The Effects of Peptide Receptor Radionuclide Therapy on the Neoplastic and Normal Pituitary
Abstract
:Simple Summary
Abstract
1. Introduction
2. Principles, Usefulness and Safety of Peptide Receptor Radionuclide Therapy (PRRT)
3. PRRT for Aggressive or Metastatic Pituitary Neuroendocrine Tumours (PitNETs)
3.1. Aggressive and Metastatic PitNETs
3.2. Somatostatin, Somatostatin Receptors (SSTRs) and Somatostatin Analogues for PitNETs
3.3. Data on Clinical Use of PRRT for Aggressive or Metastatic PitNETs
4. Pituitary Function following PRRT
4.1. Gonadal Axis
4.2. Somatotroph Axis
4.3. Thyroid Axis
4.4. Hypothalamo–Pituitary–Adrenal Axis
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Melmed, S.; Kaiser, U.B.; Lopes, M.B.; Bertherat, J.; Syro, L.V.; Raverot, G.; Reincke, M.; Johannsson, G.; Beckers, A.; Fleseriu, M.; et al. Clinical Biology of the Pituitary Adenoma. Endocr. Rev. 2022, 43, 1003–1037. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Ilie, M.D.; Lasolle, H.; Amodru, V.; Trouillas, J.; Castinetti, F.; Brue, T. Aggressive pituitary tumours and pituitary carcinomas. Nat. Rev. Endocrinol. 2021, 17, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Meij, B.P.; Lopes, M.B.; Ellegala, D.B.; Alden, T.D.; Laws, E.R., Jr. The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J. Neurosurg. 2002, 96, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Zada, G.; Woodmansee, W.W.; Ramkissoon, S.; Amadio, J.; Nose, V.; Laws, E.R., Jr. Atypical pituitary adenomas: Incidence, clinical characteristics, and implications. J. Neurosurg. 2011, 114, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Cimini, A.; Ricci, M.; Russo, F.; Egidi, M.; Calabria, F.; Bagnato, A.; Schillaci, O.; Chiaravalloti, A. Peptide Receptor Radionuclide Therapy and Primary Brain Tumors: An Overview. Pharmaceuticals 2021, 14, 872. [Google Scholar] [CrossRef]
- Chevalier, B.; Jannin, A.; Espiard, S.; Merlen, E.; Beron, A.; Lion, G.; Vantyghem, M.C.; Huglo, D.; Cortet-Rudelli, C.; Baillet, C. Pituitary adenoma & nuclear medicine: Recent outcomes and ongoing developments. Presse Med. 2022, 51, 104144. [Google Scholar]
- Bodei, L.; Mueller-Brand, J.; Baum, R.P.; Pavel, M.E.; Horsch, D.; O’Dorisio, M.S.; O’Dorisio, T.M.; Howe, J.R.; Cremonesi, M.; Kwekkeboom, D.J.; et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 800–816. [Google Scholar] [CrossRef]
- Garske-Roman, U.; Sandstrom, M.; Fross Baron, K.; Lundin, L.; Hellman, P.; Welin, S.; Johansson, S.; Khan, T.; Lundqvist, H.; Eriksson, B.; et al. Prospective observational study of (177)Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): Feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 970–988. [Google Scholar] [CrossRef]
- Kim, S.J.; Pak, K.; Koo, P.J.; Kwak, J.J.; Chang, S. The efficacy of (177)Lu-labelled peptide receptor radionuclide therapy in patients with neuroendocrine tumours: A meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1964–1970. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Stojanoski, S.; Boldt, H.B.; Kozic, D.; Patocs, A.; Korbonits, M.; Medic-Stojanoska, M.; Casar-Borota, O. Case Report: Malignant Primary Sellar Paraganglioma With Unusual Genetic and Imaging Features. Front. Oncol. 2021, 11, 739255. [Google Scholar] [CrossRef] [PubMed]
- Parghane, R.V.; Talole, S.; Basu, S. (131)I-MIBG negative progressive symptomatic metastatic paraganglioma: Response and outcome with (177)Lu-DOTATATE peptide receptor radionuclide therapy. Ann. Nucl. Med. 2021, 35, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Severi, S.; Bongiovanni, A.; Ferrara, M.; Nicolini, S.; Di Mauro, F.; Sansovini, M.; Lolli, I.; Tardelli, E.; Cittanti, C.; Di Iorio, V.; et al. Peptide receptor radionuclide therapy in patients with metastatic progressive pheochromocytoma and paraganglioma: Long-term toxicity, efficacy and prognostic biomarker data of phase II clinical trials. ESMO Open 2021, 6, 100171. [Google Scholar] [CrossRef] [PubMed]
- Tsang, E.S.; Funk, G.; Leung, J.; Kalish, G.; Kennecke, H.F. Supportive Management of Patients with Advanced Pheochromocytomas and Paragangliomas Receiving PRRT. Curr. Oncol. 2021, 28, 2823–2829. [Google Scholar] [CrossRef]
- Hayes, A.R.; Crawford, A.; Al Riyami, K.; Tang, C.; Bomanji, J.; Baldeweg, S.E.; Wild, D.; Morganstein, D.; Harry, A.; Grozinsky-Glasberg, S.; et al. Metastatic Medullary Thyroid Cancer: The Role of 68Gallium-DOTA-Somatostatin Analogue PET/CT and Peptide Receptor Radionuclide Therapy. J. Clin. Endocrinol. Metab. 2021, 106, e4903–e4916. [Google Scholar] [CrossRef]
- Maghsoomi, Z.; Emami, Z.; Malboosbaf, R.; Malek, M.; Khamseh, M.E. Efficacy and safety of peptide receptor radionuclide therapy in advanced radioiodine-refractory differentiated thyroid cancer and metastatic medullary thyroid cancer: A systematic review. BMC Cancer 2021, 21, 579. [Google Scholar] [CrossRef]
- Gubbi, S.; Koch, C.A.; Klubo-Gwiezdzinska, J. Peptide Receptor Radionuclide Therapy in Thyroid Cancer. Front. Endocrinol. 2022, 13, 896287. [Google Scholar] [CrossRef]
- Versari, A.; Sollini, M.; Frasoldati, A.; Fraternali, A.; Filice, A.; Froio, A.; Asti, M.; Fioroni, F.; Cremonini, N.; Putzer, D.; et al. Differentiated thyroid cancer: A new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014, 24, 715–726. [Google Scholar] [CrossRef]
- Hofland, J.; Brabander, T.; Verburg, F.A.; Feelders, R.A.; de Herder, W.W. Peptide Receptor Radionuclide Therapy. J. Clin. Endocrinol. Metab. 2022, 107, 3199–3208. [Google Scholar] [CrossRef]
- Strosberg, J.; Leeuwenkamp, O.; Siddiqui, M.K. Peptide receptor radiotherapy re-treatment in patients with progressive neuroendocrine tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2021, 93, 102141. [Google Scholar] [CrossRef]
- Zidan, L.; Iravani, A.; Kong, G.; Akhurst, T.; Michael, M.; Hicks, R.J. Theranostic implications of molecular imaging phenotype of well-differentiated pulmonary carcinoid based on (68)Ga-DOTATATE PET/CT and (18)F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 204–216. [Google Scholar] [CrossRef]
- Puliani, G.; Chiefari, A.; Mormando, M.; Bianchini, M.; Lauretta, R.; Appetecchia, M. New Insights in PRRT: Lessons from 2021. Front. Endocrinol. 2022, 13, 861434. [Google Scholar] [CrossRef] [PubMed]
- Hartrampf, P.E.; Hanscheid, H.; Kertels, O.; Schirbel, A.; Kreissl, M.C.; Flentje, M.; Sweeney, R.A.; Buck, A.K.; Polat, B.; Lapa, C. Long-term results of multimodal peptide receptor radionuclide therapy and fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Clin. Transl. Radiat. Oncol. 2020, 22, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Mirian, C.; Duun-Henriksen, A.K.; Maier, A.; Pedersen, M.M.; Jensen, L.R.; Bashir, A.; Graillon, T.; Hrachova, M.; Bota, D.; van Essen, M.; et al. Somatostatin Receptor-Targeted Radiopeptide Therapy in Treatment-Refractory Meningioma: Individual Patient Data Meta-analysis. J. Nucl. Med. 2021, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Parghane, R.V.; Talole, S.; Basu, S. Prevalence of hitherto unknown brain meningioma detected on (68)Ga-DOTATATE positron-emission tomography/computed tomography in patients with metastatic neuroendocrine tumor and exploring potential of (177)Lu-DOTATATE peptide receptor radionuclide therapy as single-shot treatment approach targeting both tumors. World J. Nucl. Med. 2019, 18, 160–170. [Google Scholar]
- Lange, F.; Kaemmerer, D.; Behnke-Mursch, J.; Bruck, W.; Schulz, S.; Lupp, A. Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I-IV astrocytic brain tumors. J. Cancer Res. Clin. Oncol. 2018, 144, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Cordier, D.; Forrer, F.; Kneifel, S.; Sailer, M.; Mariani, L.; Macke, H.; Muller-Brand, J.; Merlo, A. Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA-substance P—Results from a phase I study. J. Neurooncol. 2010, 100, 129–136. [Google Scholar] [CrossRef]
- Heute, D.; Kostron, H.; von Guggenberg, E.; Ingorokva, S.; Gabriel, M.; Dobrozemsky, G.; Stockhammer, G.; Virgolini, I.J. Response of recurrent high-grade glioma to treatment with (90)Y-DOTATOC. J. Nucl. Med. 2010, 51, 397–400. [Google Scholar] [CrossRef]
- Schumacher, T.; Hofer, S.; Eichhorn, K.; Wasner, M.; Zimmerer, S.; Freitag, P.; Probst, A.; Gratzl, O.; Reubi, J.C.; Maecke, R.; et al. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: An extended pilot study. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 486–493. [Google Scholar] [CrossRef]
- Paganelli, G.; Sansovini, M.; Nicolini, S.; Grassi, I.; Ibrahim, T.; Amadori, E.; Di Iorio, V.; Monti, M.; Scarpi, E.; Bongiovanni, A.; et al. (177)Lu-PRRT in advanced gastrointestinal neuroendocrine tumors: 10-year follow-up of the IRST phase II prospective study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 152–160. [Google Scholar] [CrossRef]
- Kipnis, S.T.; Hung, M.; Kumar, S.; Heckert, J.M.; Lee, H.; Bennett, B.; Soulen, M.C.; Pryma, D.A.; Mankoff, D.A.; Metz, D.C.; et al. Laboratory, Clinical, and Survival Outcomes Associated with Peptide Receptor Radionuclide Therapy in Patients with Gastroenteropancreatic Neuroendocrine Tumors. JAMA Netw. Open 2021, 4, e212274. [Google Scholar] [CrossRef] [PubMed]
- Chantadisai, M.; Kulkarni, H.R.; Baum, R.P. Therapy-related myeloid neoplasm after peptide receptor radionuclide therapy (PRRT) in 1631 patients from our 20 years of experiences: Prognostic parameters and overall survival. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Kwekkeboom, D.J.; Teunissen, J.J.; Bakker, W.H.; Kooij, P.P.; de Herder, W.W.; Feelders, R.A.; van Eijck, C.H.; Esser, J.P.; Kam, B.L.; Krenning, E.P. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J. Clin. Oncol. 2005, 23, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M.; European Society of Endocrinology. European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. Eur. J. Endocrinol. 2018, 178, G1–G24. [Google Scholar] [CrossRef]
- Dekkers, O.M.; Karavitaki, N.; Pereira, A.M. The epidemiology of aggressive pituitary tumors (and its challenges). Rev. Endocr. Metab. Disord. 2020, 21, 209–212. [Google Scholar] [CrossRef]
- Chatzellis, E.; Alexandraki, K.I.; Androulakis, I.I.; Kaltsas, G. Aggressive pituitary tumors. Neuroendocrinology 2015, 101, 87–104. [Google Scholar] [CrossRef]
- Trouillas, J.; Roy, P.; Sturm, N.; Dantony, E.; Cortet-Rudelli, C.; Viennet, G.; Bonneville, J.F.; Assaker, R.; Auger, C.; Brue, T.; et al. A new prognostic clinicopathological classification of pituitary adenomas: A multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol. 2013, 126, 123–135. [Google Scholar] [CrossRef]
- de Aguiar, P.H.; Aires, R.; Laws, E.R.; Isolan, G.R.; Logullo, A.; Patil, C.; Katznelson, L. Labeling index in pituitary adenomas evaluated by means of MIB-1: Is there a prognostic role? A critical review. Neurol. Res. 2010, 32, 1060–1071. [Google Scholar] [CrossRef]
- Zaidi, H.A.; Cote, D.J.; Dunn, I.F.; Laws, E.R., Jr. Predictors of aggressive clinical phenotype among immunohistochemically confirmed atypical adenomas. J. Clin. Neurosci. 2016, 34, 246–251. [Google Scholar] [CrossRef]
- Raverot, G.; Dantony, E.; Beauvy, J.; Vasiljevic, A.; Mikolasek, S.; Borson-Chazot, F.; Jouanneau, E.; Roy, P.; Trouillas, J. Risk of Recurrence in Pituitary Neuroendocrine Tumors: A Prospective Study Using a Five-Tiered Classification. J. Clin. Endocrinol. Metab. 2017, 102, 3368–3374. [Google Scholar] [CrossRef]
- Asioli, S.; Righi, A.; Iommi, M.; Baldovini, C.; Ambrosi, F.; Guaraldi, F.; Zoli, M.; Mazzatenta, D.; Faustini-Fustini, M.; Rucci, P.; et al. Validation of a clinicopathological score for the prediction of post-surgical evolution of pituitary adenoma: Retrospective analysis on 566 patients from a tertiary care centre. Eur. J. Endocrinol. 2019, 180, 127–134. [Google Scholar] [CrossRef]
- Guaraldi, F.; Zoli, M.; Righi, A.; Gibertoni, D.; Marino Picciola, V.; Faustini-Fustini, M.; Morandi, L.; Bacci, A.; Pasquini, E.; Mazzatenta, D.; et al. A practical algorithm to predict postsurgical recurrence and progression of pituitary neuroendocrine tumours (PitNET)s. Clin. Endocrinol. 2020, 93, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Lelotte, J.; Mourin, A.; Fomekong, E.; Michotte, A.; Raftopoulos, C.; Maiter, D. Both invasiveness and proliferation criteria predict recurrence of non-functioning pituitary macroadenomas after surgery: A retrospective analysis of a monocentric cohort of 120 patients. Eur. J. Endocrinol. 2018, 178, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Sahakian, N.; Appay, R.; Resseguier, N.; Graillon, T.; Piazzola, C.; Laure, C.; Figarella-Branger, D.; Regis, J.; Castinetti, F.; Brue, T.; et al. Real-life clinical impact of a five-tiered classification of pituitary tumors. Eur. J. Endocrinol. 2022, 187, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.F.; Tichomirowa, M.A.; Petrossians, P.; Heliovaara, E.; Jaffrain-Rea, M.L.; Barlier, A.; Naves, L.A.; Ebeling, T.; Karhu, A.; Raappana, A.; et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: An international collaborative study. J. Clin. Endocrinol. Metab. 2010, 95, E373–E383. [Google Scholar] [CrossRef]
- Marques, P.; Caimari, F.; Hernandez-Ramirez, L.C.; Collier, D.; Iacovazzo, D.; Ronaldson, A.; Magid, K.; Lim, C.T.; Stals, K.; Ellard, S.; et al. Significant Benefits of AIP Testing and Clinical Screening in Familial Isolated and Young-Onset Pituitary Tumors. J. Clin. Endocrinol. Metab. 2020, 105, e2247–e2260. [Google Scholar] [CrossRef]
- Beckers, A.; Lodish, M.B.; Trivellin, G.; Rostomyan, L.; Lee, M.; Faucz, F.R.; Yuan, B.; Choong, C.S.; Caberg, J.H.; Verrua, E.; et al. X-linked acrogigantism syndrome: Clinical profile and therapeutic responses. Endocr. Relat. Cancer 2015, 22, 353–367. [Google Scholar] [CrossRef]
- Salenave, S.; Ancelle, D.; Bahougne, T.; Raverot, G.; Kamenicky, P.; Bouligand, J.; Guiochon-Mantel, A.; Linglart, A.; Souchon, P.F.; Nicolino, M.; et al. Macroprolactinomas in children and adolescents: Factors associated with the response to treatment in 77 patients. J. Clin. Endocrinol. Metab. 2015, 100, 1177–1186. [Google Scholar] [CrossRef]
- Trouillas, J.; Labat-Moleur, F.; Sturm, N.; Kujas, M.; Heymann, M.F.; Figarella-Branger, D.; Patey, M.; Mazucca, M.; Decullier, E.; Verges, B.; et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): A case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am. J. Surg. Pathol. 2008, 32, 534–543. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Boldt, H.B.; Engstrom, B.E.; Andersen, M.S.; Baussart, B.; Bengtsson, D.; Berinder, K.; Ekman, B.; Feldt-Rasmussen, U.; Hoybye, C.; et al. Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations. J. Clin. Endocrinol. Metab. 2021, 106, 1183–1194. [Google Scholar] [CrossRef]
- Miyake, Y.; Adachi, J.I.; Suzuki, T.; Mishima, K.; Araki, R.; Mizuno, R.; Nishikawa, R. TERT promoter methylation is significantly associated with TERT upregulation and disease progression in pituitary adenomas. J. Neurooncol. 2019, 141, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Pease, M.; Ling, C.; Mack, W.J.; Wang, K.; Zada, G. The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: A systematic review of the literature. PLoS ONE 2013, 8, e82619. [Google Scholar] [CrossRef] [PubMed]
- Stilling, G.; Sun, Z.; Zhang, S.; Jin, L.; Righi, A.; Kovacs, G.; Korbonits, M.; Scheithauer, B.W.; Kovacs, K.; Lloyd, R.V. MicroRNA expression in ACTH-producing pituitary tumors: Up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 2010, 38, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Vicchio, T.M.; Aliquo, F.; Ruggeri, R.M.; Ragonese, M.; Giuffrida, G.; Cotta, O.R.; Spagnolo, F.; Torre, M.L.; Alibrandi, A.; Asmundo, A.; et al. MicroRNAs expression in pituitary tumors: Differences related to functional status, pathological features, and clinical behavior. J. Endocrinol. Investig. 2020, 43, 947–958. [Google Scholar] [CrossRef]
- Marques, P.; de Vries, F.; Dekkers, O.M.; Korbonits, M.; Biermasz, N.R.; Pereira, A.M. Serum Inflammation-based Scores in Endocrine Tumors. J. Clin. Endocrinol. Metab. 2021, 106, e3796–e3819. [Google Scholar] [CrossRef]
- Marques, P.; de Vries, F.; Dekkers, O.M.; van Furth, W.R.; Korbonits, M.; Biermasz, N.R.; Pereira, A.M. Pre-operative serum inflammation-based scores in patients with pituitary adenomas. Pituitary 2021, 24, 334–350. [Google Scholar] [CrossRef]
- Mangion, J.; Imbroll, M.G.; Craus, S.; Vassallo, J.; Gruppetta, M. Epidemiology and blood parameter changes in Cushing’s syndrome—A population-based study. Hormones 2022, 21, 467–476. [Google Scholar] [CrossRef]
- Ilie, M.D.; Vasiljevic, A.; Bertolino, P.; Raverot, G. Biological and Therapeutic Implications of the Tumor Microenvironment in Pituitary Adenomas. Endocr. Rev. 2022, 44, 297–311. [Google Scholar] [CrossRef]
- Marques, P.; Grossman, A.B.; Korbonits, M. The tumour microenvironment of pituitary neuroendocrine tumours. Front. Neuroendocr. 2020, 58, 100852. [Google Scholar] [CrossRef]
- Marques, P.; Silva, A.L.; Lopez-Presa, D.; Faria, C.; Bugalho, M.J. The microenvironment of pituitary adenomas: Biological, clinical and therapeutical implications. Pituitary 2022, 25, 363–382. [Google Scholar] [CrossRef]
- Burman, P.; Trouillas, J.; Losa, M.; McCormack, A.; Petersenn, S.; Popovic, V.; Theodoropoulou, M.; Raverot, G.; Dekkers, O.M.; Guenego, A.; et al. Aggressive pituitary tumours and carcinomas, characteristics and management of 171 patients. Eur. J. Endocrinol. 2022, 187, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.D.; Vasiljevic, A.; Jouanneau, E.; Raverot, G. Immunotherapy in aggressive pituitary tumors and carcinomas: A systematic review. Endocr. Relat. Cancer 2022, 29, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.D.; Villa, C.; Cuny, T.; Cortet, C.; Assie, G.; Baussart, B.; Cancel, M.; Chanson, P.; Decoudier, B.; Deluche, E.; et al. Real-life efficacy and predictors of response to immunotherapy in pituitary tumors: A cohort study. Eur. J. Endocrinol. 2022, 187, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.D.; Vasiljevic, A.; Raverot, G.; Bertolino, P. The Microenvironment of Pituitary Tumors-Biological and Therapeutic Implications. Cancers 2019, 11, 1605. [Google Scholar] [CrossRef]
- Cooper, O.; Mamelak, A.; Bannykh, S.; Carmichael, J.; Bonert, V.; Lim, S.; Cook-Wiens, G.; Ben-Shlomo, A. Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors. Endocrine 2014, 46, 318–327. [Google Scholar] [CrossRef]
- Ortiz, L.D.; Syro, L.V.; Scheithauer, B.W.; Ersen, A.; Uribe, H.; Fadul, C.E.; Rotondo, F.; Horvath, E.; Kovacs, K. Anti-VEGF therapy in pituitary carcinoma. Pituitary 2012, 15, 445–449. [Google Scholar] [CrossRef]
- Dutta, P.; Reddy, K.S.; Rai, A.; Madugundu, A.K.; Solanki, H.S.; Bhansali, A.; Radotra, B.D.; Kumar, N.; Collier, D.; Iacovazzo, D.; et al. Surgery, Octreotide, Temozolomide, Bevacizumab, Radiotherapy, and Pegvisomant Treatment of an AIP MutationPositive Child. J. Clin. Endocrinol. Metab. 2019, 104, 3539–3544. [Google Scholar] [CrossRef]
- Donovan, L.E.; Arnal, A.V.; Wang, S.H.; Odia, Y. Widely metastatic atypical pituitary adenoma with mTOR pathway STK11 (F298L) mutation treated with everolimus therapy. CNS Oncol. 2016, 5, 203–209. [Google Scholar] [CrossRef]
- Lin, A.L.; Jonsson, P.; Tabar, V.; Yang, T.J.; Cuaron, J.; Beal, K.; Cohen, M.; Postow, M.; Rosenblum, M.; Shia, J.; et al. Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. J. Clin. Endocrinol. Metab. 2018, 103, 3925–3930. [Google Scholar] [CrossRef]
- Cuevas-Ramos, D.; Fleseriu, M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J. Mol. Endocrinol. 2014, 52, R223–R240. [Google Scholar] [CrossRef]
- Ibanez-Costa, A.; Korbonits, M. AIP and the somatostatin system in pituitary tumours. J. Endocrinol. 2017, 235, R101–R116. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Kasuki, L.; Korbonits, M. Novel pathway for somatostatin analogs in patients with acromegaly. Trends Endocrinol. Metab. 2013, 24, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Moatassim-Billah, S.; Duluc, C.; Samain, R.; Jean, C.; Perraud, A.; Decaup, E.; Cassant-Sourdy, S.; Bakri, Y.; Selves, J.; Schmid, H.; et al. Anti-metastatic potential of somatostatin analog SOM230: Indirect pharmacological targeting of pancreatic cancer-associated fibroblasts. Oncotarget 2016, 7, 41584–41598. [Google Scholar] [CrossRef] [PubMed]
- Day, R.; Dong, W.; Panetta, R.; Kraicer, J.; Greenwood, M.T.; Patel, Y.C. Expression of mRNA for somatostatin receptor (sstr) types 2 and 5 in individual rat pituitary cells. A double labeling in situ hybridization analysis. Endocrinology 1995, 136, 5232–5235. [Google Scholar] [CrossRef] [PubMed]
- Panetta, R.; Patel, Y.C. Expression of mRNA for all five human somatostatin receptors (hSSTR1-5) in pituitary tumors. Life Sci. 1995, 56, 333–342. [Google Scholar] [CrossRef]
- Unger, N.; Ueberberg, B.; Schulz, S.; Saeger, W.; Mann, K.; Petersenn, S. Differential expression of somatostatin receptor subtype 1-5 proteins in numerous human normal tissues. Exp. Clin. Endocrinol. Diabetes 2012, 120, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Gunther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castano, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef]
- Barbieri, F.; Albertelli, M.; Grillo, F.; Mohamed, A.; Saveanu, A.; Barlier, A.; Ferone, D.; Florio, T. Neuroendocrine tumors: Insights into innovative therapeutic options and rational development of targeted therapies. Drug Discov. Today 2014, 19, 458–468. [Google Scholar] [CrossRef]
- Fleseriu, M.; Petersenn, S. Medical management of Cushing’s disease: What is the future? Pituitary 2012, 15, 330–341. [Google Scholar] [CrossRef]
- Schmid, H.A. Pasireotide (SOM230): Development, mechanism of action and potential applications. Mol. Cell. Endocrinol. 2008, 286, 69–74. [Google Scholar] [CrossRef]
- Babu, A.; Luque, R.M.; Glick, R.; Utset, M.; Fogelfeld, L. Variability in quantitative expression of receptors in nonfunctioning pituitary macroadenomas—An opportunity for targeted medical therapy. Endocr. Pract. 2014, 20, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Behling, F.; Honegger, J.; Skardelly, M.; Gepfner-Tuma, I.; Tabatabai, G.; Tatagiba, M.; Schittenhelm, J. High Expression of Somatostatin Receptors 2A, 3, and 5 in Corticotroph Pituitary Adenoma. Int. J. Endocrinol. 2018, 2018, 1763735. [Google Scholar] [CrossRef] [PubMed]
- Chinezu, L.; Vasiljevic, A.; Jouanneau, E.; Francois, P.; Borda, A.; Trouillas, J.; Raverot, G. Expression of somatostatin receptors, SSTR2A and SSTR5, in 108 endocrine pituitary tumors using immunohistochemical detection with new specific monoclonal antibodies. Hum. Pathol. 2014, 45, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.L.; Sioson, L.; Sheen, A.; Clarkson, A.; Gill, A.J. Immunohistochemical expression of somatostatin receptors SSTR2A and SSTR5 in 299 pituitary adenomas. Pathology 2018, 50, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Gabalec, F.; Drastikova, M.; Cesak, T.; Netuka, D.; Masopust, V.; Machac, J.; Marek, J.; Cap, J.; Beranek, M. Dopamine 2 and somatostatin 1-5 receptors coexpression in clinically non-functioning pituitary adenomas. Physiol. Res. 2015, 64, 369–377. [Google Scholar] [CrossRef]
- Kiseljak-Vassiliades, K.; Xu, M.; Mills, T.S.; Smith, E.E.; Silveira, L.J.; Lillehei, K.O.; Kerr, J.M.; Kleinschmidt-DeMasters, B.K.; Wierman, M.E. Differential somatostatin receptor (SSTR) 1-5 expression and downstream effectors in histologic subtypes of growth hormone pituitary tumors. Mol. Cell. Endocrinol. 2015, 417, 73–83. [Google Scholar] [CrossRef]
- Taboada, G.F.; Luque, R.M.; Bastos, W.; Guimaraes, R.F.; Marcondes, J.B.; Chimelli, L.M.; Fontes, R.; Mata, P.J.; Filho, P.N.; Carvalho, D.P.; et al. Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur. J. Endocrinol. 2007, 156, 65–74. [Google Scholar] [CrossRef]
- Venegas-Moreno, E.; Vazquez-Borrego, M.C.; Dios, E.; Gros-Herguido, N.; Flores-Martinez, A.; Rivero-Cortes, E.; Madrazo-Atutxa, A.; Japon, M.A.; Luque, R.M.; Castano, J.P.; et al. Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. J. Cell. Mol. Med. 2018, 22, 1640–1649. [Google Scholar] [CrossRef]
- Hofland, L.J.; Lamberts, S.W. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev. 2003, 24, 28–47. [Google Scholar] [CrossRef]
- Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 2001, 28, 836–846. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Heck, A.; Schulz, S.; Nesland, J.M.; Ramm-Pettersen, J.; Lekva, T.; Alafuzoff, I.; Bollerslev, J. Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies was reduced by octreotide and correlated with the acute and long-term effects of octreotide. J. Clin. Endocrinol. Metab. 2013, 98, E1730–E1739. [Google Scholar] [CrossRef] [PubMed]
- Plockinger, U.; Albrecht, S.; Mawrin, C.; Saeger, W.; Buchfelder, M.; Petersenn, S.; Schulz, S. Selective loss of somatostatin receptor 2 in octreotide-resistant growth hormone-secreting adenomas. J. Clin. Endocrinol. Metab. 2008, 93, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Petersenn, S.; Heaney, A.P. Targeted systemic and peptide radio-ligand therapy for aggressive pituitary tumors and carcinomas. Rev. Endocr. Metab. Disord. 2020, 21, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Boy, C.; Heusner, T.A.; Poeppel, T.D.; Redmann-Bischofs, A.; Unger, N.; Jentzen, W.; Brandau, W.; Mann, K.; Antoch, G.; Bockisch, A.; et al. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1-sst5) expression in normal human tissue: Correlation of sst2 mRNA and SUVmax. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1224–1236. [Google Scholar] [CrossRef]
- Baldari, S.; Ferrau, F.; Alafaci, C.; Herberg, A.; Granata, F.; Militano, V.; Salpietro, F.M.; Trimarchi, F.; Cannavo, S. First demonstration of the effectiveness of peptide receptor radionuclide therapy (PRRT) with 111In-DTPA-octreotide in a giant PRL-secreting pituitary adenoma resistant to conventional treatment. Pituitary 2012, 15 (Suppl. 1), 57–60. [Google Scholar] [CrossRef]
- Giuffrida, G.; Ferrau, F.; Laudicella, R.; Cotta, O.R.; Messina, E.; Granata, F.; Angileri, F.F.; Vento, A.; Alibrandi, A.; Baldari, S.; et al. Peptide receptor radionuclide therapy for aggressive pituitary tumors: A monocentric experience. Endocr. Connect. 2019, 8, 528–535. [Google Scholar] [CrossRef]
- Komor, J.; Reubi, J.C.; Christ, E.R. Peptide receptor radionuclide therapy in a patient with disabling non-functioning pituitary adenoma. Pituitary 2014, 17, 227–231. [Google Scholar] [CrossRef]
- Kovacs, G.L.; Goth, M.; Rotondo, F.; Scheithauer, B.W.; Carlsen, E.; Saadia, A.; Hubina, E.; Kovacs, L.; Szabolcs, I.; Nagy, P.; et al. ACTH-secreting Crooke cell carcinoma of the pituitary. Eur. J. Clin. Investig. 2013, 43, 20–26. [Google Scholar] [CrossRef]
- Kumar Gupta, S.; Singla, S.; Damle, N.A.; Agarwal, K.; Bal, C. Diagnosis of Men-I Syndrome on (68)Ga-DOTANOC PET-CT and Role of Peptide Receptor Radionuclide Therapy With (177)Lu-DOTATATE. Int. J. Endocrinol. Metab. 2012, 10, 629–633. [Google Scholar] [CrossRef]
- Priola, S.M.; Esposito, F.; Cannavo, S.; Conti, A.; Abbritti, R.V.; Barresi, V.; Baldari, S.; Ferrau, F.; Germano, A.; Tomasello, F.; et al. Aggressive Pituitary Adenomas: The Dark Side of the Moon. World Neurosurg. 2017, 97, 140–155. [Google Scholar] [CrossRef]
- Bengtsson, D.; Schroder, H.D.; Andersen, M.; Maiter, D.; Berinder, K.; Feldt Rasmussen, U.; Rasmussen, A.K.; Johannsson, G.; Hoybye, C.; van der Lely, A.J.; et al. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J. Clin. Endocrinol. Metab. 2015, 100, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Maclean, J.; Aldridge, M.; Bomanji, J.; Short, S.; Fersht, N. Peptide receptor radionuclide therapy for aggressive atypical pituitary adenoma/carcinoma: Variable clinical response in preliminary evaluation. Pituitary 2014, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Lasolle, H.; Cortet, C.; Castinetti, F.; Cloix, L.; Caron, P.; Delemer, B.; Desailloud, R.; Jublanc, C.; Lebrun-Frenay, C.; Sadoul, J.L.; et al. Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur. J. Endocrinol. 2017, 176, 769–777. [Google Scholar] [CrossRef] [PubMed]
- McCormack, A.; Dekkers, O.M.; Petersenn, S.; Popovic, V.; Trouillas, J.; Raverot, G.; Burman, P.; ESE Survey Collaborators. Treatment of aggressive pituitary tumours and carcinomas: Results of a European Society of Endocrinology (ESE) survey 2016. Eur. J. Endocrinol. 2018, 178, 265–276. [Google Scholar] [CrossRef]
- Novruzov, F.; Aliyev, J.A.; Jaunmuktane, Z.; Bomanji, J.B.; Kayani, I. The use of (68)Ga DOTATATE PET/CT for diagnostic assessment and monitoring of (177)Lu DOTATATE therapy in pituitary carcinoma. Clin. Nucl. Med. 2015, 40, 47–49. [Google Scholar] [CrossRef]
- Waligorska-Stachura, J.; Gut, P.; Sawicka-Gutaj, N.; Liebert, W.; Gryczynska, M.; Baszko-Blaszyk, D.; Blanco-Gangoo, A.R.; Ruchala, M. Growth hormone-secreting macroadenoma of the pituitary gland successfully treated with the radiolabeled somatostatin analog (90)Y-DOTATATE: Case report. J. Neurosurg. 2016, 125, 346–349. [Google Scholar] [CrossRef]
- Assadi, M.; Nemati, R.; Shooli, H.; Rekabpour, S.J.; Nabipour, I.; Jafari, E.; Gholamrezanezhad, A.; Amini, A.; Ahmadzadehfar, H. An aggressive functioning pituitary adenoma treated with peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1015–1016. [Google Scholar] [CrossRef]
- Lin, A.L.; Tabar, V.; Young, R.J.; Cohen, M.; Cuaron, J.; Yang, T.J.; Rosenblum, M.; Rudneva, V.A.; Geer, E.B.; Bodei, L. Synergism of Checkpoint Inhibitors and Peptide Receptor Radionuclide Therapy in the Treatment of Pituitary Carcinoma. J. Endocr. Soc. 2021, 5, bvab133. [Google Scholar] [CrossRef]
- Kleinendorst, S.C.; Oosterwijk, E.; Bussink, J.; Westdorp, H.; Konijnenberg, M.W.; Heskamp, S. Combining Targeted Radionuclide Therapy and Immune Checkpoint Inhibition for Cancer Treatment. Clin. Cancer Res. 2022, 28, 3652–3657. [Google Scholar] [CrossRef]
- Azghadi, S.; Daly, M.E. Radiation and immunotherapy combinations in non-small cell lung cancer. Cancer Treat. Res. Commun. 2021, 26, 100298. [Google Scholar] [CrossRef]
- Nakano-Tateno, T.; Lau, K.J.; Wang, J.; McMahon, C.; Kawakami, Y.; Tateno, T.; Araki, T. Multimodal Non-Surgical Treatments of Aggressive Pituitary Tumors. Front. Endocrinol. 2021, 12, 624686. [Google Scholar] [CrossRef] [PubMed]
- Burman, P.; Casar-Borota, O.; Perez-Rivas, L.G.; Dekkers, O.M. Aggressive pituitary tumors and pituitary carcinomas: From pathology to treatment. J. Clin. Endocrinol. Metab. 2023, dgad098. [Google Scholar] [CrossRef] [PubMed]
- Elston, M.S.; Love, A.; Kevat, D.; Carroll, R.; Siow, Z.R.; Pattison, S.; Boyle, V.; Segelov, E.; Strickland, A.H.; Wyld, D.; et al. Pituitary function following peptide receptor radionuclide therapy for neuroendocrine tumours. Cancer Med. 2021, 10, 8405–8411. [Google Scholar] [CrossRef] [PubMed]
- Sundlov, A.; Sjogreen-Gleisner, K.; Tennvall, J.; Dahl, L.; Svensson, J.; Akesson, A.; Bernhardt, P.; Lindgren, O. Pituitary Function after High-Dose 177Lu-DOTATATE Therapy and Long-Term Follow-Up. Neuroendocrinology 2021, 111, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, J.J.; Krenning, E.P.; de Jong, F.H.; de Rijke, Y.B.; Feelders, R.A.; van Aken, M.O.; de Herder, W.W.; Kwekkeboom, D.J. Effects of therapy with [177Lu-DOTA0,Tyr3]octreotate on endocrine function. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1758–1766. [Google Scholar] [CrossRef]
- O’Carroll, A.M.; Krempels, K. Widespread distribution of somatostatin receptor messenger ribonucleic acids in rat pituitary. Endocrinology 1995, 136, 5224–5227. [Google Scholar] [CrossRef]
- Darzy, K.H. Radiation-induced hypopituitarism after cancer therapy: Who, how and when to test. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 88–99. [Google Scholar] [CrossRef]
- Marques, P.; Van Huellen, H.; Fitzpatrick, A.; Druce, M. Late endocrine effects of cancer and cancer therapies in survivors of childhood malignancies. Minerva Endocrinol. 2016, 41, 78–104. [Google Scholar]
- Rosario, P.W.; Barroso, A.L.; Rezende, L.L.; Padrao, E.L.; Borges, M.A.; Guimaraes, V.C.; Purisch, S. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid 2006, 16, 667–670. [Google Scholar] [CrossRef]
- Wichers, M.; Benz, E.; Palmedo, H.; Biersack, H.J.; Grunwald, F.; Klingmuller, D. Testicular function after radioiodine therapy for thyroid carcinoma. Eur. J. Nucl. Med. 2000, 27, 503–507. [Google Scholar] [CrossRef]
- Anawalt, B.D.; Bebb, R.A.; Matsumoto, A.M.; Groome, N.P.; Illingworth, P.J.; McNeilly, A.S.; Bremner, W.J. Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction. J. Clin. Endocrinol. Metab. 1996, 81, 3341–3345. [Google Scholar] [PubMed]
- Hayes, F.J.; Pitteloud, N.; DeCruz, S.; Crowley, W.F., Jr.; Boepple, P.A. Importance of inhibin B in the regulation of FSH secretion in the human male. J. Clin. Endocrinol. Metab. 2001, 86, 5541–5546. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Andersson, A.M.; Hjollund, N.H.; Scheike, T.; Kolstad, H.; Giwercman, A.; Henriksen, T.B.; Ernst, E.; Bonde, J.P.; Olsen, J.; et al. Inhibin B as a serum marker of spermatogenesis: Correlation to differences in sperm concentration and follicle-stimulating hormone levels. A study of 349 Danish men. J. Clin. Endocrinol. Metab. 1997, 82, 4059–4063. [Google Scholar]
- Hoffman, A.R.; Mathison, T.; Andrews, D.; Murray, K.; Kelepouris, N.; Fleseriu, M. Adult Growth Hormone Deficiency: Diagnostic and Treatment Journeys from the Patients’ Perspective. J. Endocr. Soc. 2022, 6, bvac077. [Google Scholar] [CrossRef] [PubMed]
SSTR1 | SSTR2 | SSTR3 | SSTR4 | SSTR5 | |
---|---|---|---|---|---|
Normal pituitary gland | |||||
Foetal pituitary | + | + | + | + | + |
Adult pituitary | + | + | + | - | + |
Pituitary tumour | |||||
GH-secreting PitNET | 60% | 90% | 45% | <5% | 90% |
ACTH-secreting PitNET | 60% | 75% | 10% | 30% | 75% |
Prolactin-secreting PitNET | 90% | 60% | 20% | 0% | 80% |
TSH-secreting PitNET | 100% | 100% | 0% | 0% | 50% |
Non-functioning PitNET | 25% | 55% | 45% | 0% | 50% |
Reference (PMID) | Age/Sex | Tumour Type | Previous Treatments | Functional Imaging Prior to PRRT | Type of PRRT | Total Activity/Cycles Number | Response in Tumour Growth | Response in Hormone Reduction | PFS (Months) |
---|---|---|---|---|---|---|---|---|---|
Baldari 2012 Pituitary [95] (PMID: 22222543) # Giuffrida 2019 Endocr Connect [96] (PMID: 30939449) # Priola 2017 World Neurosurg [100] (PMID: 27713064) ¥ | 58/F | PRLoma | DA, Op, RT, SSA | 111In-octreotide-scintigraphy | 111In-DTPA-octreotide | 37 GBq/5 cycles | PR-significant shrinkage over 9 yrs (from 63 to 3.1 mL) | Significant PRL decrease from 350,000 before PRRT vs. 30,310 U/L at last visit | 108 |
Kumar Gupta 2012 Int J Endocrinol Metab [99] (PMID: 23843835) | 71/F | NF-PitNET | None | 68Ga-DOTA-NOC PET/CT | 177Lu-DOTA-TATE | 150 mCi/1 cycle | na | na | na |
Kovács 2013 Eur J Clin Invest [98] (PMID: 23134557) | 16/F | ACTH-PitCa | 8xOp, BA, 3xRT | 111In-octreotide-scintigraphy | 90Y-DOTA-TATE | 400 mCi/2 cycles | PD-died within the following year | No response | na |
Komor 2014 Pituitary [97] (PMID: 23740146) | 56/M | NF-PitNET | Op, RT | 111In-octreotide-scintigraphy | 177Lu-DOTA-TOC | 600 mCi/3 cycles | SD > 8 yrs | not applicable | 96 |
Maclean 2014 Pituitary [102] (PMID: 24323313) | 63/M | NF-PitCa | 2xOp, RT | 68Ga-DOTA-TATE PET/CT | 177Lu-DOTA-TATE | 29.6 GBq/4 cycles | SD for 40 months, with CR in some metastatic nodules | not applicable | 40 |
Maclean 2014 Pituitary [102] (PMID: 24323313) | 42/M | GH/PRL-secreting PitNET | 5xOp, RT, DA, SSA, TMZ | 68Ga-DOTA-TATE PET/CT | 177Lu-DOTA-TATE | 15.3 GBq/2 cycles | PD-died shortly afterwards (prior to cycle 3 of PRRT) | na | 0 |
Maclean 2014 Pituitary [102] (PMID: 24323313) | 32/M | Silent ACTHoma | 4xOp, RT, TMZ | 68Ga-DOTA-TATE PET/CT | 177Lu-DOTA-TATE | 7.4 GBq?/1 cycle only due to facial pain | PD-died ~9 months later despite further Ctx, Op, TMZ and RT | not applicable | 0 |
Bengtsson 2015 J Clin Endocrinol Metab [101] (PMID: 25646794) | 59/F | NF-PitNET | TMZ | na | 177Lu-DOTA-TATE | na | na | na | na |
Bengtsson 2015 J Clin Endocrinol Metab [101] (PMID: 25646794) Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) § | 46/M | GH-PitCa | TMZ | Octreoscan | 90Y-DOTA-TATE | Activity na/1 cycle | PD | na | na |
Bengtsson 2015 J Clin Endocrinol Metab [101] (PMID: 25646794) Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) § | 23/M | PRLoma | RT, TMZ | 68Ga-PET | 68Ga-DOTA-TATE | Activity na/2 cycles | PD | na | na |
Novruzov 2015 Clin Nucl Med [105] (PMID: 25275413) | 68/M | NF-PitCa | Op, RT | 68Ga-DOTA-TATE PET/CT | 177Lu-DOTA-TATE | 22.2 GBq/3 cycles | SD for 4 yrs | not applicable | 48 |
Waligórska-Stachura 2016 J Neurosurg [106] (PMID: 26636388) | 26/M | GH-secreting PitNET | Op, RT, SSA | 68Ga-DOTA-TATE PET/CT | 90Y-DOTA-TATE | 400 mCi/4 cycles | PR-significant shrinkage at 12 months | IGF-1 decreased | 12 |
Lasolle 2017 Eur J Endocrinol [103] (PMID: 28432119) | na | na | na | na | DOTA-NOC | na | PD | PD | na |
Lasolle 2017 Eur J Endocrinol [103] (PMID: 28432119) | na | na | na | na | DOTA-NOC | na | Ongoing | Ongoing | na |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) § | na | NF-PitNET | TMZ | Octreoscan | 90Y-DOTA-TOC | Activity na/2 cycles | SD at 12 months | not applicable | 12 |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) § | na | TSH-secreting PitNET | TMZ | Octreoscan | 177Lu-DOTA-TATE | Activity na/1 cycle | PD | na | na |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) | na | Aggressive PitNET (type not specified) | None | na | na | na | PR | na | na |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) | na | Aggressive PitNET (type not specified) | None | na | na | na | SD | na | na |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) | na | Aggressive PitNET (type not specified) | TMZ | na | na | na | PD | na | na |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) | na | Aggressive PitNET (type not specified) | TMZ | na | na | na | PD | na | na |
McCormack 2018 Eur J Endocrinol [104] (PMID: 29330228) | na | Aggressive PitNET (type not specified) | TMZ | na | na | na | PD | na | na |
Giuffrida 2019 Endocr Connect [96] (PMID: 30939449) Priola 2017 World Neurosurg [100] (PMID: 27713064) ¥ | 54/M | PRLoma | DA, 3xOp, RT | 111In-octreotide-scintigraphy | 177Lu-DOTA-TOC | 12.6 GBq/2 cycles | PD-increase after the 2nd cycle from 20 to 83.6 mL; then, TMZ and Ctx without benefit | na | 0 |
Giuffrida 2019 Endocr Connect [96] (PMID: 30939449) Priola 2017 World Neurosurg [100] (PMID: 27713064) ¥ | 53/F | NF-PitNET | 5xOp, RT, TMZ | 111In-octreotide-scintigraphy | 177Lu-DOTA-TOC | 29.8 GBq/5 cycles | PD-increase from 7.7 to 14.1 mL | not applicable | 0 |
Assadi 2020 Eur J Nucl Med Mol Imaging [107] (PMID: 31741022) | 48/M | GH-secreting PitNET | Op, unspecific medical therapy | 99 m-EDDA-HYNIC-tyr3-octreotide scintigraphy | 177Lu-DOTA-TATE | 22.2 GBq/3 cycles | SD over 1 year, then pituitary apoplexy | GH decreased; but IGF-1 remained high | 12 |
Lin 2021 J Endocr Soc [108] (PMID: 34466766) | 45/F | ACTH-PitCa | 4xOp, 3xRT, SSA, DA, ketoconazole, CAPTEM, BA, Ctx, ICI | 28.07 GBq/4 cycles | SD immediately after PRRT; nivolumab resumed after with shrinkage 6 months later (61% reduction) | ACTH decreased | 6 | ||
Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) | na | NF-PitNET | 2xTMZ | 68Ga-PET | 177Lu-DOTA-TATE | Activity na/4 cycles | PR at 8 months | not applicable | 8 |
Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) | na | NF-PitNET | TMZ | Octreoscan | 177Lu-DOTA-TATE | Activity na/4 cycles | PR > 26 months | not applicable | >26 |
Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) | na | NF-PitNET | RT | Octreoscan | 177Lu-DOTA-TOC | Activity na/6 cycles | SD | not applicable | na |
Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) | na | PRLoma | TMZ+ Bevacizumab | 68Ga-PET | 177Lu-DOTA-TATE | Activity na/1 cycle | PD | na | na |
Burman 2022 Eur J Endocrinol [61] (PMID: 36018781) | na | PRLoma | 2xTMZ | 68Ga-PET | 90Y-DOTA-TOC; 177Lu-DOTA-TATE | Activity na/2 cycles; 1 cycle | PD | na | na |
Reference (PMID) | Study Population | Gender/Mean Age | Previous Treatments | Type of PRRT | Activity/Number of Cycles | Follow-Up after PRRT | Main Findings Regarding the Pituitary Function Post-PRRT |
---|---|---|---|---|---|---|---|
Kwekkeboom 2005 J Clin Oncol [33] (PMID: 15837990) | 131 pts with metastasized or inoperable gastroentero-pancreatic NETs | 65 M, 66 F/56 years | 48% had surgery; 5% EBRT; 15% chemotherapy; 50% SSA | 177Lu-DOTATATE | 600–800 mCi | 24 months |
|
Teunissen 2009 Eur J Nucl Med Mol Imaging [115] (PMID: 19471926) | 79 pts with various types of endocrine-related cancers (74 NETs, 4 thyroid cancers, 1 paraganglioma) | 38 M, 41 F/54.8 years | 46% had surgery; 8% chemotherapy; 4% EBRT; 46% SSA | 177Lu-DOTATATE | 600–800 mCi (3–4 cycles with 6- or 9-week intervals) | 24 months |
|
Sundlöv 2021 Neuroendocrinology [114] (PMID: 32259830) | 68 pts with progressive grade 1–2 NETs | 37 M, 31 F/66 years | 80% had SSA; 12% chemotherapy; 15% biologics; 1% MIBG; 40% liver- therapies | 177Lu-DOTATATE | Median 37.0 GBq (IQR: 14.8–66.6) | Median 30 months (range: 11–89) |
|
Elston 2021 Cancer Med [113] (PMID: 34697905) | 66 pts with unresectable metastatic NETs: 34 received PRRT vs. 32 controls | PRRT group: 23 M, 11 F/65.1 years vs. Controls: 15 M, 17 F/61.6 years | 53% had SSA; 50% chemotherapy | na | Mean 31.8 GBq (IQR: 31.2–35) | Median 68 months (IQR: 51.3–102) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, P. The Effects of Peptide Receptor Radionuclide Therapy on the Neoplastic and Normal Pituitary. Cancers 2023, 15, 2710. https://doi.org/10.3390/cancers15102710
Marques P. The Effects of Peptide Receptor Radionuclide Therapy on the Neoplastic and Normal Pituitary. Cancers. 2023; 15(10):2710. https://doi.org/10.3390/cancers15102710
Chicago/Turabian StyleMarques, Pedro. 2023. "The Effects of Peptide Receptor Radionuclide Therapy on the Neoplastic and Normal Pituitary" Cancers 15, no. 10: 2710. https://doi.org/10.3390/cancers15102710
APA StyleMarques, P. (2023). The Effects of Peptide Receptor Radionuclide Therapy on the Neoplastic and Normal Pituitary. Cancers, 15(10), 2710. https://doi.org/10.3390/cancers15102710