Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Imaging
2.2. Image Analysis
2.3. Statistical Analyses
3. Results
3.1. RANO Measurements Show Poor-to-Moderate Inter-Operator and Moderate-to-Excellent Intra-Operator Reproducibility
3.2. RANO Measurements Show Poor Accuracy Compared to Both Visual and Volumetric Ground Truths
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guillevin, R.; Herpe, G.; Verdier, M.; Guillevin, C. Low-grade gliomas: The challenges of imaging. Diagn. Interv. Imaging 2014, 95, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, C.; Lau, J.C.; Kosteniuk, S.E.; Lee, D.H.; Megyesi, J.F. Radiology reporting of low-grade glioma growth underestimates tumor expansion. Acta Neurochi. 2019, 161, 569–576. [Google Scholar] [CrossRef] [PubMed]
- van den Bent, M.J.; Wefel, J.S.; Schiff, D.; Taphoorn, M.J.; Jaeckle, K.; Junck, L.; Armstrong, T.; Choucair, A.; Waldman, A.D.; Gorlia, T.; et al. Response assessment in neuro-oncology (a report of the RANO group): Assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011, 12, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, B.M.; Cloughesy, T.F.; Lai, A.; Nghiemphu, P.L.; Mischel, P.S.; Pope, W.B. Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2011, 13, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanaly, C.W.; Ding, D.; Mehta, A.I.; Waller, A.F.; Crocker, I.; Desjardins, A.; Reardon, D.A.; Friedman, A.H.; Bigner, D.D.; Sampson, J.H. A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS ONE 2011, 6, e16031. [Google Scholar] [CrossRef] [Green Version]
- Ertl-Wagner, B.B.; Blume, J.D.; Peck, D.; Udupa, J.K.; Herman, B.; Levering, A.; Schmalfuss, I.M.; Members of the American College of Radiology Imaging Network 6662 Study Group. Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology Imaging Network (ACRIN) 6662 Trial. Eur. Radiol. 2009, 19, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Fathallah-Shaykh, H.M.; DeAtkine, A.; Coffee, E.; Khayat, E.; Bag, A.K.; Han, X.; Warren, P.P.; Bredel, M.; Fiveash, J.; Markert, J.; et al. Diagnosing growth in low-grade gliomas with and without longitudinal volume measurements: A retrospective observational study. PLoS Med. 2019, 16, e1002810. [Google Scholar] [CrossRef] [Green Version]
- Dera, D.; Raman, F.; Bouaynaya, N.; Fathallah-Shaykh, H.M. Interactive Semi-automated Method Using Non-negative Matrix Factorization and Level Set Segmentation for the BRATS Challenge; Springer: Cham, Switzerland, 2016; pp. 195–205. [Google Scholar]
- Dera, D.; Bouaynaya, N.; Fathallah-Shaykh, H.M. Automated Robust Image Segmentation: Level Set Method Using Nonnegative Matrix Factorization with Application to Brain MRI. Bull. Math. Biol. 2016, 78, 1450–1476. [Google Scholar] [CrossRef]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef]
- Obuchowski, N.A.; Lieber, M.L.; Wians, F.H., Jr. ROC curves in clinical chemistry: Uses, misuses, and possible solutions. Clin. Chem. 2004, 50, 1118–1125. [Google Scholar] [CrossRef]
- Habibzadeh, F.; Habibzadeh, P.; Yadollahie, M. On determining the most appropriate test cut-off value: The case of tests with continuous results. Biochem. Med. 2016, 26, 297–307. [Google Scholar] [CrossRef] [Green Version]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Chukwueke, U.N.; Wen, P.Y. Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019, 8, CNS28. [Google Scholar] [CrossRef] [Green Version]
- Vollmuth, P.; Foltyn, M.; Huang, R.Y.; Galldiks, N.; Petersen, J.; Isensee, F.; van den Bent, M.J.; Barkhof, F.; Park, J.E.; Park, Y.W.; et al. AI-based decision support improves reproducibility of tumor response assessment in neuro-oncology: An international multi-reader study. Neuro Oncol. 2023, 25, 533–543. [Google Scholar] [CrossRef]
- Mellinghoff, I.K.; Bent, M.J.V.D.; Clarke, J.L.; Maher, E.A.; Peters, K.B.; Touat, M.; Groot, J.F.D.; Fuente, M.I.D.L.; Arrillaga-Romany, I.; Wick, W.; et al. INDIGO: A global, randomized, double-blind, phase III study of vorasidenib (VOR; AG-881) vs placebo in patients (pts) with residual or recurrent grade II glioma with an isocitrate dehydrogenase 1/2 (IDH1/2) mutation. J. Clin. Oncol. 2020, 38, TPS2574. [Google Scholar] [CrossRef]
- Huang, R.Y.; Young, R.J.; Ellingson, B.M.; Veeraraghavan, H.; Wang, W.; Tixier, F.; Um, H.; Nawaz, R.; Luks, T.; Kim, J.; et al. Volumetric analysis of IDH-mutant lower-grade glioma: A natural history study of tumor growth rates before and after treatment. Neuro Oncol. 2020, 22, 1822–1830. [Google Scholar] [CrossRef]
- Hajkova, M.; Andrasina, T.; Ovesna, P.; Rohan, T.; Dostal, M.; Valek, V.; Ostrizkova, L.; Tucek, S.; Sedo, J.; Kiss, I. Volumetric Analysis of Hepatocellular Carcinoma After Transarterial Chemoembolization and its Impact on Overall Survival. In Vivo 2022, 36, 2332–2341. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Kanaly, C.W.; Mehta, A.I.; Ding, D.; Hoang, J.K.; Kranz, P.G.; Herndon, J.E., 2nd; Coan, A.; Crocker, I.; Waller, A.F.; Friedman, A.H.; et al. A novel, reproducible, and objective method for volumetric magnetic resonance imaging assessment of enhancing glioblastoma. J. Neurosurg. 2014, 121, 536–542. [Google Scholar] [CrossRef]
- Mehta, R.; Filos, A.; Baid, U.; Sako, C.; McKinley, R.; Rebsamen, M.; Datwyler, K.; Meier, R.; Radojewski, P.; Murugesan, G.K.; et al. QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation-Analysis of Ranking Scores and Benchmarking Results. J. Mach. Learn. Biomed. Imaging 2022, 1, 26. [Google Scholar] [CrossRef]
- Zunair, H.; Ben Hamza, A. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput. Biol. Med. 2021, 136, 104699. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, S.; Chen, H.; Luo, L. Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans with Deep Learning. Front. Neurosci. 2019, 13, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Kickingereder, P.; Isensee, F.; Tursunova, I.; Petersen, J.; Neuberger, U.; Bonekamp, D.; Brugnara, G.; Schell, M.; Kessler, T.; Foltyn, M.; et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: A multicentre, retrospective study. Lancet Oncol. 2019, 20, 728–740. [Google Scholar] [CrossRef] [Green Version]
- D’Arco, F.; O’Hare, P.; Dashti, F.; Lassaletta, A.; Loka, T.; Tabori, U.; Talenti, G.; Thust, S.; Messalli, G.; Hales, P.; et al. Volumetric assessment of tumor size changes in pediatric low-grade gliomas: Feasibility and comparison with linear measurements. Neuroradiology 2018, 60, 427–436. [Google Scholar] [CrossRef]
- Galanis, E.; Buckner, J.C.; Maurer, M.J.; Sykora, R.; Castillo, R.; Ballman, K.V.; Erickson, B.J. Validation of neuroradiologic response assessment in gliomas: Measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol. 2006, 8, 156–165. [Google Scholar] [CrossRef]
- Gilligan, L.A.; DeWire-Schottmiller, M.D.; Fouladi, M.; DeBlank, P.; Leach, J.L. Tumor Response Assessment in Diffuse Intrinsic Pontine Glioma: Comparison of Semiautomated Volumetric, Semiautomated Linear, and Manual Linear Tumor Measurement Strategies. AJNR Am. J. Neuroradiol. 2020, 41, 866–873. [Google Scholar] [CrossRef]
- Carrano, A.; Juarez, J.J.; Incontri, D.; Ibarra, A.; Guerrero Cazares, H. Sex-Specific Differences in Glioblastoma. Cells 2021, 10, 1783. [Google Scholar] [CrossRef]
- Sun, T.; Plutynski, A.; Ward, S.; Rubin, J.B. An integrative view on sex differences in brain tumors. Cell. Mol. Life Sci. 2015, 72, 3323–3342. [Google Scholar] [CrossRef] [Green Version]
- Whitmire, P.; Rickertsen, C.R.; Hawkins-Daarud, A.; Carrasco, E., Jr.; Lorence, J.; De Leon, G.; Curtin, L.; Bayless, S.; Clark-Swanson, K.; Peeri, N.C.; et al. Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. BMC Cancer 2020, 20, 447. [Google Scholar] [CrossRef]
- Leao, D.J.; Craig, P.G.; Godoy, L.F.; Leite, C.C.; Policeni, B. Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR Am. J. Neuroradiol. 2020, 41, 10–20. [Google Scholar] [CrossRef]
Pathology | Number of Patients | Mean Age (Years) | Number of Males | Number of Females | Number Treated with Temozolomide |
---|---|---|---|---|---|
Oligodendroglioma | 19 | 47 | 11 | 8 | 1 |
Astrocytoma | 26 | 46 | 14 | 12 | 1 |
Mixed glioma | 11 | 53 | 5 | 6 | 0 |
All | 56 | 48 | 30 | 26 | 2 |
RANO Compared to Previous Scan Date | RANO Compared to Baseline Scan Date | |||
---|---|---|---|---|
Kappa | p Value | Kappa | p Value | |
Attending 1 vs. 2 | 0.237 ± 0.050 | <0.001 | 0.430 ± 0.037 | <0.001 |
Attending 2 vs. 3 | 0.265 ± 0.051 | <0.001 | 0.532 ± 0.035 | <0.001 |
Attending 1 vs. 3 | 0.172 ± 0.049 | <0.001 | 0.275 ± 0.034 | <0.001 |
Trainee 1 vs. 2 | 0.157 ± 0.054 | <0.001 | 0.362 ± 0.034 | <0.001 |
Trainee 2 vs. 3 | 0.189 ± 0.049 | <0.001 | 0.332 ± 0.040 | <0.001 |
Trainee 1 vs. 3 | 0.176 ± 0.049 | <0.001 | 0.275 ± 0.034 | <0.001 |
Ground Truth = 2D Visual Assessment | ||
RANO compared to previous scan date | RANO compared to baseline scan date | |
False Negative | 14.29% | 4.76% |
False Positive | 19.05% | 30.16% |
True Negative | 39.68% | 22.22% |
True Positive | 26.98% | 42.86% |
Overall accuracy | 66.67% | 65.08% |
Ground Truth = 3D Volumetric Assessment | ||
False Negative | 48.39% | 9.68% |
False Positive | 30.65% | 33.87% |
True Negative | 17.74% | 16.13% |
True Positive | 3.23% | 40.32% |
Overall accuracy | 20.97% | 56.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raman, F.; Mullen, A.; Byrd, M.; Bae, S.; Kim, J.; Sotoudeh, H.; Morón, F.E.; Fathallah-Shaykh, H.M. Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas. Cancers 2023, 15, 3274. https://doi.org/10.3390/cancers15133274
Raman F, Mullen A, Byrd M, Bae S, Kim J, Sotoudeh H, Morón FE, Fathallah-Shaykh HM. Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas. Cancers. 2023; 15(13):3274. https://doi.org/10.3390/cancers15133274
Chicago/Turabian StyleRaman, Fabio, Alexander Mullen, Matthew Byrd, Sejong Bae, Jinsuh Kim, Houman Sotoudeh, Fanny E. Morón, and Hassan M. Fathallah-Shaykh. 2023. "Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas" Cancers 15, no. 13: 3274. https://doi.org/10.3390/cancers15133274
APA StyleRaman, F., Mullen, A., Byrd, M., Bae, S., Kim, J., Sotoudeh, H., Morón, F. E., & Fathallah-Shaykh, H. M. (2023). Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas. Cancers, 15(13), 3274. https://doi.org/10.3390/cancers15133274