkansson, J., Ståhlberg, A., Kovács, A., & Landberg, G. (2022). Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics. Cancers, 14(9), 2172. https://doi.org/10.3390/cancers14092172