A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
- (a)
- Diffuse reflectance spectroscopy
- (b)
- Multispectral/Hyperspectral Imaging
- (c)
- Spatial Frequency Domain Imaging
2. Materials and Methods
2.1. Literature Search Methodology
2.2. Selection Criteria
2.3. Data Collection
2.4. Meta-Analysis
3. Results
3.1. Categorization of Selected Studies
3.1.1. Tissue Optic Modality Type
3.1.2. Probe-Based Systems vs. Imaging-Based Systems
3.2. Tissue Heterogeneity among Studies
3.3. Diagnostic Abilities of Different Tissue Optic Techniques
3.4. Meta-Analysis
3.4.1. Heterogeneity Results
3.4.2. Pooled Sensitivity/Specificity Results
4. Discussion
4.1. Meta-Analysis of Probe-Based vs. Image-Based Approaches
4.2. Meta-Analysis of Modality Sub-Divisions
4.3. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cancer IAfRo. Online Analysis Table. 2020. Available online: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=0&include_nmsc_other=1 (accessed on 18 April 2023).
- de Boniface, J.; Szulkin, R.; Johansson, A.L.V. Survival After Breast Conservation vs Mastectomy Adjusted for Comorbidity and Socioeconomic Status: A Swedish National 6-Year Follow-up of 48986 Women. JAMA Surg. 2021, 156, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Singletary, S.E. Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy. Am. J. Surg. 2002, 184, 383–393. [Google Scholar] [CrossRef]
- Houssami, N.; Macaskill, P.; Marinovich, M.L.; Morrow, M. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: A meta-analysis. Ann. Surg. Oncol. 2014, 21, 717–730. [Google Scholar] [CrossRef]
- Jeevan, R.; Cromwell, D.A.; Trivella, M.; Lawrence, G.; Kearins, O.; Pereira, J.; Sheppard, C.; Caddy, C.M.; van der Meulen, J.H. Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics. BMJ 2012, 345, e4505. [Google Scholar] [CrossRef] [PubMed]
- McCahill, L.E.; Single, R.M.; Aiello Bowles, E.J.; Feigelson, H.S.; James, T.A.; Barney, T.; Engel, J.M.; Onitilo, A.A. Variability in reexcision following breast conservation surgery. JAMA 2012, 307, 467–475. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, F.; Irvine, T. Breast Surgery GIRFT Programme National Specialty Report; GIRFT, NHS: London, UK, 2021. [Google Scholar]
- Shimozuma, K.; Ganz, P.A.; Petersen, L.; Hirji, K. Quality of life in the first year after breast cancer surgery: Rehabilitation needs and patterns of recovery. Breast Cancer Res. Treat. 1999, 56, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Fuzesi, S.; Becetti, K.; Klassen, A.F.; Gemignani, M.L.; Pusic, A.L. Expectations of breast-conserving therapy: A qualitative study. J. Patient Rep. Outcomes 2019, 3, 73. [Google Scholar] [CrossRef] [PubMed]
- Jeffe, D.B.; Perez, M.; Cole, E.F.; Liu, Y.; Schootman, M. The Effects of Surgery Type and Chemotherapy on Early-Stage Breast Cancer Patients’ Quality of Life Over 2-Year Follow-up. Ann. Surg. Oncol. 2016, 23, 735–743. [Google Scholar] [CrossRef]
- Grant, Y.; Al-Khudairi, R.; St John, E.; Barschkett, M.; Cunningham, D.; Al-Mufti, R.; Hogben, K.; Thiruchelvam, P.; Hadjiminas, D.J.; Darzi, A.; et al. Patient-level costs in margin re-excision for breast-conserving surgery. Br. J. Surg. 2019, 106, 384–394. [Google Scholar] [CrossRef]
- Balasundaram, G.; Krafft, C.; Zhang, R.; Dev, K.; Bi, R.; Moothanchery, M.; Popp, J.; Olivo, M. Biophotonic technologies for assessment of breast tumor surgical margins—A review. J. Biophotonics 2021, 14, e202000280. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.Q.; Bydlon, T.M.; Kennedy, S.A.; Caldwell, M.L.; Gallagher, J.E.; Junker, M.; Wilke, L.G.; Barry, W.T.; Geradts, J.; Ramanujam, N. Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins. PLoS ONE 2013, 8, e69906. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, N.; Al-Ebraheem, A.; Le, D.; Cornacchi, S.; Fang, Q.; Farrell, T.; Lovrics, P.; Gohla, G.; Reid, S.; Hodgson, N.; et al. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer. Lasers Surg. Med. 2018, 50, 236–245. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, T.D.; Cerussi, A.E.; Cuccia, D.J.; Tromberg, B.J. Diffuse optical imaging using spatially and temporally modulated light. J. Biomed. Opt. 2012, 17, 071311. [Google Scholar] [CrossRef] [PubMed]
- Richards-Kortum, R.; Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 1996, 47, 555–606. [Google Scholar] [CrossRef] [PubMed]
- Evers, D.; Hendriks, B.; Lucassen, G.; Ruers, T. Optical spectroscopy: Current advances and future applications in cancer diagnostics and therapy. Future Oncol. 2012, 8, 307–320. [Google Scholar] [CrossRef]
- Zonios, G.; Perelman, L.T.; Backman, V.; Manoharan, R.; Fitzmaurice, M.; Van Dam, J.; Feld, M.S. Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 1999, 38, 6628–6637. [Google Scholar] [CrossRef]
- Farrell, T.J.; Patterson, M.S.; Wilson, B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 1992, 19, 879–888. [Google Scholar] [CrossRef]
- Moy, A.J.; Tunnell, J.W. Diffuse Reflectance Spectroscopy and Imaging. In Imaging in Dermatology; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Wagnieres, G.A.; Star, W.M.; Wilson, B.C. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 1998, 68, 603–632. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 2013, 18, 100901. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.; Bardhan, N.M.; Qi, J.; Gu, L.; Eze, N.A.; Lin, C.W.; Kataria, S.; Hammond, P.T.; Belcher, A.M. Deep-tissue optical imaging of near cellular-sized features. Sci. Rep. 2019, 9, 3873. [Google Scholar] [CrossRef] [PubMed]
- Gioux, S.; Mazhar, A.; Lee, B.T.; Lin, S.J.; Tobias, A.M.; Cuccia, D.J.; Stockdale, A.; Oketokoun, R.; Ashitate, Y.; Kelly, E.; et al. First-in-human pilot study of a spatial frequency domain oxygenation imaging system. J. Biomed. Opt. 2011, 16, 086015. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.V.; Patsopoulos, N.A.; Salanti, G.; Ioannidis, J.P. Critical interpretation of Cochran’s Q test depends on power and prior assumptions about heterogeneity. Res. Synth. Methods 2010, 1, 149–161. [Google Scholar] [CrossRef]
- Jackson, D. The power of the standard test for the presence of heterogeneity in meta-analysis. Stat. Med. 2006, 25, 2688–2699. [Google Scholar] [CrossRef]
- Zhu, C.; Palmer, G.M.; Breslin, T.M.; Harter, J.; Ramanujam, N. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique. Lasers Surg. Med. 2006, 38, 714–724. [Google Scholar] [CrossRef]
- Brown, J.Q.; Bydlon, T.M.; Richards, L.M.; Yu, B.; Kennedy, S.A.; Geradts, J.; Wilke, L.G.; Junker, M.; Gallagher, J.; Barry, W.; et al. Optical assessment of tumor resection margins in the breast. IEEE J. Sel. Top. Quantum. Electron. 2010, 16, 530–544. [Google Scholar] [CrossRef]
- Zhu, C.; Palmer, G.M.; Breslin, T.M.; Xu, F.; Ramanujam, N. Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer. J. Biomed. Opt. 2005, 10, 024032. [Google Scholar] [CrossRef]
- Volynskaya, Z.; Haka, A.S.; Bechtel, K.L.; Fitzmaurice, M.; Shenk, R.; Wang, N.; Nazemi, J.; Dasari, R.R.; Feld, M.S. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt. 2008, 13, 024012. [Google Scholar] [CrossRef]
- Breslin, T.M.; Xu, F.; Palmer, G.M.; Zhu, C.; Gilchrist, K.W.; Ramanujam, N. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues. Ann. Surg. Oncol. 2004, 11, 65–70. [Google Scholar] [CrossRef]
- Palmer, G.M.; Zhu, C.; Breslin, T.M.; Xu, F.; Gilchrist, K.W.; Ramanujam, N. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003). IEEE Trans. Biomed. Eng. 2003, 50, 1233–1242. [Google Scholar] [CrossRef]
- Ramanujam, N.; Brown, J.; Bydlon, T.M.; Kennedy, S.A.; Richards, L.M.; Junker, M.K.; Gallagher, J.; Barry, W.T.; Wilke, L.G.; Geradts, J. Quantitative spectral reflectance imaging device for intraoperative breast tumor margin assessment. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; Volume 2009, pp. 6554–6556. [Google Scholar] [CrossRef]
- Keller, M.D.; Majumder, S.K.; Kelley, M.C.; Meszoely, I.M.; Boulos, F.I.; Olivares, G.M.; Mahadevan-Jansen, A. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg. Med. 2010, 42, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Pourreza-Shahri, R.; Saki, F.; Kehtarnavaz, N.; Leboulluec, P.; Liu, H. Classification of ex-vivo breast cancer positive margins measured by hyperspectral imaging. In Proceedings of the IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013. [Google Scholar]
- Aboughaleb, I.H.; Aref, M.H.; El-Sharkawy, Y.H. Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer. Photodiagnosis Photodyn. Ther. 2020, 31, 101922. [Google Scholar] [CrossRef] [PubMed]
- Nachabe, R.; Evers, D.J.; Hendriks, B.H.; Lucassen, G.W.; van der Voort, M.; Rutgers, E.J.; Peeters, M.J.; Van der Hage, J.A.; Oldenburg, H.S.; Wesseling, J.; et al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: Comparison of classification methods. J. Biomed. Opt. 2011, 16, 087010. [Google Scholar] [CrossRef]
- de Boer, L.L.; Molenkamp, B.G.; Bydlon, T.M.; Hendriks, B.H.; Wesseling, J.; Sterenborg, H.J.; Ruers, T.J. Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries. Breast Cancer Res. Treat. 2015, 152, 509–518. [Google Scholar] [CrossRef]
- Evers, D.J.; Nachabe, R.; Vranken Peeters, M.J.; van der Hage, J.A.; Oldenburg, H.S.; Rutgers, E.J.; Lucassen, G.W.; Hendriks, B.H.; Wesseling, J.; Ruers, T.J. Diffuse reflectance spectroscopy: Towards clinical application in breast cancer. Breast Cancer Res. Treat. 2013, 137, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kho, E.; Dashtbozorg, B.; de Boer, L.L.; Van de Vijver, K.K.; Sterenborg, H.; Ruers, T.J.M. Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information. Biomed. Opt. Express 2019, 10, 4496–4515. [Google Scholar] [CrossRef]
- Kho, E.; de Boer, L.L.; Van de Vijver, K.K.; van Duijnhoven, F.; Vrancken Peeters, M.; Sterenborg, H.; Ruers, T.J.M. Hyperspectral Imaging for Resection Margin Assessment during Cancer Surgery. Clin. Cancer Res. 2019, 25, 3572–3580. [Google Scholar] [CrossRef] [PubMed]
- McClatchy, D.M.; Rizzo, E.J.; Wells, W.A.; Black, C.C.; Paulsen, K.D.; Kanick, S.C.; Pogue, B.W. Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue. J. Biomed. Opt. 2018, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Laughney, A.M.; Krishnaswamy, V.; Rizzo, E.J.; Schwab, M.C.; Barth, R.J., Jr.; Cuccia, D.J.; Tromberg, B.J.; Paulsen, K.D.; Pogue, B.W.; Wells, W.A. Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging. Breast Cancer Res. 2013, 15, R61. [Google Scholar] [CrossRef]
- Keller, M.D.; Majumder, S.K.; Kelley, M.C.; Meszoely, I.; Boulos, F.I.; Mahadevan-Jansen, A. Optical spectroscopy for therapeutic guidance in breast conserving therapy. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 17–21 June 2007. [Google Scholar]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [PubMed]
- Rivenbark, A.G.; O’Connor, S.M.; Coleman, W.B. Molecular and cellular heterogeneity in breast cancer: Challenges for personalized medicine. Am. J. Pathol. 2013, 183, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Vos, E.L.; Gaal, J.; Verhoef, C.; Brouwer, K.; van Deurzen, C.H.M.; Koppert, L.B. Focally positive margins in breast conserving surgery: Predictors, residual disease, and local recurrence. Eur. J. Surg. Oncol. 2017, 43, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- van Deurzen, C.H. Predictors of Surgical Margin Following Breast-Conserving Surgery: A Large Population-Based Cohort Study. Ann. Surg. Oncol. 2016, 23, 627–633. [Google Scholar] [CrossRef]
- Rath, M.G.; Uhlmann, L.; Heil, J.; Domschke, C.; Roth, Z.; Sinn, H.P.; Marme, F.; Scharf, A.; Schneeweiss, A.; Kieser, M.; et al. Predictors of Residual Tumor in Breast-Conserving Therapy. Ann. Surg. Oncol. 2015, 22 (Suppl. S3), S451–S458. [Google Scholar] [CrossRef]
- Kho, E.; de Boer, L.L.; Post, A.L.; Van de Vijver, K.K.; Jozwiak, K.; Sterenborg, H.; Ruers, T.J.M. Imaging depth variations in hyperspectral imaging: Development of a method to detect tumor up to the required tumor-free margin width. J. Biophotonics 2019, 12, e201900086. [Google Scholar] [CrossRef]
- Marinovich, M.L.; Azizi, L.; Macaskill, P.; Irwig, L.; Morrow, M.; Solin, L.J.; Houssami, N. The Association of Surgical Margins and Local Recurrence in Women with Ductal Carcinoma In Situ Treated with Breast-Conserving Therapy: A Meta-Analysis. Ann. Surg. Oncol. 2016, 23, 3811–3821. [Google Scholar] [CrossRef]
- Laughney, A.M.; Krishnaswamy, V.; Rice, T.B.; Cuccia, D.J.; Barth, R.J.; Tromberg, B.J.; Paulsen, K.D.; Pogue, B.W.; Wells, W.A. System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues. J. Biomed. Opt. 2013, 18, 036012. [Google Scholar] [CrossRef]
- Kennedy, S.; Geradts, J.; Bydlon, T.; Brown, J.Q.; Gallagher, J.; Junker, M.; Barry, W.; Ramanujam, N.; Wilke, L. Optical breast cancer margin assessment: An observational study of the effects of tissue heterogeneity on optical contrast. Breast Cancer Res. 2010, 12, R91. [Google Scholar] [CrossRef]
Author | Year | Modality Type | Probe or Imaging Based | Wavelengths Used (nm) |
---|---|---|---|---|
Nachabe [39] | 2011 | DRS | Probe | 500–1600 |
de Boer [40] | 2015 | DRS | Probe | 400–1600 |
Zhu [29] | 2006 | DRS | Probe | 350–600 |
Brown [14] | 2013 | DRS | Probe | 450–600 |
Evers [41] | 2013 | DRS | Probe | 400–1700 |
Brown [30] | 2010 | DRS | Probe | 381–630 |
Zhu [31] | 2005 | DRS-IFS | Probe | 300–440 |
Volynskaya [32] | 2008 | DRS-IFS | Probe | 300–800 |
Breslin [33] | 2004 | DRS-IFS | Probe | 300–600 |
Keller [46] | 2007 | DRS-IFS | Probe | 400–850 |
Palmer [34] | 2003 | DRS-IFS | Probe | 300–600 |
Ramanujam [35] | 2009 | DRS-IFS | Probe | 380–780 |
Keller [36] | 2010 | DRS-IFS | Probe | 300–600 |
Pourezza-Shahri [37] | 2013 | HSI | Imaging | 380–780 |
Kho [43] | 2019 | HSI | Imaging | 953–1645 |
Aboughhaleb [38] | 2020 | HSI | Imaging | 420–620 |
Kho [42] | 2019 | HSI | Imaging | 450–1650 |
McClatchy [44] | 2019 | SFDI | Imaging | 658,730,850 |
Laughney [45] | 2013 | SFDI | Imaging | 658,730,850,970 |
Author | Probe Type | No. of Fibres | Distance between Fibres | Acquisition Time | Sensing Area | Probing Depth |
---|---|---|---|---|---|---|
Nachabe [39] | Single (1.3 mm) | X3 200 μm core diameter fibres; x1 connected to light source | 2.48 mm | 0.5 s | - | - |
de Boer [40] | Single (1.75 mm) | - | 1.5 mm | 20 min for 55 grid points (2.75 min) | Probing volume = 1–3 mm3 | - |
Zhu [29] | Single | Illumination core (19 fibres) | - | 0.025 s/spectra | - | 0.5–2 mm |
Brown [14] | Multichannel (8 channels) | - | 10 mm between each channel | 10 min per margin (8 spectra acquired per probe placement) | - | 0.5–2.2 mm |
Evers [41] | Single (1.3 mm) | X3 core fibres (x1 light; x1 NIRF and x1 visual spectrometer) | 2.48 mm | 0.2 s | 5 mm2 | |
Brown [30] | Multichannel (8 channels) | 8 channels (19 illumination fibres; 4 collection fibres) | 10 mm between each channel | 40 s | 1.5 cm × 5.5 cm | 0.5–2.2 mm |
Zhu [31] | Single | Illumination core (19 fibres); x3 collection rings (12 fibres) | 3 illumination–collection separations 735/980/1225 μm | 1 min (for 8 fluorescence spectra and 1 DRS spectra) | - | - |
Volynskaya [32] | Single | 1 delivery fibre; x6 collection fibres | - | 1.5 s | - | 100 μm |
Breslin [33] | Single | Central collection region; outer ring excitation fibres | - | - | - | - |
Keller [46] | Single | x7 fibres—300 μm, in a six-around-one configuration | - | 100 ms/spectra; 60 s per margin | 25 mm × 25 mm | - |
Palmer [34] | Single | 31 fibres (central collection core diameter 1.52 mm; illumination ring outer diameter 2.18 mm) | - | 8 min | - | 1050 μm |
Ramanujam [35] | Multichannel (8 channels) with 19 illumination and 4 collection fibres in each | Illumination core (19 fibres—200 μm); x4 collection fibres (200 μm) | - | - | - | - |
Keller [36] | Single | Core (7 fibres—300 μm) | - | 60–90 s per margin | - | - |
Author | Modality | Type of HSI | Spatial Resolution | FOV | Time |
---|---|---|---|---|---|
Pourezza-Shahri [37] | HSI | Wavelength filtering | 150 microns per pixel- | −768 × 1024 pixels | 1 min |
Kho [43] | HSI | Pushbroom | Each pixel equates to 0.5 mm. | 200 lines scanned per patient (each line = 320 pixels) | 4 s |
Aboughaleb [38] | HSI | Pushbroom | Each pixel was 0.22 mm × 0.22 mm | - | Capture time 5–12 s; Processing time 20 s |
Kho [42] | HSI | Pushbroom | 0.16 and 0.5 nm/pixel | 12.5 × 18 cm | 20 s for NIR; 40 s for VIS |
McClatchy [44] | SFDI | - | - | - | - |
Laughney [45] | SFDI | - | 30 spatial frequencies distributed between 0 and 0.33 mm−1 | 5.5 inch × 7.5 inch | 10 min, 360 images per specimen |
Author | Mean Age | No. of Malignant Samples | No. of Non-Malignant Samples | Adipose | Glandular | FA/Fibrous | IDC | ILC | DCIS |
---|---|---|---|---|---|---|---|---|---|
Nachabe [39] | - | 29 | 73 | 43 | 23 | 7 | 21 | 0 | 8 |
de Boer [40] | - | 25 (102 from tumour border) | 42 | - | - | - | - | - | - |
Zhu [29] | - | 35 | 50 | 39 | 1 | 10 | 28 | 1 | 2 |
Brown [14] | - | 46 | 42 | - | - | - | 14 | - | 17 |
Evers [41] | 52 | 59 | 148 | 79 | 37 | 32 | 30 | 5 | 24 |
Zhu [31] | - | 13 | 34 | 20 | 2 | 12 | 7 | 4 | 2 |
Volynskaya [32] | - | 9 | 95 | 31 samples were normal | 64 | 9 samples were invasive | - | ||
Breslin [33] | 48.4 (51.5 for cancer) | 20 | 36 | 21 | 15 samples were glandular/fibrous | 16 | 2 | 1 | |
Keller [46] | - | 27 | 102 | - | - | - | - | - | - |
Palmer [34] | - | 20 | 36 | 21 | 15 samples were glandular/fibrous | 16 | 2 | 1 | |
Keller [36] | - | 34 | 145 | - | - | - | - | - | - |
Pourezza-Shahri [37] | - | 14 | 33 | - | - | - | - | - | - |
Kho [43] | 67 ± 1 | - | - | - | - | - | - | - | - |
Kho [42] | 57 ± 11 | 13 | 18 | 13 | 5 | - | 10 | - | 3 |
McClatchy [44] | - | 10 | 21 | 5 | 16 samples were fibroglandular | 8 | 2 | - | |
Laughney [45] | - | 27 | 20 | - | 9 | 11 | 24 | 1 | 2 |
Author | Modality Type | No. of Samples/Locations | No. of Spectral Measurements | No. of Lumpectomies | No. of Patients | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
Nachabe [39] | DRS | 102 | 980 | - | 52 | 91 | 95 |
de Boer [40] | DRS | 169 | 169 | 16 | - | 100 | 100 |
Zhu [29] | DRS | 85 | - | - | 45 | 83.9 | 88.6 |
Brown [14] | DRS | 88 | - | - | 70 | 74 | 86 |
Evers [41] | DRS | 207 | 1073 | - | 47 | 90 | 88 |
Brown [30] | DRS | 56 | - | - | 48 | 79 | 66.7 |
Zhu [31] | DRS-IFS | 47 | - | - | 18 | 61.54 | 82.35 |
Volynskaya [32] | DRS-IFS | 104 | 202 | - | 17 | 100 | 96 |
Breslin [33] | DRS-IFS | 56 | - | - | 32 | 70 | 71.1 |
Keller [46] | DRS-IFS | 129 | 129 | - | 24 | 78 | 99 |
Palmer [34] | DRS-IFS | 56 | - | - | 32 | 70 | 92 |
Ramanujam [35] | DRS-IFS | 55 | - | - | 48 | 79 | 67 |
Keller [36] | DRS-IFS | - | 179 | - | 40 | 85 | 96 |
Pourezza-Shahri [37] | HSI | 47 | - | 19 | - | 99 | 98 |
Kho [43] | HSI | 18 | 22,000 | 6 | 18 | 93 | 84 |
Aboughhaleb [38] | HSI | 10 | - | 10 | - | 95 | 96 |
Kho [42] | HSI | 26 | 24,539 | - | 42 | 98 | 99 |
McClatchy [44] | SFDI | 31 | 50,521 | 31 | 29 | 90 | 81 |
Laughney [45] | SFDI | 59 | 265,000 | - | 47 | 79 | 93 |
Sensitivity Analysis | ||||
Q-statistic | p-value | Q-test power | Pr(Het|Q) | |
Probe-based studies | 17.48 | 0.09 | ~10−5 | 0.51 |
Image-based studies | 1.5 | 0.91 | 0.02 | 0.51 |
Specificity Analysis | ||||
Q-statistic | p-value | Q-test power | Pr(Het|Q) | |
Probe-based studies | 16.27 | 0.18 | ~10−5 | 0.51 |
Image-based studies | 0.92 | 0.97 | 0.02 | 0.51 |
Sensitivity Analysis | ||||
Q-statistic | p-value | Q-test power | Pr(Het|Q) | |
DRS | 5.7 | 0.34 | 0.03 | 0.51 |
DRS with IFS | 8.13 | 0.15 | 0.07 | 0.50 |
HSI | 0.06 | 1 | 0.08 | 0.49 |
SFDI | 0.29 | 0.59 | 0 (1 study) | 0.51 |
Specificity Analysis | ||||
Q-statistic | p-value | Q-test power | Pr(Het|Q) | |
DRS | 7.2 | 0.21 | 0.05 | 0.50 |
DRS with IFS | 8.29 | 0.14 | 0.67 | 0.26 |
HSI | 0.35 | 0.95 | 0.08 | 0.49 |
SFDI | 0.34 | 0.56 | 0 (1 study) | 0.51 |
Sensitivity analysis | |||
Pooled | Lower limit | Higher limit | |
Probe-based studies | 0.84 (0.83) | 0.78 (0.76) | 0.89 (0.90) |
Image-based studies | 0.90 (0.91) | 0.76 (0.82) | 1.03 (1) |
Specificity analysis | |||
Pooled | Lower limit | Higher limit | |
Probe-based studies | 0.85 (0.85) | 0.79 (0.78) | 0.91 (0.92) |
Image-based studies | 0.92 (0.92) * | 0.78 (0.78) * | 1.06 (1.06) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanthakumar, D.; Leiloglou, M.; Kelliher, C.; Darzi, A.; Elson, D.S.; Leff, D.R. A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 2884. https://doi.org/10.3390/cancers15112884
Shanthakumar D, Leiloglou M, Kelliher C, Darzi A, Elson DS, Leff DR. A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(11):2884. https://doi.org/10.3390/cancers15112884
Chicago/Turabian StyleShanthakumar, Dhurka, Maria Leiloglou, Colm Kelliher, Ara Darzi, Daniel S. Elson, and Daniel R. Leff. 2023. "A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis" Cancers 15, no. 11: 2884. https://doi.org/10.3390/cancers15112884
APA StyleShanthakumar, D., Leiloglou, M., Kelliher, C., Darzi, A., Elson, D. S., & Leff, D. R. (2023). A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. Cancers, 15(11), 2884. https://doi.org/10.3390/cancers15112884