Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Whole Exome Analysis
2.3. Alignment and Variant Calling
2.4. Association Testing
3. Results
3.1. Patient Characteristics
3.2. Common Variants
3.3. Rare Variants
4. Discussion
5. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudigonda, T.; Levender, M.M.; O’Neill, J.L.; West, C.E.; Pearce, D.J.; Feldman, S.R. Incidence, risk factors, and preventative management of skin cancers in organ transplant recipients: A review of single- and multicenter retrospective studies from 2006 to 2010. Dermatol. Surg. 2013, 39, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Plasmeijer, E.I.; Sachse, M.M.; Gebhardt, C.; Geusau, A.; Bouwes Bavinck, J.N. Cutaneous squamous cell carcinoma (cSCC) and immunosurveillance–the impact of immunosuppression on frequency of cSCC. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. S8), 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didona, D.; Paolino, G.; Bottoni, U.; Cantisani, C. Non Melanoma Skin Cancer Pathogenesis Overview. Biomedicines 2018, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeleine, M.M.; Patel, N.S.; Plasmeijer, E.I.; Engels, E.A.; Bouwes Bavinck, J.N.; Toland, A.E.; Green, A.C.; on behalf of the Keratinocyte Carcinoma Consortium (KeraCon) Immunosuppression Working Group. Epidemiology of keratinocyte carcinomas after organ transplantation. Br. J. Dermatol. 2017, 177, 1208–1216. [Google Scholar] [CrossRef] [Green Version]
- Borik-Heil, L.; Endler, G.; Parson, W.; Zuckermann, A.; Schnaller, L.; Uyanik-Unal, K.; Jaksch, P.; Bohmig, G.; Cejka, D.; Staufer, K.; et al. Cumulative UV Exposure or a Modified SCINEXA-Skin Aging Score Do Not Play a Substantial Role in Predicting the Risk of Developing Keratinocyte Cancers after Solid Organ Transplantation—A Case Control Study. Cancers 2023, 15, 864. [Google Scholar] [CrossRef]
- Garrett, G.L.; Blanc, P.D.; Boscardin, J.; Lloyd, A.A.; Ahmed, R.L.; Anthony, T.; Bibee, K.; Breithaupt, A.; Cannon, J.; Chen, A.; et al. Incidence of and Risk Factors for Skin Cancer in Organ Transplant Recipients in the United States. JAMA Dermatol. 2017, 153, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Grulich, A.E.; van Leeuwen, M.T.; Falster, M.O.; Vajdic, C.M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: A meta-analysis. Lancet 2007, 370, 59–67. [Google Scholar] [CrossRef]
- Krynitz, B.; Edgren, G.; Lindelof, B.; Baecklund, E.; Brattstrom, C.; Wilczek, H.; Smedby, K.E. Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970 to 2008—A Swedish population-based study. Int. J. Cancer 2013, 132, 1429–1438. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Hu, Y.; Li, B.; Abecasis, G.R.; Liu, D.J. RVTESTS: An efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 2016, 32, 1423–1426. [Google Scholar] [CrossRef] [Green Version]
- Boughton, A.P.; Welch, R.P.; Flickinger, M.; VandeHaar, P.; Taliun, D.; Abecasis, G.R.; Boehnke, M. LocusZoom.js: Interactive and embeddable visualization of genetic association study results. Bioinformatics 2021, 37, 3017–3018. [Google Scholar] [CrossRef]
- Hahne, F.; Ivanek, R. Visualizing Genomic Data Using Gviz and Bioconductor. Methods Mol. Biol. 2016, 1418, 335–351. [Google Scholar]
- Wang, X.; Gharahkhani, P.; Levine, D.M.; Fitzgerald, R.C.; Gockel, I.; Corley, D.A.; Risch, H.A.; Bernstein, L.; Chow, W.H.; Onstad, L.; et al. eQTL Set-Based Association Analysis Identifies Novel Susceptibility Loci for Barrett Esophagus and Esophageal Adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1735–1745. [Google Scholar] [CrossRef]
- Monteiro, P.; Rosse, C.; Castro-Castro, A.; Irondelle, M.; Lagoutte, E.; Paul-Gilloteaux, P.; Desnos, C.; Formstecher, E.; Darchen, F.; Perrais, D.; et al. Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J. Cell Biol. 2013, 203, 1063–1079. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Tang, C.H.; Lin, L.W.; Tsai, C.H.; Chu, C.Y.; Lin, T.H.; Huang, Y.L. Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression. J. Hematol. Oncol. 2017, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Deng, Y.; Yang, P.; Zhang, Y.; Luo, D.; Wang, F.; Cai, Z.; Liu, Y. Circ_0079530 stimulates THBS2 to promote the malignant progression of non-small cell lung cancer by sponging miR-584-5p. Histol. Histopathol. 2023, 38, 681–693. [Google Scholar]
- Liu, J.F.; Lee, C.W.; Tsai, M.H.; Tang, C.H.; Chen, P.C.; Lin, L.W.; Lin, C.Y.; Lu, C.H.; Lin, Y.F.; Yang, S.H.; et al. Thrombospondin 2 promotes tumor metastasis by inducing matrix metalloproteinase-13 production in lung cancer cells. Biochem. Pharmacol. 2018, 155, 537–546. [Google Scholar] [CrossRef]
- Graham, D.B.; Osborne, D.G.; Piotrowski, J.T.; Gomez, T.S.; Gmyrek, G.B.; Akilesh, H.M.; Dani, A.; Billadeau, D.D.; Swat, W. Dendritic cells utilize the evolutionarily conserved WASH and retromer complexes to promote MHCII recycling and helper T cell priming. PLoS ONE 2014, 9, e98606. [Google Scholar] [CrossRef]
- Onnis, A.; Baldari, C.T. Orchestration of Immunological Synapse Assembly by Vesicular Trafficking. Front. Cell Dev. Biol. 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Mori, R.; Ikematsu, K.; Kitaguchi, T.; Kim, S.E.; Okamoto, M.; Chiba, T.; Miyawaki, A.; Shimokawa, I.; Tsuboi, T. Release of TNF-alpha from macrophages is mediated by small GTPase Rab37. Eur. J. Immunol. 2011, 41, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- Gowhari Shabgah, A.; Abdelbasset, W.K.; Sulaiman Rahman, H.; Bokov, D.O.; Suksatan, W.; Thangavelu, L.; Ahmadi, M.; Malekahmadi, M.; Gheibihayat, S.M.; Gholizadeh Navashenaq, J. A comprehensive review of IL-26 to pave a new way for a profound understanding of the pathobiology of cancer, inflammatory diseases and infections. Immunology 2022, 165, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Ahmad, F.; Raza, S.S.; Zarif, L.; Siveen, K.S.; Sher, G.; Agha, M.V.; Rashid, K.; Kulinski, M.; Buddenkotte, J.; et al. Role of non-coding RNAs in the progression and resistance of cutaneous malignancies and autoimmune diseases. Semin. Cancer Biol. 2022, 83, 208–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dai, J.; Shen, H. Systematic analysis reveals long noncoding RNAs regulating neighboring transcription factors in human cancers. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2785–2792. [Google Scholar] [CrossRef]
- Si, L.; Yang, Z.; Ding, L.; Zhang, D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: A new era for cancer treatment. J. Cancer Res. Clin. Oncol. 2022, 148, 547–564. [Google Scholar] [CrossRef]
- Lee, S.; Emond, M.J.; Bamshad, M.J.; Barnes, K.C.; Rieder, M.J.; Nickerson, D.A.; NHLBI GO Exome Sequencing Project and ESP Lung Project Team; Christiani, D.C.; Wurfel, M.M.; Lin, X. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 2012, 91, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Guida, S.; Guida, G.; Goding, C.R. MC1R Functions, Expression, and Implications for Targeted Therapy. J. Investig. Dermatol. 2022, 142, 293–302.e1. [Google Scholar] [CrossRef]
- Manganelli, M.; Guida, S.; Ferretta, A.; Pellacani, G.; Porcelli, L.; Azzariti, A.; Guida, G. Behind the Scene: Exploiting MC1R in Skin Cancer Risk and Prevention. Genes 2021, 12, 1093. [Google Scholar] [CrossRef]
- Chen, L.; Wang, T.; Ji, X.; Ding, C.; Liang, T.; Liu, X.; Lu, J.; Guo, X.; Kang, Q.; Ji, Z. Cytoskeleton protein 4.1R suppresses murine keratinocyte cell hyperproliferation via activating the Akt/ERK pathway in an EGFR-dependent manner. Exp. Cell Res. 2019, 384, 111648. [Google Scholar] [CrossRef]
- Fan, D.; Li, J.; Li, Y.; Guo, Y.; Zhang, X.; Wang, W.; Liu, X.; Liu, J.; Dai, L.; Zhang, L.; et al. Protein 4.1R negatively regulates CD8(+) T-cell activation by modulating phosphorylation of linker for activation of T cells. Immunology 2019, 157, 312–321. [Google Scholar]
- Feng, G.; Guo, K.; Yan, Q.; Ye, Y.; Shen, M.; Ruan, S.; Qiu, S. Expression of Protein 4.1 Family in Breast Cancer: Database Mining for 4.1 Family Members in Malignancies. Med. Sci. Monit. 2019, 25, 3374–3389. [Google Scholar] [CrossRef]
- Kang, Q.; Yu, Y.; Pei, X.; Hughes, R.; Heck, S.; Zhang, X.; Guo, X.; Halverson, G.; Mohandas, N.; An, X. Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood 2009, 113, 6128–6137. [Google Scholar] [CrossRef] [Green Version]
- Men, Y.L.; Kang, Q.Z.; Ding, C.; Liu, S.M.; Jiang, H.; Wang, X.D.; Ji, Z.Y.; Liu, X.; Wang, T. Expression of protein 4.1 family in melanoma cell lines and its effect on cell proliferation. Nan Fang Yi Ke Da Xue Xue Bao 2016, 36, 649–654. [Google Scholar]
- Yuan, J.; Xing, H.; Li, Y.; Song, Y.; Zhang, N.; Xie, M.; Liu, J.; Xu, Y.; Shen, Y.; Wang, B.; et al. EPB41 suppresses the Wnt/beta-catenin signaling in non-small cell lung cancer by sponging ALDOC. Cancer Lett. 2021, 499, 255–264. [Google Scholar] [CrossRef]
- Fu, S.; Guo, Y.; Chen, H.; Xu, Z.M.; Qiu, G.B.; Zhong, M.; Sun, K.L.; Fu, W.N. MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and may participate in laryngeal carcinogenesis. PLoS ONE 2011, 6, e25648. [Google Scholar] [CrossRef]
- Qu, S.Y.; Sun, Y.Y.; Li, Y.H.; Xu, Z.M.; Fu, W.N. YY1 directly suppresses MYCT1 leading to laryngeal tumorigenesis and progress. Cancer Med. 2017, 6, 1389–1398. [Google Scholar] [CrossRef]
- Wang, P.P.; Ding, S.Y.; Sun, Y.Y.; Li, Y.H.; Fu, W.N. MYCT1 Inhibits the Adhesion and Migration of Laryngeal Cancer Cells Potentially through Repressing Collagen VI. Front. Oncol. 2020, 10, 564733. [Google Scholar] [CrossRef]
- Xu, X.P.; Peng, X.Q.; Yin, X.M.; Liu, Y.; Shi, Z.Y. miR-34a-5p suppresses the invasion and metastasis of liver cancer by targeting the transcription factor YY1 to mediate MYCT1 upregulation. Acta Histochem. 2020, 122, 151576. [Google Scholar] [CrossRef]
- Chu, T.Y.; Zheng-Gerard, C.; Huang, K.Y.; Chang, Y.C.; Chen, Y.W.; I, K.Y.; Lo, Y.L.; Chiang, N.Y.; Chen, H.Y.; Stacey, M.; et al. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat. Commun. 2022, 13, 6385. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Chu, T.Y.; Wu, C.J.; van den Biggelaar, M.; Pabst, C.; Hebert, J.; Kuijpers, T.W.; Scicluna, B.P.; I, K.Y.; Chen, T.C.; et al. The Adhesion G Protein-Coupled Receptor GPR97/ADGRG3 Is Expressed in Human Granulocytes and Triggers Antimicrobial Effector Functions. Front. Immunol. 2018, 9, 2830. [Google Scholar] [CrossRef]
- Ping, Y.Q.; Mao, C.; Xiao, P.; Zhao, R.J.; Jiang, Y.; Yang, Z.; An, W.T.; Shen, D.D.; Yang, F.; Zhang, H.; et al. Structures of the glucocorticoid-bound adhesion receptor GPR97-G(o) complex. Nature 2021, 589, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Chen, X.; Lu, S.; Kuang, Y.; Fei, J.; Wang, Z. Gpr97/Adgrg3 ameliorates experimental autoimmune encephalomyelitis by regulating cytokine expression. Acta Biochim. Biophys. Sin. 2018, 50, 666–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, A.J.; Aldaz, C.M. The genetics of sporadic breast cancer. Prog. Clin. Biol. Res. 1997, 396, 63–82. [Google Scholar] [PubMed]
- Wang, Q.; Zhou, Y.; Zhou, G.; Qin, G.; Tan, C.; Yin, T.; Zhao, D.; Yao, S. Age-stratified proteomic characteristics and identification of promising precise clinical treatment targets of colorectal cancer. J. Proteom. 2023, 277, 104863. [Google Scholar] [CrossRef] [PubMed]
- Hafner, C.; Schmitz, G.; Meyer, S.; Bataille, F.; Hau, P.; Langmann, T.; Dietmaier, W.; Landthaler, M.; Vogt, T. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin. Chem. 2004, 50, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Y.; Jin, Q.; Wang, W.; Zhang, S.; Wang, X.; Zhang, Y.; Xu, X.; Huang, J. EphA8 is a prognostic marker for epithelial ovarian cancer. Oncotarget 2016, 7, 20801–20809. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Wang, Q.; Yan, X.L.; Zhang, Y.; Li, W.; Tang, F.; Li, X.; Yang, P. miR-10a controls glioma migration and invasion through regulating epithelial-mesenchymal transition via EphA8. FEBS Lett. 2015, 589, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Mancebo, S.E.; Wang, S.Q. Skin cancer: Role of ultraviolet radiation in carcinogenesis. Rev. Environ. Health 2014, 29, 265–273. [Google Scholar] [CrossRef]
- Christenson, L.J.; Geusau, A.; Ferrandiz, C.; Brown, C.D.; Ulrich, C.; Stockfleth, E.; Berg, D.; Orengo, I.; Shaw, J.C.; Carucci, J.A.; et al. Specialty clinics for the dermatologic care of solid-organ transplant recipients. Dermatol. Surg. 2004, 30, 598–603. [Google Scholar]
- Lowenstein, S.E.; Garrett, G.; Toland, A.E.; Jambusaria-Pahlajani, A.; Asgari, M.M.; Green, A.; Engels, E.A.; Arron, S.T.; National Cancer Institute Keratinocyte Carcinoma, C. Risk prediction tools for keratinocyte carcinoma after solid organ transplantation: A review of the literature. Br. J. Dermatol. 2017, 177, 1202–1207. [Google Scholar] [CrossRef]
- Jambusaria-Pahlajani, A.; Crow, L.D.; Lowenstein, S.; Garrett, G.L.; Melcher, M.L.; Chan, A.W.; Boscardin, J.; Arron, S.T. Predicting skin cancer in organ transplant recipients: Development of the SUNTRAC screening tool using data from a multicenter cohort study. Transpl. Int. 2019, 32, 1259–1267. [Google Scholar] [CrossRef]
- Gomez-Tomas, A.; Bouwes Bavinck, J.N.; Genders, R.; Gonzalez-Cruz, C.; de Jong, E.; Arron, S.; Garcia-Patos, V.; Ferrandiz-Pulido, C. External Validation of the Skin and UV Neoplasia Transplant Risk Assessment Calculator (SUNTRAC) in a Large European Solid Organ Transplant Recipient Cohort. JAMA Dermatol. 2023, 159, 29–36. [Google Scholar] [CrossRef]
- Hussain, S.K.; Sundquist, J.; Hemminki, K. The effect of having an affected parent or sibling on invasive and in situ skin cancer risk in Sweden. J. Investig. Dermatol. 2009, 129, 2142–2147. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, I.; Pfisterer, K.; Wielscher, M.; Weninger, W. Discovery of a previously unreported deletion in the CDKN2A gene in a case of familial melanoma in Austria. Eur. J. Cancer 2023, 181, 21–22. [Google Scholar] [CrossRef]
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.M.; Wang, W.; Ioannidis, N.M.; Itnyre, J.; Hoffmann, T.; Jorgenson, E.; Whittemore, A.S. Identification of Susceptibility Loci for Cutaneous Squamous Cell Carcinoma. J. Investig. Dermatol. 2016, 136, 930–937. [Google Scholar] [CrossRef]
- Choquet, H.; Ashrafzadeh, S.; Kim, Y.; Asgari, M.M.; Jorgenson, E. Genetic and environmental factors underlying keratinocyte carcinoma risk. JCI Insight 2020, 5, e134783. [Google Scholar] [CrossRef]
- Kim, Y.; Yin, J.; Huang, H.; Jorgenson, E.; Choquet, H.; Asgari, M.M. Genome-wide association study of actinic keratosis identifies new susceptibility loci implicated in pigmentation and immune regulation pathways. Commun. Biol. 2022, 5, 386. [Google Scholar] [CrossRef]
- Roberts, M.R.; Asgari, M.M.; Toland, A.E. Genome-wide association studies and polygenic risk scores for skin cancer: Clinically useful yet? Br. J. Dermatol. 2019, 181, 1146–1155. [Google Scholar] [CrossRef]
- Sarin, K.Y.; Lin, Y.; Daneshjou, R.; Ziyatdinov, A.; Thorleifsson, G.; Rubin, A.; Pardo, L.M.; Wu, W.; Khavari, P.A.; Uitterlinden, A.; et al. Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma. Nat. Commun. 2020, 11, 820. [Google Scholar] [CrossRef] [Green Version]
- Stacey, S.N.; Helgason, H.; Gudjonsson, S.A.; Thorleifsson, G.; Zink, F.; Sigurdsson, A.; Kehr, B.; Gudmundsson, J.; Sulem, P.; Sigurgeirsson, B.; et al. New basal cell carcinoma susceptibility loci. Nat. Commun. 2015, 6, 6825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Liu, Y.; Adamson, C.L.; Valdez, G.; Guo, W.; Hsu, S.C. The mammalian exocyst, a complex required for exocytosis, inhibits tubulin polymerization. J. Biol. Chem. 2004, 279, 35958–35966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, X.; Zhang, J.; Zhang, Y.; Hsu, S.C.; Zhou, D.; Guo, W. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat. Cell Biol. 2006, 8, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Bodemann, B.O.; Orvedahl, A.; Cheng, T.; Ram, R.R.; Ou, Y.H.; Formstecher, E.; Maiti, M.; Hazelett, C.C.; Wauson, E.M.; Balakireva, M.; et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011, 144, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Iino, M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J. 2014, 281, 1068–1084. [Google Scholar] [CrossRef]
- Tanaka, T.; Iino, M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell. Signal. 2014, 26, 2071–2085. [Google Scholar] [CrossRef]
- Tanaka, T.; Iino, M.; Goto, K. Knockdown of Sec8 enhances the binding affinity of c-Jun N-terminal kinase (JNK)-interacting protein 4 for mitogen-activated protein kinase kinase 4 (MKK4) and suppresses the phosphorylation of MKK4, p38, and JNK, thereby inhibiting apoptosis. FEBS J. 2014, 281, 5237–5250. [Google Scholar] [CrossRef]
- Tanaka, T.; Iino, M.; Goto, K. Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27. Cell. Signal. 2018, 49, 1–16. [Google Scholar] [CrossRef]
- Bartuzi, P.; Billadeau, D.D.; Favier, R.; Rong, S.; Dekker, D.; Fedoseienko, A.; Fieten, H.; Wijers, M.; Levels, J.H.; Huijkman, N.; et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat. Commun. 2016, 7, 10961. [Google Scholar] [CrossRef] [Green Version]
- Derivery, E.; Sousa, C.; Gautier, J.J.; Lombard, B.; Loew, D.; Gautreau, A. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 2009, 17, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Fokin, A.I.; Gautreau, A.M. Assembly and Activity of the WASH Molecular Machine: Distinctive Features at the Crossroads of the Actin and Microtubule Cytoskeletons. Front. Cell Dev. Biol. 2021, 9, 658865. [Google Scholar] [CrossRef]
- Gomez, T.S.; Billadeau, D.D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 2009, 17, 699–711. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, J.T.; Gomez, T.S.; Schoon, R.A.; Mangalam, A.K.; Billadeau, D.D. WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol. Cell. Biol. 2013, 33, 958–973. [Google Scholar] [CrossRef] [Green Version]
- Zech, T.; Calaminus, S.D.; Caswell, P.; Spence, H.J.; Carnell, M.; Insall, R.H.; Norman, J.; Machesky, L.M. The Arp2/3 activator WASH regulates alpha5beta1-integrin-mediated invasive migration. J. Cell Sci. 2011, 124, 3753–3759. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Li, Y.; Qin, D.; Wang, R.; Tang, Z.; Lu, T.; Cui, Y. The Depletion of ABI3BP by MicroRNA-183 Promotes the Development of Esophageal Carcinoma. Mediat. Inflamm. 2020, 2020, 3420946. [Google Scholar] [CrossRef]
- Latini, F.R.; Hemerly, J.P.; Oler, G.; Riggins, G.J.; Cerutti, J.M. Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting senescence and inhibiting invasion. Endocr. Relat. Cancer 2008, 15, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef]
- Hanawa, M.; Suzuki, S.; Dobashi, Y.; Yamane, T.; Kono, K.; Enomoto, N.; Ooi, A. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int. J. Cancer 2006, 118, 1173–1180. [Google Scholar] [CrossRef]
- Hiraishi, Y.; Wada, T.; Nakatani, K.; Negoro, K.; Fujita, S. Immunohistochemical expression of EGFR and p-EGFR in oral squamous cell carcinomas. Pathol. Oncol. Res. 2006, 12, 87–91. [Google Scholar] [CrossRef]
- Rakosy, Z.; Vizkeleti, L.; Ecsedi, S.; Voko, Z.; Begany, A.; Barok, M.; Krekk, Z.; Gallai, M.; Szentirmay, Z.; Adany, R.; et al. EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int. J. Cancer 2007, 121, 1729–1737. [Google Scholar] [CrossRef]
- Sibilia, M.; Kroismayr, R.; Lichtenberger, B.M.; Natarajan, A.; Hecking, M.; Holcmann, M. The epidermal growth factor receptor: From development to tumorigenesis. Differentiation 2007, 75, 770–787. [Google Scholar] [CrossRef] [PubMed]
- Spano, J.P.; Lagorce, C.; Atlan, D.; Milano, G.; Domont, J.; Benamouzig, R.; Attar, A.; Benichou, J.; Martin, A.; Morere, J.F.; et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann. Oncol. 2005, 16, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.T.; Tong, X.; Zhang, Z.X.; Sun, Y.Y.; Yan, W.; Xu, Z.M.; Fu, W.N. MYCT1 represses apoptosis of laryngeal cancerous cells through the MAX/miR-181a/NPM1 pathway. FEBS J. 2019, 286, 3892–3908. [Google Scholar] [CrossRef] [PubMed]
Total | Cases | Controls | p-Value | |
---|---|---|---|---|
n = 150 | n = 75 | n = 75 | ||
Gender, n (%) | ||||
Male | 120 (80) | 60 | 60 | p = 1.00 |
Female | 30 (20) | 15 | 15 | p = 1.00 |
Type of organ transplant recipient, n (%) | ||||
HTR | 56 (37) | 28 | 28 | p = 1.00 |
KTR | 70 (47) | 35 | 35 | p = 1.00 |
LTR | 8 (5) | 4 | 4 | p = 1.00 |
LuTR | 16 (11) | 8 | 8 | p = 1.00 |
Age at visit, years (mean ± SD) | 71.21 ± 8.56 | 71.45 ± 8.78 | 70.96 ± 8.37 | p = 0.73 |
Age at TX, years (mean ± SD) | 57.05 ± 11.64 | 57.57 ± 11.32 | 56.52 ± 12.00 | p = 0.68 |
Post-TX period, years (mean ± SD) | 14.16 ± 8.16 | 13.88 ± 7.27 | 14.44 ± 9.00 | p = 0.68 |
Time to 1st post-TX KC, years (mean ± SD) | 5.63 ± 4.80 | |||
IS-regimen, n (%) | ||||
Steroids Yes | 83 (55) | 38 (51) | 45 (60) | p = 0.25 |
No | 67 (45) | 37 (49) | 30 (40) | |
mTOR inhibitors Yes | 30 (20) | 18 (24) | 12 (16) | p = 0.22 |
No | 120 (80) | 57 (76) | 63 (84) | |
Antimetabolites Yes | 114 (76) | 52 (69) | 62 (83) | p = 0.06 |
No | 36 (24) | 23 (31) | 13 (17) | |
Calcineurin inhibitors Yes | 123 (82) | 61 (81) | 62 (83) | p = 0.83 |
No | 27 (18) | 14 (19) | 13 (17) | |
Azathioprine Yes | 5(4) | 2 (3) | 3 (4) | p = 0.65 |
No | 145 (97) | 73 (97) | 72 (96) | |
Belatacept Yes | 2 (1) | 1 (1) | 1 (1) | p = 1.00 |
No | 148 (99) | 74 (99) | 74 (99) | |
Total number of KC (KC: SCC + BowCa/BCC/BD) Number of KC per case (mean ± SD) cSCC + BowCa BCC BD | 1335: 506/593/236 18 ± 22 7 ± 12 8 ± 11 3 ± 4 | |||
Fitzpatrick Skin Type, n (%) I II III | 4 (3) 72 (48) 74 (49) | 2 (3) 41 (55) 32 (43) | 2 (3) 31 (41) 42 (56) | p = 0.25 |
Cumulative UV exposure, hours (mean ± SD) | 47,111 ± 27,349 | 45,811 ± 24,595 | 48,410 ± 29,962 | p = 0.56 |
Modified SKINEXA skin aging score Score (mean ± SD) | 20 ± 7 | 20 ± 7 | 20 ± 7 | p = 1.00 |
rsID | Symbol | Chromosome | Position | Ref | Alt | Effect | SE | p-Value | Impact | Biotype |
---|---|---|---|---|---|---|---|---|---|---|
rs72698504 | EXOC3 | 5 | 458,036 | C | T | 25.13 | 4.19 | 1.98 × 10−9 | modifier | protein_coding |
rs4968774 | CYB561 | 17 | 63,438,051 | G | T | 18.08 | 3.50 | 2.50 × 10−7 | modifier | protein_coding |
rs200377821 | WASHC1 | 9 | 14,816 | C | G | 24.21 | 4.76 | 3.71 × 10−7 | moderate | protein_coding |
rs4239111 | SCARNA21 | 17 | 7,908,680 | T | C | −14.33 | 2.82 | 3.86 × 10−7 | modifier | scaRNA |
rs76088740 | PITRM1-AS1 | 10 | 3,151,220 | C | T | 23.70 | 4.77 | 6.76 × 10−7 | modifier | lncRNA |
rs76373320 | MUC8 | 12 | 132,474,266 | G | C | 23.15 | 4.85 | 1.79 × 10−6 | modifier | CTCF_binding_site |
rs76225638 | UNC13A | 19 | 17,627,849 | C | T | 19.25 | 4.10 | 2.68 × 10−6 | modifier | protein_coding |
rs10748100 | IL26 | 12 | 68,201,939 | T | C | 13.71 | 3.32 | 3.57 × 10−5 | low | protein_coding |
rs34999788 | ABI3BP | 3 | 100,898,824 | G | T | 13.75 | 3.10 | 9.27 × 10−6 | low | protein_coding |
rs751315 | ZNF641 | 12 | 48,340,492 | C | T | 14.64 | 3.64 | 5.71 × 10−5 | modifier | protein_coding |
rs35631991 | THBS2-AS1 | 6 | 169,237,752 | G | A | 20.40 | 4.84 | 2.49 × 10−5 | modifier | lncRNA |
Gene | NumPolyVar | Beta_CMC-Wald | SE CMC-Wald | p-Value CMC-Wald | p-Value SkatO | p-Value Skat | p-Value Burden_Zeggini |
---|---|---|---|---|---|---|---|
MC1R | 11 | 16.25 | 3.78 | 1.67 × 10−5 | 5.04 × 10−8 | 2.53 × 10−7 | 7.73 × 10−7 |
EPHA8 | 10 | 13.82 | 5.69 | 1.51 × 10−2 | 2.16 × 10−10 | 4.49 × 10−12 | 3.56 × 10−7 |
EPB41 | 5 | 19.89 | 4.36 | 5.17 × 10−6 | 1.34 × 10−6 | 2.64 × 10−6 | 1.48 × 10−6 |
EPO | 4 | 54.75 | 7.77 | 1.85 × 10−12 | 2.15 × 10−10 | 4.09 × 10−15 | 1.01 × 10−9 |
MYCT1 | 4 | 29.48 | 4.36 | 1.42 × 10−11 | 1.19 × 10−8 | 1.03 × 10−7 | 3.31 × 10−9 |
ADGRG3 | 4 | 32.51 | 8.51 | 1.34 × 10−4 | 2.16 × 10−10 | 4.98 × 10−13 | 4.13 × 10−8 |
MGME1 | 4 | 30.35 | 5.95 | 3.40 × 10−7 | 3.74 × 10−7 | 5.15 × 10−7 | 2.50 × 10−6 |
ZNF276 | 9 | 17.62 | 4.05 | 1.35 × 10−5 | 4.07 × 10−8 | 1.42 × 10−8 | 4.11 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunder-Plassmann, R.; Geusau, A.; Endler, G.; Weninger, W.; Wielscher, M. Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study. Cancers 2023, 15, 3354. https://doi.org/10.3390/cancers15133354
Sunder-Plassmann R, Geusau A, Endler G, Weninger W, Wielscher M. Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study. Cancers. 2023; 15(13):3354. https://doi.org/10.3390/cancers15133354
Chicago/Turabian StyleSunder-Plassmann, Raute, Alexandra Geusau, Georg Endler, Wolfgang Weninger, and Matthias Wielscher. 2023. "Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study" Cancers 15, no. 13: 3354. https://doi.org/10.3390/cancers15133354
APA StyleSunder-Plassmann, R., Geusau, A., Endler, G., Weninger, W., & Wielscher, M. (2023). Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study. Cancers, 15(13), 3354. https://doi.org/10.3390/cancers15133354